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Abstract: Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family
of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small
GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-
bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors.
Similar to other RasGRPs, the catalytic module of RasGRP1 is composed of the Ras exchange motif
(REM) and Cdc25 domain, and the EF hands and C1 domain contribute to its cellular localization and
regulation. RasGRP1 can be activated by a diacylglycerol (DAG)-mediated membrane recruitment
and protein kinase C (PKC)-mediated phosphorylation. RasGRP1 acts downstream of the T cell
receptor (TCR), B cell receptors (BCR), and pre-TCR, and plays an important role in the thymocyte
maturation and function of peripheral T cells, B cells, NK cells, mast cells, and neutrophils. The
dysregulation of RasGRP1 is known to contribute to numerous disorders that range from autoimmune
and inflammatory diseases and schizophrenia to neoplasia. Given its position at the crossroad of cell
development, inflammation, and cancer, RASGRP1 has garnered interest from numerous disciplines.
In this review, we outline the structure, function, and regulation of RasGRP1 and focus on the existing
knowledge of the role of RasGRP1 in leukemia and other cancers.
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1. Ras Guanine Nucleotide Exchange Factors: Introduction

Ras guanine nucleotide exchange factors (RasGEFs) are composed of three families of
proteins: Ras guanine nucleotide-releasing proteins (RasGRPs), Son of Sevenless (SOS), and
Ras guanine nucleotide-releasing factors (RasGRFs). The RasGRP family consists of four
members, RasGRP1, RasGRP2, RasGRP3, and RasGRP4, the SOS family is composed of
two members, SOS1 and SOS2, and the RasGRF family is also composed of two members,
RasGRF1 and RasGRF2. The commonality is that they catalyze the removal of GDP from
GTPases, such as Ras and Rap, and allow for its replacement [1] (Figure 1). While Ras itself
possesses intrinsic GTPase and guanine nucleotide exchange activities, the basal activity is
low. The activation of the canonical Ras pathway is characterized by the phosphorylation
of Raf, Mek, and Erk. The active GTP-bound Ras has a wide range of downstream effects
at the cellular level, such as a proliferation, differentiation, and apoptosis. Given these
fundamental roles, numerous disease processes have been attributed to the dysregulation of
Ras and RasGEFs, which range from autoimmune and inflammatory diseases to neoplasia.
A broad review of all RasGEFs in various cell types is beyond the scope of this focused
review of RasGRP1 in cancer; however, we direct the reader to previous reviews [2–6].
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The structure, function, and regulation of RasGRP1 are briefly discussed, and the role of Ras-
GRP1 in leukemia, lymphoma, squamous cell carcinoma, colorectal cancer, hepatocellular
carcinoma, and breast cancer are reviewed in-depth below.
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A single amino acid change within this structure has been shown to abrogate its catalytic 
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ciating ability of RasGEFs, the nucleotide exchange step is mediated by other regions of 
the catalytic domain [10]. 

Figure 1. Schematic of the Ras switching cycle. Ras cycles between the GTP-bound active state
and the GDP-bound inactive state. RasGAP catalyzes the hydrolysis of GTP, and RasGEF facilitates
guanine nucleotide exchange. Created with BioRender.com.

2. RasGRP1: Structure and Function

The catalytic module of RasGRP1 is composed of the Ras exchange motif (REM)
followed by the CDC25 subunit (Figure 2). Upon the binding of the Ras to the catalytic
module of RasGRP1, the helical hairpin of CDC25 removes the GDP from the GTPase.
As the cellular concentration of GTP is about 10-fold higher than GDP, GTP occupies the
free nucleotide-binding pocket of the enzyme. This hairpin is highly conserved in all
GEFs [7]. A single amino acid change within this structure has been shown to abrogate its
catalytic effect [8,9]. Despite the ability of the helical hairpin alone to convey the nucleotide
dissociating ability of RasGEFs, the nucleotide exchange step is mediated by other regions
of the catalytic domain [10].

Adjacent to the catalytic module of RasGRP1 is a pair of EF hands (Figure 2) with a
calcium-binding capacity in vitro [11]. The evidence is conflicted on the importance of EF
hands and calcium for the activation of RasGRP1. Some studies found the EF hands and
calcium to be dispensable [12–14], while some found them to be necessary [15]. The current
weight of evidence supports the idea that the EF hands do indeed bind calcium, induce
conformational changes, and activate RasGRP1 [16,17]. The calcium source is from the
endoplasmic reticulum stores, and its release is mediated by phospholipase C-γ-generated
inositol-1,4,5-trisphosphate (IP3) [18].

The C1 domain of RasGRP1 binds DAG (Figure 2), generated by PLCγ, and its syn-
thetic analog phorbol myristate acetate (PMA) and 12-O-tetradecanoylphorbol-13-acetate
(TPA) [11,19–21]. Upon the binding of the C1 domain to the DAG, RasGRP1 becomes
anchored to the plasma membrane [11,13,22–26] where its substrate, GDP-loaded GTPase,
is present. Alternatively, RasGRP1 can also be trafficked to the endoplasmic reticulum
(ER) and Golgi apparatus [23,24,27–29]. While the ability of the C1 domain to bind DAG is
well known, it alone is insufficient for membrane targeting and requires other domains on
RasGRP1, which are discussed below.
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Figure 2. RasGRP1 domains. (A) Individual protein domains and the PKC-phosphorylation site, 
threonine 184, are diagramed and labelled. (B) An illustration of RasGRP1 protein domains. The Ras 
and DAG binding sites are labelled. Created with BioRender.com. 
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The tail region of RasGRP1 possesses an approximately 140 residue-long coiled-coil
(CC), later renamed as the plasma membrane-targeting (PT) domain, and the suppressor of
PT (SuPT) domain [16,23] (Figure 2). In the inactive state, the SuPT domain of RasGRP1
attenuates the plasma membrane-targeting activity of the PT domain [23]. Upon the bind-
ing of the C1 domain to DAG, it also counteracts the SuPT domain and enables the PT
domain to target RasGRP1 to the plasma membrane [23,30]. At the plasma membrane, the
hydrophobic residues of the PT domain bind phospholipid vesicles containing phospho-
inositides. The deletion of the hydrophobic residues prevents the PI3k-dependent plasma
membrane targeting of RasGRP1 [30], and the deletion of the tail region entirely leads to a T
cell dysregulation [31]. The PT domain additionally facilitates the dimerization of RasGRP1
in the inactive state [16]. While the C1 domain is well-recognized for its role mediating the
RasGRP1 membrane targeting capacity and activation, it is now accepted that these effects
are also dependent on the tail domain of RasGRP1.

3. Ras Guanine Nucleotide-Releasing Protein 1: Regulation

The translocation and activation of the RasGRP1 membrane are reliant on the binding
of the C1 domain to DAG (Figure 3). Logically, the catalyzation of DAG to phosphatidic
acid (PA) by diacylglycerol kinases (DGK) should terminate RasGRP1 signaling. Indeed,
DGKα is recruited to the plasma membrane after the TCR stimulation [32] and results
in suppressed RasGRP1 activity and Ras signaling [33,34]. This mechanism of RasGRP1
regulation has been proposed to be a mechanism of T cell anergy [35,36]. Other DGK
isoforms also regulate the RasGRP1 activity, specifically, DGKζ. Studies have found that
the overexpression of kinase-dead DGKζ in Jurkat cells prolonged the Ras activation, and
the overexpression of the wild-type DGKζ suppressed the ERK phosphorylation following
the TCR ligation [37,38]. For in-depth reviews of the DGKs, we direct the reader to previous
reviews [39,40].

The activity of RasGRP1 is regulated by multiple mechanisms in addition to en-
domembrane versus plasma membrane localization. RasGRP1 is also regulated by the
phosphorylation (Figure 3), more specifically, of threonine 184 (T184) by protein kinase C α

(PKCα) after the TCR engagement or PMA stimulation [41]. While the phosphorylation of
T184 enhances the activity of RasGRP1, it is not completely required. A RasGRP1 Thr184Ala
mutant did not exhibit a significant signaling defect [42]. DGKζ not only indirectly reg-
ulates the RasGRP1 activity via DAG, but it also physically associates with PKCα and
inhibits the phosphorylation of RasGRP1 [43]. In unstimulated cells, RasGRP1 is believed
to exist in an autoinhibited dimeric form, in which the EF domains of each monomer block
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DAG-binding sites on the C1 domain of the partner. It was also suggested that an invariant
His 212 in RasGRP1, 2, and 3 functions as a pH sensor: lymphocyte receptor stimulation
causes an increase in the intracellular pH and thus the deprotonation of His 212 [44].
The later causes the structural rearrangement of the linker between the CDC25 and EF
domain and the destabilization of the autoinhibition [44]. We refer the reader to the review
by Griner and Kazanietz for additional details on PKC and other DAG effectors [45].
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Figure 3. Model of RasGRP1 regulation and plasma membrane translocation. RasGRP1 is sequestered
in the cytoplasm in its inactive state (lower center) and translocated to the plasma membrane or
endomembrane upon activation (upper center). RasGRP1 activation involves phosphorylation of
threonine 184, DAG binding by C1 domain, and calcium binding by the EF hands. Termination of
RasGRP1 signaling is mediated by the breakdown of DAG to PA by DGKα and DGKξ. RasGRP1 can
be suppressed by miR-21 and degraded following disassociation from HSP90 and polyubiquitination.
Active RasGRP1 catalyzes the release of GDP from Ras and facilitates their transition from inactive
GDP-bound to active GTP-bound state. Created with BioRender.com.

Ding and colleagues identified RasGRP1 to be a client protein of the chaperone heat
shock protein 90 (HSP90) (Figure 3). Additionally, the degradation of RasGRP1 can be
mediated by HSP90 acetylation [46]. There is emerging evidence that microRNAs also
play a role in the RasGRP1 expression; specifically, miR-21 was shown to suppress the
expression of RasGRP1 [47,48]. Conversely, the downregulation of miR-21 increased the
RasGRP1 expression in vitro [49].

4. RasGRP1: Cell Development and Function
4.1. Immature Thymocytes

The maturation of immature thymocytes undergo four double-negative (CD4−, CD8−)
stages (DN1–4), an immature single positive stage (ISP; CD8+ in mice and CD4+ in humans),
and a double positive (DP; CD4+, CD8+) stage (Figure 4). During this process, immature
thymocytes undergo two selection checkpoints. The first of which is a process termed
“β-selection”, which takes place in the DN3-DN4 transition stage, where the pre-T cell
receptor (pre-TCR), composed of a somatically rearranged TCRβ chain and an invariant
pre-TCRα chain, signal a first intersect with the Ras pathway. This signal is necessary for
the αβ T cell precursors to eventually become mature CD4+ or CD8+ T cells. The activation
of the Ras is critical in β-selection; in fact, activated Ras can replace the pre-TCR expression
and generate DP thymocytes in Rag−/− mice [50]. At the β-selection step, RasGRP1 is
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dispensable and acts as a backup for SOS1 [51–53]. Immature thymocytes that pass the
β-selection undergo a proliferative burst and initiate CD4 and CD8 expression to become
DP thymocytes. DP thymocytes that express TCRαβ undergo subsequent checkpoints
termed “positive” and “negative” selection, where the TCRαβ signal quality and strength
are interrogated. RasGRP1 plays an essential role in a positive selection, and SOS1 acts as
backup in a negative selection [52,53]. The knockout of RasGRP1 arrests the progression
of DP thymocytes through a positive selection [51,54], whereas the double knockout of
RasGRP1 and SOS1 is needed to arrest a negative selection [53].
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The compartmentalization of Ras signaling underlies the digital output (positive ver-
sus negative) seen in the pre-TCR and TCR selection checkpoints [55–57] (Figure 5). Neg-
ative selection signaling is molecularly characterized by the plasma membrane recruit-
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from the cytosol, and the resultant activation of the Ras pathway [55–57]. The Grb2-SOS1 
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Figure 4. CD4 and CD8 expression of thymocytes through maturation. Immature thymocytes begin
the process of maturation in the thymus in the double negative (DN; CD4− CD8−) stage, followed
by DN2, DN3, and DN4 stages. The process of β-selection takes place as DN3 thymocytes mature
into the DN4 stage. In mice, DN4 thymocytes transition through an immature single positive (ISP,
CD8+) stage to become double positive (DP; CD4+ CD8+) thymocytes. The second round of selection,
positive and negative selection, takes place between the DP and the mature single positive (SP) stages.
Mature SP thymocytes can be CD4+ or CD8+. Created with BioRender.com.

The compartmentalization of Ras signaling underlies the digital output (positive
versus negative) seen in the pre-TCR and TCR selection checkpoints [55–57] (Figure 5).
Negative selection signaling is molecularly characterized by the plasma membrane recruit-
ment of the RasGRP1 and Grb2 (growth factor receptor-bound protein 2)-SOS1 complex
from the cytosol, and the resultant activation of the Ras pathway [55–57]. The Grb2-SOS1
complex binds phosphorylated LAT at the plasma membrane and serves as another RasGEF.
However, positive selecting signaling is characterized by the recruitment of RasGRP1 to
the Golgi apparatus, and no involvement of the Grb2-SOS1 complex [55,56].

4.2. T Cells

Despite the maturation arrest of thymocytes and the loss of mature single-positive
thymocytes in RasGRP1 knockout mice, this arrest is not complete. RasGRP1-deficient
CD4+ and CD8+ T cells do exist [58], however, they are defective in their capacity to
become activated and proliferate after an anti-CD3 and anti-CD28 antibody stimulation [58].
Interestingly, humans deficient in RasGRP1 have increased numbers of TCRγδ+ CD8+ T
cells [58]. RasGRP1-deficient mice develop splenomegaly and autoantibodies as a result of
T cell dysregulation, characterized by an elevated interleukin (IL)-4 secretion [31,59–61].
This elevation in IL-4 drives B cell proliferation and the production of autoantibodies [60].
Furthermore, one study found that the binding of RUNX1 to a putative autoimmunity-
associated enhancer 1 upstream of Rasgrp1 mediates the RasGRP1 deficiency-mediated
autoimmune disease [61].
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phosphorylation of threonine 184, binding of calcium by the EF hands, and translocation to the
plasma membrane or endomembranes (Golgi apparatus and endoplasmic reticulum). Deletion of the
PT domain renders RasGRP1 unable to translocate to the plasma membrane. In negative selection of
αβTCR-expressing thymocytes, RasGRP1 is recruited to the plasma membrane along with SOS1-Grb2
complex. Grb2-SOS1 complex binds phospho-LAT and RasGTP at the plasma membrane and act
as another RasGEF. PLCγ is also recruited to the phospho-LAT at the plasma membrane during
RasGRP1 activation and generates DAG and IP3. IP3 subsequently induces the release of intracellular
stores of calcium. Created with BioRender.com.

4.3. B-Cells

B cells express RasGRP1 and RasGRP3. While both are involved in B cell receptor
(BCR)-mediated Ras signaling, RasGRP3 plays the central role [59,62]. One study found that
the BCR-mediated proliferation was suppressed more by the knockout of RasGRP3 than
RasGRP1 and was absent in double knockouts [59]. The defect in the B cell proliferation
due to the RasGRP1 knockout was supported by a later study [58]. Unlike T cells, the
knockout of both RasGRP1 and RasGRP3 did not disrupt the development of B cells [59].
However, B cells that express a dominant negative Ras mutant have severe developmental
defects at the pre–pro B cell stage [63,64].

4.4. NK Cells

NK cells exert their cytotoxic effect and produce cytokines and chemokines subse-
quent to the activation of various cell surface receptors [65]. Briefly, this signal cascade is
dependent on RasGRP1, and the knockdown of RasGRP1 in NK cells results in a markedly
decreased cytokine production and cytotoxicity [58,66]. In humans, this defect has been
attributed to the protein–protein interaction between RasGRP1 and the dynein light chain
(Dynll1) [58].

4.5. Granulocytes

The differentiation of myeloid progenitors into neutrophils is dependent on the tran-
scription factor growth factor independence 1 (Gfi1) [67–69] and the growth factor granulo-
cyte colony-stimulating factor (G-CSF) [70–72]. Gfi1 regulates G-CSFR signaling in myeloid
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progenitors via the upregulation of the RasGRP1 expression and Ras activation [73]. Ras-
GRP1 has also been found to be important for a mast cell degranulation. RasGRP1−/− mice
exhibit an impaired immunoglobulin E (IgE)-mediated degranulation and anaphylaxis [74].

5. RasGRP1: Role in Cancer
5.1. Lymphoma and Leukemia

While loss-of-function RasGRP1 mutants have been described in humans [75–77], no
oncogenic mutant of RasGRP1 has been identified. These loss-of-function RasGRP1 mutants
lead to the development of autoimmune lymphoproliferative syndrome (ALPS), CD4+ T
cell lymphopenia, recurrent infections, hepatosplenomegaly, and lymphadenopathy [75–77].
It is important to note that some patients with loss-of-function RasGRP1 mutants develop
Epstein–Barr virus (EBV)-induced B cell lymphoma. However, studies have found RasGRP1
to be overexpressed in nearly half of all T cell acute lymphoblastic leukemias (T-ALL) [78,79].
Retroviral insertion studies in mice have also identified wild-type RasGRP1 as a leukemogenic
oncogene [80–82]. Furthermore, the dysregulation of RasGRP1 in mice and cell lines has
been shown to lead to the development of thymic lymphomas and T cell leukemias [79,83,84].
Interestingly, cell lines with a high RasGRP1 expression required a cocktail of IL-2, -7, and -9 for
proliferation [79,84]. Additionally, leukemia driven by the overexpression of RasGRP1 and K-
RasG12D are mutually exclusive and represent the distinct mechanisms of leukemogenesis [79].
This is consistent with the finding from a later study that identified RasGRP1 as a negative
regulator of Ras signaling in Kras−/− NrasQ61R/+-driven leukemia [85]. Various studies have
shown that the dysregulation of RasGRP1 itself is insufficient for leukemogenesis [79,86];
however, it does bestow a proliferative advantage in bone marrow progenitors over wild
type cells [86]. Consistent with Knudson’s “two-hit” theory that was proposed over 50 years
ago [87], the dysregulation of RasGRP1 requires a second cooperating oncogene or cytokine
stimulation for transformation [78,79,84]. The knockout of RasGRP1 negative regulators has
also been shown to be oncogenic; specifically, DGKα−/− DGKζ−/− double knockout mice
develop thymic lymphoma due to the failure to prevent the overactivation of RasGRP1 and
Ras [88]. Beyond the role of RasGRP1 as an oncogene, its overexpression has been documented
to be a mechanism of resistance to MEK inhibitors [89].

No RasGRP1-specific small molecule inhibitors currently exist. Since the overexpression
of RasGRP1 renders T-ALL cells responsive to pro-tumorigenic cytokines [84], PI3K inhibitors
have been tested as a monotherapy in mice, but with no success [90]. Others have tried to
target the RasGRP1/Ras/Erk pathway in T cell lymphoblastic lymphomas (T-LBL), which
are morphologically and immunophenotypically identical to T-ALL [91]. Bromodomain-
containing protein 2 (BRD2) binds to the promotor region of Rasgrp1 and conveys a doxoru-
bicin resistance in some T-LBL patients [92]. The targeting of BRD2 via a bromodomain and
extra-terminal (BET) inhibitor improved the therapeutic efficacy in vitro and in a patient-
derived xenograft mouse model [92]. DAG and its analogues have long been known to
activate RasGRP1 in T and B cells [93,94], and the treatment of B cell lymphoma-derived cell
lines with DAG analogues promoted apoptosis [94,95]. This proapoptotic pathway induced
by DAG analogues is mediated by the PKC/RasGRP1/Erk pathway [94,95].

5.2. Squamous Cell Carcinoma

While studying the role of RasGRP1 in skin tumors, one group found that the overex-
pression of RasGRP1, driven by a K5 promotor, in keratinocytes resulted in the development
of spontaneous skin tumors [96,97]. These tumors were mostly benign papillomas and
there were lesser numbers of squamous cell carcinomas. Due to the observation that the
incidence of tumors development was higher in co-housed animals, it was hypothesized
that wounding contributed to tumor development. Indeed, when RasGRP1-K5 transgenic
mice were subjected to full-thickness incision wounding, 50% of them developed skin
tumors [97]. The proposed mechanism is that the act of wounding caused the release of the
granulocyte colony-stimulating factor (G-CSF) by keratinocytes [96,97], and G-CSF acted in
an autocrine and paracrine fashion to cooperate with RasGRP1 in the development of skin
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tumors [98]. When the same RasGRP1-K5 transgenic mice were subjected to multistage
skin carcinogenesis protocol, 7,12-dimethylbenz(a)anthracene (DBMA) as carcinogen, and
12-O-tetradecanoylphorbol-13-acetate (TPA) as tumor promoters, it was found that the
squamous cell carcinomas that developed in the transgenic mice were larger, less differen-
tiated, and more invasive [99]. Additionally, the overexpression of RasGRP1 was found
to partially replace the DMBA induction [99]. Conversely, RasGRP1 knockout mice have
impaired skin tumorigenesis, evidenced by a reduced epidermal hyperplasia induced by
TPA [100,101]. To study other coopering mechanisms of oncogenesis in keratinocytes, one
group transduced keratinocytes derived from a Li-Fraumeni patient with RasGRP1 and
found that the keratinocytes acquired morphologic changes that are associated with a
transformation [102]. This result supports the idea that RasGRP1 cooperates with other
genes because patients with Li-Fraumeni syndrome are deficient in p53, a well-known
tumor suppressor gene.

5.3. Colorectal Cancer

Surprisingly, RasGRP1 acts as a tumor suppressor in colonic epithelium; furthermore,
RasGRP1 can be used as a biomarker for predicting the efficacy of anti-epidermal growth
factor receptor (EGFR) therapy for CRC (colorectal cancer) patients [103,104]. The RasGRP1
expression levels decrease with the progression of CRC and predict the poor clinical
outcome of patients [104]. Mechanistically, the same group found that RasGRP1 suppresses
the proliferation of the KRas mutant and negatively regulates the EGFR/SOS1/Ras signal
in CRC cells [104]. This mechanism may explain its tumor suppressor activity in colorectal
cancer in contrast to its oncogenic activity in most other neoplasias.

5.4. Hepatocellular Carcinoma

RasGRP1 has been found to be upregulated in hepatocellular carcinomas (HCC) [105];
furthermore, a high RasGRP1 expression is associated with the tumor size, tumor–node–
metastasis (TNM) stage, and Barcelona Clinic Liver Cancer stage [105]. At the cellular level,
in Huh7 and PLC cells, the downregulation of RasGRP1 inhibited cell proliferation, whereas
the overexpression of RasGRP1 promoted cell proliferation [105]. Specific protein 1 (Sp1)
was identified to bind the Rasgrp1 promotor and is a positive regulator [105]. For a review
of the Ras pathways in HCC, we refer the reader to the work by Moon and colleagues [106].

5.5. Breast Cancer

The role of RasGRP1 in breast cancer has only recently been studied. Specifically,
it was found that the upregulation of Rasgrp1 was associated with an improved overall
survival in breast cancer [107], as well as overall survival and disease-free survival in the
triple-negative breast cancer subtype [107,108]. The molecular mechanism that underlies
these observations is unknown.

6. Conclusions

Given that approximately 46% of cancers exhibit alterations in the Ras pathway [109],
it has been extensively studied over the past decades. With RasGRP1 being a RasGEF, it
too has received much attention. Through this endeavor, the structure, function, regulation,
and developmental role of RasGRP1 have been described at the molecular level. This has
identified RasGRP1 and its regulators as promising targets in leukemia and other cancers.

Most of the domains of RasGRP1 are well characterized. The REM and CDC25 do-
mains facilitate the Ras cycle between the GDP-bound inactive form and the GTP-bound
active form. The EF hands bind calcium and induce an activation-associated conformational
change [16,17]. The C1 domain binds DAG at the plasma membrane or endomembrane.
The PT domain facilitates dimerization and phosphoinositide-mediated plasma membrane
targeting [30]. For the regulation of RasGRP1, it is known that signal termination can be
mediated by DGKα and DGKζ via the conversion of DAG to PA. For the activation, Ras-
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GRP1 can be phosphorylated at T184 by PKCα. Other less-well characterized mechanisms
include HSP90- [46] and miR-21-mediated degradation [47,48].

In normal physiology, RasGRP1 plays an important role in the maturation of thymo-
cytes. Specifically, it is necessary for a positive selection of the rearranged αβTCR [52,53].
The compartmentalization of Ras signaling to the plasma membrane or the endomembrane
at the selection checkpoints adds an extra layer of complexity [55–57]. The dysregulation
of RasGRP1 in peripheral T cells, B cells, NK cells, neutrophils, and mast cells are known
to cause developmental and/or functional defects. One of the most surprising defects
revealed in knockout mice is that RasGRP1 normally interacts with the dynein light chain
in NK cells [58], and this indicates that RasGRP1 has additional functions besides as a
RasGEF.

Given the importance of RasGRP1 in cell development, it is unsurprising that it is
expressed in numerous cancers and plays a role in oncogenesis. The overexpression of
RasGRP1 alone is insufficient for lymphoma- or leukemo-genesis [79,86]. The transforma-
tion of thymocytes requires the overexpression of RasGRP1 and a cooperating oncogene or
knockout of a tumor suppressor. Since no Ras- or RasGRP-specific small molecule inhibitors
have been identified, efforts have been made to target regulatory pathways through the
use of BET inhibitors [92], DAG analogs [94,95], and HDAC inhibitors [46].

Much of the work done on RasGRP1 within the realms of immunology and cancer
research in the last 5 years has focused on three areas. The first area is its role in lymphocyte
homeostasis, which can be summarized by the identification of loss-of-function RasGRP1
mutants in two patients with ALPS [75], one patient with immunodeficiency, and three
patients with EBV-associated lymphoproliferative disease [76,77,110]. A second area is the
clinical behavior of tumors relative to the expression of RasGRP1 in various cancers, such
as CRC [103], HCC [105], and breast cancer [107,108]. The third area is the mechanism
by which RasGRP1 serves as a tumor suppressor in certain cancer models [85,111]. These
last two emerging areas point to the idea that RasGRP1 cannot simply be described as an
“oncogene” or its overexpression as a negative indicator, but rather that its role is cancer-
and model-dependent. While not emphasized in this focused review, progress in RasGRP1
research is also being made in the areas of schizophrenia [112], neuro-inflammation [113],
systemic lupus erythematosus [114], Parkinson’s disease [115], and angiogenesis [116]. It is
evident that the relevance of RasGRP1 reaches beyond the development and function of
immune cells and homeostasis and cancer.

Despite this progress, there is still much to understand about RasGRP1. First, a concise
explanation for the conflicting role of calcium, or lack of, in the function of RasGRP1 has
yet to be articulated. Second, since RasGRP1 is involved in the degranulation of NK cells
and mast cells and the development of neutrophils, it is interesting to speculate on its
potential developmental and functional role in other granulocytes. It is clear that RasGRP1
plays a role in T leukemogenesis; additionally, it is necessary for it to cooperate with other
oncogenes for transformation. It is likely that the array of cooperating oncogenes has yet to
be fully elucidated. Lastly, only in recent years was RasGRP1 identified as a differentially
expressed gene correlated with overall and disease-free survival in breast cancer. It will be
important to determine the molecular basis for this counterintuitive correlation.
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Abbreviations

12-O-tetradecanoylphorbol-13-acetate (TPA), 7,12-dimethylbenz(a)anthracene (DBMA), autoimmune
lymphoproliferative syndrome (ALPS), B cell receptors (BCR), bromodomain and extra-terminal
(BET), bromodomain-containing protein 2 (BRD2), coiled-coil (CC), colorectal cancer (CRC), dia-
cylglycerol (DAG), diacylglycerol kinase (DGK), endoplasmic reticulum (ER), epidermal growth
factor receptor (EGFR), Epstein–Barr virus (EBV), granulocyte colony-stimulating factor (G-CSF),
growth factor independence 1 (Gfi1), growth factor receptor-bound protein 2 (Grb2), guanine nu-
cleotide exchange factors (GEFs), guanosine diphosphate (GDP), guanosine triphosphate (GTP),
heat shock protein 90 (HSP90), hepatocellular carcinomas (HCC), immunoglobulin E (IgE), inositol-
1,4,5-trisphosphate (IP3), interleukin (IL), natural killer cells (NK cells), phorbol myristate acetate
(PMA), phosphatidic acid (PA), phospholipase Cγ (PLCγ), plasma membrane-targeting (PT), pre-T
cell receptor (pre-TCR), protein kinase C (PKC), Ras exchange motif (REM), Ras exchange motif
(REM), Ras guanine nucleotide-releasing factors (RasGRFs), Ras guanine nucleotide-releasing protein
1 (RasGRP1), runt-related transcription factor 1 (RUNX1), Son of Sevenless (SOS), specific protein 1
(Sp1), suppressor of PT (SuPT), T cell acute lymphoblastic leukemias (T-ALL), T cell lymphoblastic
lymphomas (T-LBL), and T cell receptor (TCR).
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