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Abstract: It is commonly believed that the inactivation of inflammation is mainly due to the decay or
cessation of inducers. In reality, in connection with the development of atherosclerosis, spontaneous
decay of inducers is not observed. It is now known that lipid mediators originating from polyun-
saturated fatty acids (PUFAs), which are important constituents of all cell membranes, can act in
the inflamed tissue and bring it to resolution. In fact, PUFAs, such as arachidonic acid (AA), eicos-
apentaenoic acid (EPA), and docosahexaenoic acid (DHA), are precursors to both pro-inflammatory
and anti-inflammatory compounds. In this review, we describe the lipid mediators of vascular
inflammation and resolution, and their biochemical activity. In addition, we highlight data from
the literature that often show a worsening of atherosclerotic disease in subjects deficient in lipid
mediators of inflammation resolution, and we also report on the anti-proteasic and anti-thrombotic
properties of these same lipid mediators. It should be noted that despite promising data observed
in both animal and in vitro studies, contradictory clinical results have been observed for omega-3
PUFAs. Many further studies will be required in order to clarify the observed conflicts, although
lifestyle habits such as smoking or other biochemical factors may often influence the normal synthesis
of lipid mediators of inflammation resolution.

Keywords: atherosclerosis; polyunsaturated fatty acids; lipid mediators; pro-resolving mediators;
ω-3 fatty acid diet

1. Introduction

Atherosclerosis is a lipoprotein-driven, non-resolving chronic inflammatory disease
that could cause heart attacks [1,2] and cardiovascular disease [3]. Atherosclerosis begins
with the retention of apolipoprotein B–containing lipoproteins within the subendothelial in-
tima of arteries, which leads to the activation of endothelial cells, recruitment of leukocytes,
and accumulation of cells, extracellular matrix, and lipids [4].

Macrophages, the major leukocyte type ingesting retained lipoproteins in the suben-
dothelial region, in some cases modified by oxidation [5], become foam cells that help to
repair and to clear the tissue from the necrotic cells. However, the prolonged pathogenesis
of atherosclerosis is marked by endothelial cell dysfunction, followed by the deposition of
lipid-laden macrophages and VSMC proliferation, leading to the occlusion of the arterial
lumen. A build-up of fatty deposits inside the arteries (atherosclerosis) and an increased
risk of blood clots are usually associated with cardiovascular diseases, a general term for
conditions affecting the heart or blood vessels. In fact, in several cardiovascular diseases, a
non-resolved acute inflammation [3] could cause chronic fibrotic disease [6,7]. Sometimes,
plaque necrosis further increases the inflammatory response [8] and could break down the
integrity of the fibrous cap, triggering acute occlusive thrombosis and tissue infarction [8,9].

In the past, it was assumed that the reduction or elimination of vascular inflammation
was principally caused by the decay or cessation of lipid inducers; therefore, the use of
LDL-lowering therapy has been revealed to be very useful. Data from basic and clinical
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studies indicates that anti-inflammatory treatment could represent an important approach
to prevent coronary and cerebral atherosclerotic events. However, despite the availability
of this safe therapy, the incidence of cardiovascular disease has been increasing [10].

In recent years, the importance of lipid mediators in resolving inflammation has been
spotlighted [11–15]. Lipid mediators originate from PUFAs, which represent an important
constituent of all the cell membranes in the body. In particular, AA, EPA, and DHA are
precursors of several lipid mediators that display pro- or anti-inflammatory properties
based on the PUFA, enzyme, and receptor to which they are related. Originally considered
only as membrane and energy storage molecules, lipid mediators are now recognized as
powerful signaling molecules that regulate a multitude of cellular responses, including
growth, apoptosis, and inflammation/infection [16].

However, defects in the resolution of inflammation by lipid mediators have emerged
as key causal factors of atherosclerosis [6,17,18]. Specifically, here, we will discuss the
role of lipids derived from AA (prostanoids, leukotrienes, epoxyeicosatrienoic acids, and
lipoxins), EPA (E-series resolvins), and DHA (D-series resolvins, protectins, and maresins)
in relation to cardiovascular inflammation, with the goals of investigating obstacles in
the path of vascular inflammation resolution; and identifying novel therapeutic targets in
cardiovascular diseases.

Lipid mediators are grouped into three classes based on their structure and func-
tion [19].

2. Class 1: Eicosanoids

Class 1: Eicosanoids (Prostanoids, Leukotrienes, Epoxyeicosatrienoic acids, and Lipox-
ins). Eicosanoids derive from membrane phospholipid-released AA which is metabolized
by cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome P450 (CYP) enzymes
to form prostanoids, leukotrienes (LTs), lipoxins (LXs), epoxyeicosatrienoic acids (EETs),
and eicosatetraenoic acids (ETEs) [20–23].

2.1. Molecular and Biochemical Characteristic of PROSTANOIDS

The prostanoids comprise the prostaglandins (PGs), the prostacyclins (PGIs), and the
thromboxanes (TXA2) (Figure 1).
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Prostaglandins show the prefix ‘PG’ followed by a letter A to K, depending on the
nature and position of the substituents on the ring, and on the presence or absence of double
bonds or hydroxyl groups in various positions in the ring. TXA2 contains an unstable
bicyclic oxygenated ring structure [24].

COX-1 is mainly a constitutive enzyme that maintains basal levels of PGs, while COX-2
is an inducible isoform that is regulated by growth factors, cytokines, shear stress, and
mitogens. COX-2 is typically upregulated in atherosclerotic lesions [25]. Cyclooxygenases
sequentially convert arachidonic acid to the endoperoxides PGG2 and PGH2. PGH2 is
further isomerized to each terminal prostanoid by the corresponding synthases. Notably,
mPGES (microsomal PGE synthase-1) catalyzes the isomerization of PGH2 into PGE2
biosynthesis. mPGES-1 can couple with both COX-1 and COX-2, and its induced expression
increases PGE2, which often correlates with the induction of COX-2 [26].

Prostanoids exert a variety of actions through their specific G-protein-coupled recep-
tors, which are differentially expressed in tissues and cells, triggering varied downstream
signaling [27]. Among them, the IP, DP, EP2, and EP4 receptors mediate a cAMP rise,
whereas EP3 induces a decline in cAMP levels. Finally, FP, and EP1 receptors induce
calcium mobilization. However, the concentration or structure of the ligand could change
their action [28]. For example, PGI2 stimulates a G-protein-coupled increase in cAMP and
protein kinase A, resulting in a decreased intracellular Ca2+ concentration [29]. Instead,
PGE2, which is produced by a variety of cell types [30], exerts different actions depending
on the type of receptor; it increases intracellular cAMP when binding to EP2 and IP recep-
tors, mainly coupled to Gs protein, while it inhibits intracellular cAMP production binding
to EP3 receptors, coupled to Gi protein [26]. Finally, its interaction with the EP4 receptor
involves PI3K (phosphatidylinositol 3-kinase)/Akt/ERK (extracellular signal-regulated
kinase [31].

TXA2 is an arachidonic acid metabolite that is a potent vasoconstrictor released by
platelet aggregation and involved in atherosclerosis [32,33]. The biological activity of
TXA2 is mediated by thromboxane-prostanoid (TP) receptors. TP activation results in the
production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) via the activation
of phosphatidylinositol (PI)-specific phospholipase C (PI-PLC), through Gq to induce the
increase in intracellular Ca2+ concentration [33].

2.2. Molecular and Biochemical Characteristic of LTs and HETEs

There are six known functional LOX genes in humans (ALOX5, ALOX12, ALOX12B,
ALOX15, ALOX15B, ALOXE3), but only three of them, 5-LOX, 12-LOX (platelet-type), and
15-LOX (reticulocyte-type), appear to be important for vascular disorders [34].

LTs are a family of eicosanoid inflammatory mediators produced in leukocytes, macrophages
and mast cells by the oxidation of AA, and the essential fatty acid EPA by the cytosolic phospho-
lipase A2 and 5-LOX enzymes. 5-LOX, with the aid of the accessory 5-LOX-activating protein
(FLAP), catalyzes the conversion of AA to 5-hydroperoxyeicosatetraenoic acid (5-HETE) and
then to Leukotriene A4 (LTA4) [35], an unstable intermediate, which can be either metabo-
lized by LTA4 hydrolase to LTB4 (see structure in Figure 1), a potent chemoattractant, or
conjugated to glutathione by LTC4 synthase (LTC4S), producing cysteinyl LTs [36]. The LTs
exert their actions through interaction with specific 7-transmembrane G-protein-coupled
cell surface receptors, BLT1 and BLT2, and the CysLT1 receptor [37].

12,15HETEs:12/15-LOX metabolizes arachidonic acid to form 15(S)-hydroperoxy-
eicosatetraenoic acid (15(S)-HPETE) and 12(S)-hydroperoxyeicosatetraenoic acid (12(S)-
HPETE). Both 15(S)-HPETE and 12(S)-HPETE are further reduced by cellular glutathione
peroxidase to their corresponding hydroxy analogs: 15-hydroxyicosatetraenoic acid (15(S)-
HETE) and 12-hydroxyeicosatetraenoic acid (12(S)-HETE), respectively. Both 15(S)-HPETE
and 15(S)-HETE bind to and activate LTB4 receptor 2 and peroxisome proliferator-activated
receptor γ (PPAR) [38].
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2.3. Molecular and Biochemical Characteristic of Lxs

Lipoxin A4 (LXA4) and its isomer Lipoxin B4 (LXB4)(see structure in Figure 1) are the
principal LXs formed in mammals. They are enzymatically derived from the endogenous
ω-6 fatty acid, AA, by 5-LOX and either 12-LOX or 15-LOX enzymes. Additionally, the
aspirin-induced acetylation of COX2 can function through a lipoxygenase instead of an
endoperoxidase, resulting in the generation of aspirin-triggered lipoxin A4 (15-epi-LXA4)
and aspirin-triggered lipoxin B4 (15-epi-LXB4) [39,40].

LXA4 and LXB4 are produced principally in human mucosal tissues, in blood vessels,
and in platelets [22], and are present in all tissues via transcellular interactions between
platelets, neutrophils, and resident cells [41]. LXs were first isolated and identified as
inhibitors of polymorphonuclear neutrophil infiltration and as stimulators of the non-
phlogistic recruitment of macrophages [42,43]. LXA4 regulates cellular functions through
the activation of specific receptors (LXA4 receptor/formyl peptide receptor 2 and G-protein-
coupled receptor 32) expressed by neutrophils and monocytes [44].

2.4. Molecular and Biochemical Characteristic of EETs

EETs are metabolites of AA by cytochrome CYP epoxygenases [45,46] that show
beneficial effects in cardiovascular diseases attributed to anti-inflammation, vasodilation,
and natriuresis [47].

2.5. Role of Prostanoids, LTs, HETEs, LXs, EETs in Atherosclerotic Progression

Prostanoids: Studies performed in mice through genetically manipulated enzymes and
receptors highlighted the many physiological and pathological functions of prostanoids in
atherosclerosis (see Table 1).

Table 1. Studies of Class 1,2,3 lipid mediators in animal models.

Studies in Animal Models Lipid Mediators Effects Ref.

ApoE-deficient mice
↑ TXA2 ↑ Atherogenesis [48]

↓ PGI2 ↑ Atherogenesis [48]

Mice deficient in LDL receptor/mPGEs 1 ↑ PGI2 ↓ Atherosclerosis [49,50]

Mice COX-2 knockout ↑ HBP, Trombosis [51]

ALOX15-deficient mice ↓ HETES
↑ resistance

L-NAME-induced
hypertension

[52]

Mice Ang II-induced hypertension ↓EETS↑ sEH ↑ AngII-induced cardiac
hypertrophy [53]

Administration of PAF receptor antagonist (SDZ
63.675) before reperfusion of the ischemic-isolated

rabbit heart
↓ PAF ↓Myocardial injury

during reperfusion [54]

Male LDLr−/−mice (two weeks cholesterol + cacao
butter diet) before surgery of carotid artery ↑ LPA in atherosclerotic tissue Atherosclerotic Lesion

Progression [55]

WT mice administered with soluble carrier for S1P
(ApoM-Fc) after I/R injury in heart ↑ SP1 Receptor ↓Myocardial damage

after I/R injury [56]

Myocardial I/R in mouse ↑ RvE, RvD, PD, MaR ↓ ROS, Inflammation [57–59]

For example, PGD2 is involved in sleep, in allergies, and adiposity [60]; PGF 2α
in childbirth and fibrosis; and PGE2 is involved in many pathological events, such as
inflammation, fever, pain, and cancer. The potent vasoconstrictor TxA2 seems to be
involved in coronary ischemia.; in contrast, the potent vasodilator PGI2 is involved in
antithrombosis [61] and regulates coronary blood flow in humans [62,63] (see Table 2).
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Table 2. Studies of Class 1,2,3 lipid mediators in humans.

Lipid Mediators Effects Ref

↑ TXA2 Systemic inflammation, myocardial ischemia [61]
↑ LTs Inflammation, CV risk, MI [64,65]

↑ 12(S)-HETE VSMC relaxation [66]
↓ EETs Obstructed CAD [67]
↑ PAF Ischemic events [68–70]
↑ LPA Acute heart attacks and coronary syndrome [71–73]
↓ RvE1 Vascular inflammation [74,75]

↓ 15-epi-LXA 4 Disease severity [74,76]

In mice, TxA2 promotes, while PGI2 prevents, atherogenesis through the control of
platelet activation and leukocyte–EC interaction [48]. At the same time, PGE2 can dilate or
constrict large blood vessels, depending on the vessel type and on the receptor subtypes
involved (EP2, EP4 or EP1, EP3) and receptor, respectively [77–80]. mPGES, which catalyzes
the isomerization of PGH2 into PGE2, represents a possible target against inflammation
and thrombotic risk, because its inhibition augments PGI2 levels. [77]. Studies show
that male mice that are deficient in both LDL receptor and mPGES-1 delay atherosclerosis
development [49] and reduce abdominal aneurysm events induced by angiotensin II [50,77].
The deletion of mPGES-1 attenuates injury-induced neointima formation in mice by the
augmented levels of PGI2, a known restraint of the vascular response to injury, acting
via the IP receptor. On the other hand, the global deletion of mPGES-1 exacerbates MI/R
injury, despite the increased biosynthesis of PGI2 [81]. Mechanistically, it has been reported
that mPGES-1–derived PGE2 and the endothelial EP4 receptor preserve microcirculatory
perfusion in MI/R through their vasodilatory effect on arterioles [51].

COX-1 and -2 are mediators of pain, fever, and inflammation and the primary targets
of nonsteroidal anti-inflammatory drugs (NSAIDs). However, studies in mice using COX-2
knockout or COX-2 derived PGI2 receptor deletion showed elevated blood pressure and
thrombogenesis [82]. Moreover, COX-2-selective drugs such as coxibs, rofecoxib, celecoxib,
and lumiracoxib NSAIDs, inhibit cyclooxygenase-2 (COX-2), thereby suppressing the
biosynthesis of PGI2, and increasing the risk of thrombotic events such as in myocardial
infarction and stroke [83,84].

LTs: Besides their principal role in asthma and in inflammation, LTs can also increase
cardiovascular risk, being important mediators of the inflammatory process in cardio-
vascular pathologies [64,65]. In particular, cysteinyl-LTs seem to be a potent coronary
artery vasoconstrictor that stimulates the proliferation of arterial smooth muscle cells and
increases the P-selectin surface expression of endothelial cells [36,64]. Increased levels of
LTs are present in patients with myocardial infarction (MI), stroke, atherosclerosis, and
aortic aneurysms; and the urinary excretion of LTE4 has been reported to be increased in
patients with cardiac ischemia [64,85]. Interestingly, two human genetic studies showed a
relationship between polymorphism of the 5-LOX pathway and relative risk for MI, stroke,
and atherosclerosis, focusing attention on LTs in the pathogenesis of these diseases [86].

HETEs: Increasing evidence highlights the controversial nature of 12/15-LOX in
inflammation, as its metabolites possess both pro- and anti-inflammatory properties [87].
The 12/15-LOX metabolite 12(S)-HETE is a potent, pro-inflammatory chemoattractant for
neutrophils and leukocytes [38,88]. The 12/15-LOX-derived metabolites 12(S)-HPETE and
15(S)-HPETE were reported to inhibit prostacyclin synthase activity, thereby decreasing
the levels of vasodilator prostacyclin [89]. In addition, it was suggested that 12/15-LOX
reduces the bioavailability of nitric oxide, thus promoting vasoconstriction [90,91]. At the
same time, several reports demonstrate the anti-inflammatory properties of 12/15-LOX
and its metabolites [92]. In fact, in human coronary arteries, 12(S)-HETE induced vascular
smooth muscle cell hyperpolarization through the activation of large conductance KCa
(BKCa) channels, resulting in relaxation [66].
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Studies of 15-lipoxygenating LOX-isoforms (ALOX15, ALOX15B) indicate that their
regulation of vascular tone plays an important role in the development of hypertension [66].
It has been reported that ALOX15-deficient mice exhibited higher resistance towards L-
NAME- and high-salt-induced hypertension than wild type controls, although systolic
blood pressures did not differ [52]. In support of this, ALOX15-deficient mice treated
with wild-type peritoneal macrophages, which are a major source of ALOX15 in mice, lost
their resistance toward L-NAME-induced hypertension. Analyzing human atherosclerotic
plaques revealed a significant increase in 12/15-LOX expression [93]. It was also reported
that ALOX5 and ALOX15B were expressed at high levels in advanced atherosclerotic le-
sions [94]. However, the role of 12/15-LOX in human atherosclerotic lesion development is
still not yet clear. Other studies showed an increased 12/15-LOX expression with decreased
lesion severity in human clinical samples. Specifically, a polymorphism in 12/15-LOX
promoter (a C to T substitution at position −292), which promotes its increased expression
and activity, was found to be associated with a reduction in the risk of atherosclerosis [95].

EETs: EETs are expressed in the heart, especially in the endothelium, and possess
beneficial effects against inflammation, fibrosis, and apoptosis, which could combat cardio-
vascular diseases [96]. Some studies showed that EETs mediate the vasodilation of vascular
smooth muscle by activating Ca2+-activated K+ channels [97], and that its vasodilator effect
is independent of nitric oxide (NO) in response to bradykinin [98]. In animal models of
hypertension, EETs synthesis was inhibited [99], while it was upregulated by soluble epox-
ide hydrolase (sEH) inhibitors or by CYP gene overexpression, which in turn decreased
blood pressure [100,101]. Interestingly, in Ang II-induced hypertension, sEH expression
was upregulated, while EETs were downregulated [53].

Other studies showed that sEH inhibition reduced cholesterol and low-density lipopro-
tein (LDL) levels, while it increased high-density lipoprotein (HDL) levels [102], preventing
atherosclerosis in several models, including ApoE −/− mice and high-fat diet (HFD)-
induced models [103]. Lower EET levels were observed in obstructed CAD patients
compared with patients with no apparent CAD [67]. Furthermore, some authors pro-
vided evidence that treatments with sEH inhibitors could reduce the infarct size and
chronic cardiac remodeling post MI [104] and that the elevation of EETs might represent a
promising therapeutic strategy combating chronic cardiac remodeling post MI and heart
failure [105,106]. Already in 2006, Xu et al. reported that treatment with sEH inhibitors
prevented the development of cardiac hypertrophy after 3 weeks of the transverse aortic
constriction in mice, and reversed the development of cardiac hypertrophy caused by
chronic pressure overload [107].

Moreover, Althurwi et al. demonstrated that the elevation of EET levels by the
overexpression of YP2J2 prevented the initiation of cardiac hypertrophy through the NF-κB-
mediated mechanism [108,109]. In particular, in vitro studies showed that the overexpres-
sion of CYP2J2 or the increasing levels of 14,15-EET (see structure in Figure 1) ameliorated
oxidative-stress-reducing apoptosis and inflammation [110]. However, despite the ben-
eficial effect of EETs as anti-inflammatory mediators, because of their instability, it was
impossible to develop corresponding exogenous drugs; several efforts with unremarkable
results have been made to increase the level of endogenous EETs, including gene therapy,
and EET analogs. Only sEH inhibitor and CYP2J2 gene upregulation seem to provide
promising data.

LXs: LXA4 and LXB4 exert potent anti-inflammatory and resolution actions [111,112].
We will discuss these, together with the lipid mediators, in Class 3.

3. Class 2: Lysophospholipids

Lysophospholipids (LPLs) are bioactive signaling lipids that are generated from
the phospholipase-mediated hydrolyzation of membrane phospholipids (PLs) and sph-
ingolipids (SLs). Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (SP1) are
two of the best-characterized LPLs which mediate a variety of cellular physiological re-
sponses via specific G-protein-coupled-receptor (GPCR)-mediated signaling pathways.
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Lysophospholipids include the platelet activating factor (PAF), and the LPA and the SP1
(Figure 2) [113–116].
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3.1. Molecular and Biochemical Characteristics of PAF, LPA and SP1

PAF: PAF is 1-o-alkyl-2-acetyl-sn-glycero-3-phosphocholine, synthesized from 1-O-
alkyl-lysophosphatidylcholine (LPC) by the phospholipase A2 (PLA 2) enzyme [68]. Acety-
lation by LPC acyltransferase 2 (LPCAT2) terminates PAF biosynthesis [117]. Inactivation of
PAF occurs by plasma and cellular acetylhydrolase, a special group of the PLA 2 family [118].
PAF binds to a unique G-protein-coupled seven-transmembrane receptor [119,120] that is
highly expressed in cells within the cardiovascular system and central nervous system [121].
It causes many inflammatory reactions and allergic responses, including increased platelet
activation, leukocyte adhesion, chemotaxis, and vascular permeability [122,123].

LPA: LPA belongs to the glyceryl-based lysophospholipid family [124] and is produced
externally to cells, specifically by LPC or autotaxin (ATX; lysophospholipase D) [125], and
is degraded by lipid phosphatases [126].

SP1: SP1 is structurally similar to LPA, with the one difference of having a sphingosine
backbone rather than glycerol. Sphingolipids are essential structural constituents of the
plasma membrane of eukaryotic organisms and some bacteria, where they are highly
enriched along with cholesterol in microdomains or lipid rafts. In response to a wide range
of stressful stimuli, membrane sphingomyelin are rapidly metabolized to the bioactive
sphingolipid intermediate, ceramide, and subsequently to sphingosine phosphorylation by
two sphingosine kinases, resulting in the formation of SP1 [127].

3.2. Role of PAF, LPA, and SP1 in Atherosclerotic Progression

PAF: Experiments on animal models showed that PAF plays an important role in
the pathogenesis of cardiovascular disorders, and some studies performed in humans
reported elevated PAF levels in patients, with increased risk of ischemic events in those
with coronary artery disease [68–70] (see Table 2). In particular, PAFs seems to stimu-
late reactive oxygen and nitrogen species, thus triggering the oxidative and nitrosative
stress pathways, inducing vasoconstriction [128]. Various substances such as thrombin,
angiotensin II, vasopressin, histamine, leukotrienes, and hydrogen peroxide cause the
production of PAF in endothelial cells [129]. Other studies suggest that PAF plays a role
in the evolution of myocardial injury observed during reperfusion [54] (see Table 1). In
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conclusion, the effects of PAF are closely associated with atherosclerosis, through various
mechanisms such as inflammation, endothelial dysfunction, oxidative and nitrosative stress,
and platelet reactivity.

LPA: LPA exerts several effects on vasculature [130,131] resulting in vasoconstriction
and increased blood pressure [132]. This happens through the activation of at least six
known G-protein-coupled LPA receptors (LPARs) [133] and also peroxisome proliferator-
activated receptor γ (PPARγ) [134], and P2Y10 [135]. Compared to normal arteries, indi-
vidual LPARs are differentially expressed in human atherosclerotic lesions suggesting a
distinct role in the initiation and progression of atherosclerosis [136]. Pathological con-
ditions that involve platelet activation, such as inflammation and atherosclerosis, seem
to increase LPA production [137]. LPA is elevated in the serum of patients with acute
heart attacks [71] and with acute coronary syndrome [72] and is found accumulated in
atherosclerotic plaques [73].

In the vasculature, platelets are one of the major sources of LPA production [138],
and LPA in turn can contribute to thrombosis, a critical pathogenic condition of vascular
diseases. LPA seems also to increase the permeability of the endothelium. In fact in HU-
VECs LPA via LPAR6-Gα13-RhoA-ROCK pathway induces actin stress fiber formation and
increases cell permeability [139,140]. Finally, LPA promotes the progression of atheroscle-
rosis via its various effects on inflammatory cells; for example, promoting inflammatory
cell migration [141], cytokine secretion [142], and macrophage transformation [143]. LPA
also regulates macrophage-related processes, ox-LDL uptake [143], and matrix metallo-
proteinase (MMP) secretion [144]. MMPs, particularly MMP9, are principle mediators
of extracellular matrix production and degradation, which contribute to atherosclerotic
plaque instability [145]. Key proteins in LPA homeostasis are increasingly dysregulated in
the plaque during atherogenesis, favoring intracellular LPA production. This might at least
partly explain the observed progressive accumulation of this thrombogenic proinflamma-
tory lipid in human and mouse plaques. Thus, intervention in enzymatic LPA production
may be an attractive measure to lower intraplaque LPA content, thereby reducing plaque
progression and thrombogenicity [55].

SP1: S1P has emerged as a potent signaling molecule that regulates diverse cellular
processes including cell proliferation, survival, differentiation, and migration [146], main-
taining vascular integrity. S1P stimulates COX 2, suggesting the existence of a functional
crosstalk between the sphingolipid and eicosanoid pathways [147]. Moreover, many of the
cardioprotective functions of HDL, such as vasodilation, angiogenesis, and the endothelial
barrier function, may be attributable to its S1P cargo [148]. In a mouse model of acute
myocardial infarction, treatment with an engineered S1P chaperone (ApoM-Fc) attenuated
myocardial damage after ischemia/reperfusion injury [56].

Additionally, ceramides, that belong to sphingolipids, are grouped in a class of bioac-
tive lipids which are present during vascular inflammation [149], but they have opposing
effects on vascular endothelium compared to S1P [150,151]. Ceramide properties mainly
involve the regulation of apoptosis, and their signaling is potentially linked to atheroscle-
rosis progression and pathology. Growing evidence indicates that circulating ceramides
may predict acute cardiovascular risk, and may potentially be more predictive than LDL
cholesterol [152].

4. Class 3: ω-3 PUFA Derivatives

Anti-inflammatory lipid mediators derive from dietary omega-3 PUFA, specifically the
ω-3 fatty acids found in fish oil. They include resolvins (Rvs), protectins(Ps), and maresins
(MaRs) (Figure 3) [153,154].
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4.1. Molecular and Biochemical Characteristics of Rvs, PDs and MaRs

Rvs: Rvs are divided into two groups: E-series derived from eicosapentaenoic acid
and RvD-series from docosahexaenoic acid [155]. The biosynthesis of RvEs is initiated by
vascular endothelial cells that convert EPA into 18R-hydroperoxyeicoapentaenoic acid and
18S-hydroperoxyeicoapentaenoic acid (18-HEPE), and proceeds via a transcellular biosyn-
thesis via acetylated COX-2 and cytochrome P450 [156]. These intermediates are rapidly
taken up by human neutrophils and metabolized to RvE1 and RvE2 by 5-lipoxygenase.
8-HEPE can directly be transformed into RvE3 through the action of 12/15-LOX by leuko-
cytes [157].

In addition, another EPA–derived E-series resolvin, RvE4, is produced by human
neutrophils and macrophages by 5-LOX, and successively by a second enzymatic lipoxy-
genation, to yield a hydroperoxyl group at the carbon C-5 position [158]. RvE4 activates
G-protein-coupled receptors such as Chemokine-like receptor 1 (ChemR23) and antagonizes
the BLT1 receptor, which usually mediates the proinflammatory actions of LTB4 [159–161].
Upon selective binding to the receptors, RvE1 attenuates nuclear factor-kappaB signal-
ing and the production of pro-inflammatory cytokines, including tumor necrosis factor
alpha. RvDs target G-protein-coupled receptor 32, LxA4 receptor/formyl peptide receptor
2 receptors, Formyl-Peptide Receptor 2/3/LXA4 Receptor, and CB2 receptors that are
expressed on platelets and polymorphonuclear neutrophils. The activation of CB2 leads
to the inhibition of P-selectin expression, thus decreasing polymorphonuclear neutrophil
chemotaxis [44].

PD: Protectins are biosynthesized via a lipoxygenase-mediated pathway from Docosa-
hexaenoic acid and it is converted into an intermediate that contains 17S-hydroxyperoxide,
and successively, by leukocytes, into 10,17 Dihydroxy-docosahexaenoic acid, known as
PD1 [162,163] or neuroprotection [164], for its protective role in the nervous and immune
systems [165,166]. PD1 is also produced by human peripheral blood lymphocytes with
a T-helper 2 phenotype; it reduces tumor necrosis factor alpha and interferon gamma
secretion, blocks T-cell migration, and promotes T-cell apoptosis [167].

A novel protectin-synthesis pathway, called aspirin-triggered PD1, utilizes aspirin-
triggered cyclooxygenase-2 to synthesize epimeric 17 R-hydroxyperoxide from docosa-
hexaenoic acid [168,169]. It has shown a positive interaction with CB2 and peroxisome
proliferator-activated receptor family receptors [164,170].

MaRs: Maresins form the third-largest family of pro-resolving lipid mediators (PRLMs)
derived from DHA20. The biosynthesis of maresins occurs primarily in M2 macrophages
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and is initiated by a reaction involving human macrophage 12-lipoxygenase (12-LOX),
which is a key enzyme in the synthesis of maresins [169,171].

4.2. Role of PRLMs in Atherosclerotic Progression

PRLMs such as RvE and RvD, PD, MaR, and LX induce a biochemical transition from
inflammation to resolution, taking the place of prostaglandins and leukotrienes in exudates
at the tissue level [8,169,172,173]. RvE1-E4 are more prominently involved in reducing
inflammation by increasing the efferocytosis of apoptotic cells by macrophages, blocking
leukocyte recruitment into inflamed tissues (Figure 4).
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Figure 4. Simplified scheme of biochemical transition from inflammation to resolution. Pro-resolving
lipid mediators enhance the clearance (efferocytosis) of apoptotic PNM by macrophages, blocking
leukocyte recruitment and favoring tissue repair. PNM (circle in red colour): polymorphonuclear
neutrophils; PNM (in gray colour):apoptotic polymorphonuclear neutrophils; stars in blue color:
pro-resolving monocytes.

Increased plasma levels of RvE1 have been observed in individuals taking aspirin or eicos-
apentaenoic acid, resulting in the amelioration of the clinical signs of inflammation [74,75]. D-series
have been shown to reduce inflammation by decreasing platelet–leukocyte adhesion [174].

Protectins reduce polymorphonuclear neutrophil transmigration through endothelial
cells and enhance the clearance (efferocytosis) of apoptotic polymorphonuclear neutrophils
by human macrophages [170].

Maresins were identified as molecules produced by macrophages with homeostatic
functions in resolving inflammation. In fact, the macrophage phagocytosis of apoptotic
cells triggers the biosynthesis of maresin-1 [175]. Maresin-1 stimulates efferocytosis with
human cells and also has regenerative functions [176]. Finally, LXA4 and B4 exert potent
anti-inflammatory and resolution actions [110].

Temporal changes in the expression, activity, and localization of enzymes such as 4-
and 15-lipoxygenases (LOXs) appear to activate the “switch” responsible for the resolution
actions [173,177,178]. Consequently, PRLMs coordinate crosstalk between leukocytes and
local cell populations, promoting an M1–M2 phenotypic transition in macrophages, which
is central to tissue repair. PRLMs further promote resolution by positive-feedback effects
on LOX activity and their receptor expression in leukocytes [177–180]. Data from murine
and rabbit models showed that pro-resolving lipid mediators decrease atheroprogression
and promote plaque stability [18,172,180,181].
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Alternatively a relative “resolution deficit” may contribute to disease progression or
limit clinical responses to existing therapies and would therefore suggest opportunities
for monitoring and/or treatments that incorporate lipid mediators [74,179,181–183]. In
fact, circulating levels of PRLMs, in particular 15-epi-lipoxin A4 (15-epi-LXA 4), were
significantly lower in individuals with peripheral arterial disease and correlated inversely
with disease severity [74,76](see Table 2).

In situations such as restenosis, and other pathological reactions secondary to interven-
tions, characterized by high levels of IL-6 and other inflammatory cytokines, augmented
levels of PRLMs could limit harmful arterial reactions and restenosis. An imbalance be-
tween proinflammatory and resolving factors may decide the evolution of atherosclerotic
disease [3].

There is also favorable data regarding the antithrombotic activity of Maresin 1. In fact,
it promotes the hemostatic function of human platelets, but suppresses the inflammatory
activity, suggesting its important role in the resolution of thrombotic events [184]. At sites
of thrombosis or injury, platelet–neutrophil interaction gives rise to the biosynthesis of
PRLMs such as MaR1 which induce resolution [185].

The activity of RvS in thrombosis is directed towards reducing platelet activation [180,186].
RvDs and Lxs also activate macrophages for the phagocytosis of the clot and apoptotic
cells [187]. In addition, myocardial ischemia/reperfusion studies in the mouse animal
model have established a protective effect of PRLMs with respect to tissue damage and the
reduction of ROS [57–59] (see Table 1).

Although until recently lipid mediators have been overlooked as resolvers of inflam-
mation, they are now being reevaluated because of their activities and biosynthesis in
the vascular system. In fact, in vitro, RvD1, RvD2, MaR1, LXA4, and protectin D1 reduce
the production of inflammatory cytokines, adhesion molecules, and the adhesive effect
of leukocytes to endothelial cells during an inflammatory event [6,188–190]. These resolv-
ing effects result from the ability of these molecules to reduce NF-kB, NO, prostacyclin
synthesis, and ROS production [191,192].

Reduced monocyte adhesion to VSMCs and the reduced expression of adhesion
molecules have been also observed in vitro studies with inflammatory cytokines after
treatment with RvD1, RvD2, and MaR1. Another resolving effect by LXA4, RvD1, RvD2,
and RvE1 is to attenuate VSMC migration [193,194].

4.3. Protective Function of ω-3 Fatty Acid Diet in Atherosclerotic Progression

Individuals with a high consumption of fish oils show a greater proportion of EPA
and DHA-containing phospholipids in particular cell types, compared to individuals
consuming plant oil supplements [195]. EPA provides precursors for the production of the
anti-inflammatory mediator family of series 3 prostanoids. The synthesis of prostanoids is
catalyzed by cyclooxygenase enzymes. The cleavage of EPA by phospholipase A 2 allows
EPA to be converted to anti-inflammatory mediators [196].

Human studies have shown the limited endogenous synthesis of docosahexaenoic
acid (DHA) fromω-3 fatty acid precursor α-linolenic acid (ALA), therefore supporting the
necessity of a diet containingω -3 PUFAs for optimal health and development [197,198].
Circulating levels of the RvD1 or its precursor DHA are reduced in individuals with
symptomatic carotid atherosclerosis [199].

Adults receiving EPA+DHA therapy demonstrated significantly greater reductions in
circulating levels of proinflammatory cytokines, compared with those receiving placebo
therapy [200]. EPA+DHA therapy may be an effective low-risk dietary intervention for
assuaging the harmful effects of inflammation.

A large prospective randomized clinical trial of 11,324 patients with a recent my-
ocardial infarction showed a relatively reduced risk of death in response to long chain
polyunsaturated fatty acid dietary supplementation [201] (see Table 3).
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Table 3. Trials onω-3 fatty acid diet in humans.

Study Design Supplementation End Point Ref.

GISSI-Prevenzione
Trials

Clinical trial of
11,324 post-MI patients Fish oil 850–882 mg EPA and DHA Reduction Death Risk [201]

Meta analysis of
14 clinical Trials 135,291 subjects 0.8-1.2 g omega-3 FA(EPA, DHA) MACE, CVD, and MI [202]

Trial 8179 participants and
5 years follow-up 4 g/dω-3 PUFA 30% reduction CVE/

control [203]

JELIS trial in Japan 18,645 patients with a total
cholesterol of 6.5 mmol/L 1800 mg of EPA daily 19% reduction of

coronary events [204]

Trial Patients suffering of
cardiovascular diseases >1 g/d marine
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In another clinical trial, 0.8–1.2 g omega-3 FA supplementation has shown a pos-
itive effect in reducing the incidence of major adverse cardiovascular events (MACE),
cardiovascular death, and myocardial infarction [202]. A lower rate of myocardial in-
farction was also observed in people consuming an Inuit diet, characterized by the high
consumption of marine mammals and fish [207]. Meta-analyses in adults have shown
that the Mediterranean diet, enriched in ω-3 PUFA and oleic acid, exerts a protective
effect against cardiovascular diseases [208–211]. This beneficial effect could be due to their
anti-arrhythmic, anti-inflammatory, anti-thrombotic, and hypolipidemic effects, improving
vascular function [212,213].

PUFA administration seems to be also protective against aneurysm, a condition char-
acterized by chronic inflammation of the arterial wall that gradually loses its structural
integrity by an incessant protease activity. In fact, in animal studies, PUFAs reduced aor-
tic wall inflammation and impairment of the matrix [184]. A recently published trial by
Bhatt et al., involving 8179 participants and a 5 year follow-up, reported that patients who
received 4 g/dω-3 PUFA showed a 30% reduction in cardiovascular events, compared with
the control group [203]. The JELIS trial, conducted in Japan, recruited 18,645 patients with
a total cholesterol of 6.5 mmol/L or greater, and demonstrated a 19% relative reduction in
major coronary events after a 1800 mg dose of EPA daily [204].

However, some conflicting data exists [214–216]. Other clinical trials on PUFA admin-
istration have reported contradictory findings with regard to cardiovascular death and/or
major cardiovascular events [205,214,217,218]. Recent studies by Xie et al. suggest that the
population most at risk of suffering major cardiovascular events and deaths could benefit
more by taking a higher dose of ω-3PUFA for a more prolonged intervention period (daily
dose × intervention period > 8 g/day). Earlier treatment schedules of only 1 g/d for 1-year
ω-3 PUFA supplementation showed no benefits regarding sudden cardiac death, and in
fact revealed a small increase in major cardiovascular and cerebrovascular events [206].
Furthermore, a large-scale randomized controlled trial of the effects of marine ω-3 fatty
acid supplementation on cardiovascular outcomes has reported increased risks of atrial
fibrillation (AF), in particular in trials testing >1 g/d. [205]. Recent meta-analyses reflected
these discrepancies [219,220].

Therefore, the potential reasons for disparate findings may be dose-related. In addition,
isomeric forms of the mediators may show different capabilities or conflicting biological
effects. More advanced age or smoking habits may also affect the biosynthesis of lipid
mediators [221].

In conclusion, further studies on pro-resolving lipid-mediator biosynthesis and path-
ways and on diets, with related doses and periods, are needed to understand the best
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formulations for an effective resolution in relation to cardiovascular disease. Understand-
ing these variables will be necessary for the development of effective drug therapies.
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Table 3. Trials on ω-3 fatty acid diet in humans. 

Study Design Supplementation End Point Ref. 

GISSI-Prevenzione Trials Clinical trial of 11,324 
post-MI patients 

Fish oil 850–882 mg EPA and 
DHA 

Reduction Death 
Risk 

[201] 

Meta analysis of 14 clinical 
Trials  

1,35,291 subjects  0.8-1.2 g omega-3 
FA(EPA,DHA) 

MACE, CVD, 
and MI 

[202] 

Trial 8179 participants and 5 
years follow-up 

4 g/d ω-3 PUFA  30% reduction 
CVE/ control  

[203] 

JELIS trial in Japan 
18,645 patients with a 
total cholesterol of 6.5 

mmol/L 
1800 mg of EPA daily  

19%  reduction 
of  coronary 

events 
[204] 

Trial Patients suffering of 
cardiovascular diseases 

>1 g/d marine ɷ-3 fatty  Increased AF 
Risk 

[205] 

Trial 
Partecipants suffering 
major CVE and death 

PUFA daily dose × period > 
8 grams/day × years 

More benefit/1 
g/d for 1-year 
ω-3 PUFA 

[206] 

In another clinical trial, 0.8–1.2 g omega-3 FA supplementation has shown a positive 
effect in reducing the incidence of major adverse cardiovascular events (MACE), cardio-
vascular death, and myocardial infarction [202]. A lower rate of myocardial infarction was 
also observed in people consuming an Inuit diet, characterized by the high consumption of 
marine mammals and fish [207]. Meta-analyses in adults have shown that the Mediterra-
nean diet, enriched in ω-3 PUFA and oleic acid, exerts a protective effect against cardio-
vascular diseases [208–211]. This beneficial effect could be due to their anti-arrhythmic, 
anti-inflammatory, anti-thrombotic, and hypolipidemic effects, improving vascular func-
tion [212,213]. 

PUFA administration seems to be also protective against aneurysm, a condition 
characterized by chronic inflammation of the arterial wall that gradually loses its structural 
integrity by an incessant protease activity. In fact, in animal studies, PUFAs reduced aortic 
wall inflammation and impairment of the matrix [184]. A recently published trial by Bhatt 
et al., involving 8179 participants and a 5 year follow-up, reported that patients who re-
ceived 4 g/d ω-3 PUFA showed a 30% reduction in cardiovascular events, compared with 
the control group [203]. The JELIS trial, conducted in Japan, recruited 18,645 patients with a 
total cholesterol of 6.5 mmol/L or greater, and demonstrated a 19% relative reduction in 
major coronary events after a 1800 mg dose of EPA daily [204]. 

However, some conflicting data exists [214–216]. Other clinical trials on PUFA ad-
ministration have reported contradictory findings with regard to cardiovascular death 
and/or major cardiovascular events [205,214,217,218]. Recent studies by Xie et al. suggest 
that the population most at risk of suffering major cardiovascular events and deaths could 
benefit more by taking a higher dose of ω-3PUFA for a more prolonged intervention period 
(daily dose × intervention period > 8 g/day). Earlier treatment schedules of only 1 g/d for 
1-year ω-3 PUFA supplementation showed no benefits regarding sudden cardiac death, 
and in fact revealed a small increase in major cardiovascular and cerebrovascular events 
[206]. Furthermore, a large-scale randomized controlled trial of the effects of marine ω-3 
fatty acid supplementation on cardiovascular outcomes has reported increased risks of 
atrial fibrillation (AF), in particular in trials testing >1 g/d. [205]. Recent meta-analyses re-
flected these discrepancies [219,220]. 

Therefore, the potential reasons for disparate findings may be dose-related. In addi-
tion, isomeric forms of the mediators may show different capabilities or conflicting biolog-
ical effects. More advanced age or smoking habits may also affect the biosynthesis of lipid 
mediators [221]. 
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