
Citation: Koszelewski, D.;

Kowalczyk, P.; Samsonowicz-Górski,

J.; Hrunyk, A.; Brodzka, A.; Łęcka, J.;
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Abstract: A mild and efficient protocol for the synthesis of p-quinols under aqueous conditions
was developed. The pivotal role of additives in the copper-catalyzed addition of aryl boronic and
heteroaryl boronic acids to benzoquinones was observed. It was found that polyvinylpyrrolidone
(PVP) was the most efficient additive used for the studied reaction. The noteworthy advantages
of this procedure include its broad substrate scope, high yields up to 91%, atom economy, and
usage of readily available starting materials. Another benefit of this method is the reusability of
the catalytic system up to four times. Further, the obtained p-quinols were characterized on the
basis of their antimicrobial activities against E. coli. Antimicrobial activity was further compared
with the corresponding 4-benzoquinones and 4-hydroquinones. Among tested compounds, seven
derivatives showed an antimicrobial activity profile similar to that observed for commonly used
antibiotics such as ciprofloxacin, bleomycin, and cloxacillin. In addition, the obtained p-quinols
constitute a suitable platform for further modifications, allowing for a convenient change in their
biological activity profile.
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1. Introduction

p-Quinol skeletons are frequently found in many bioactive natural products [1–4], and
they also serve as useful synthetic building blocks [5–27] (Scheme 1). Moreover, p-quinol
glycosides are known from analgesic activities [27].
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Scheme 1. Copper catalyzed 1,2-addition of boronic acid derivatives to 1,4-benzoquinones.

The examination of the toxic effect of 1,4-cyclohexadienones on bacterial cells can
provide appropriate antimicrobial agents against microbial clinical pathogens [28–33]
(Figure 1). The aim of the present study is the development of an efficient method of
isolating p-quinol derivatives with aryl and heteroaryl groups and their validation against
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model pathogenic strains of Escherichia coli K12 (with native lipopolysaccharide (LPS) in
its structure) and R2–R4 (LPS of different lengths in its structure). General methods of
obtaining p-quinols are based on the dearomatization of para-substituted phenols via
oxidation using hypervalent iodine reagents [34]. However, this approach often suffers
from low yields because of competitive oligomerization, especially in the case of oxidation
of 4-arylphenols [35]. Thus, the development of a new method to overcome these limitations
is of great importance [35–39].
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2. Results and Discussion
2.1. Chemistry

Recently, we have developed a sustainable method for the synthesis of p-quinols
based on the copper-catalyzed addition of phenylboronic acid to quinone, leading to
a target product formation under aqueous conditions [40]. However, desired products were
obtained with moderate yields. Additionally, the formation of side products hampered
product purification. Therefore, the previously developed method is characterized by low
atom economy [41–47].

As a continuation of our research on the search for new catalytic activities of copper
salts, we focused our efforts on elaborating an efficient and sustainable method of obtaining
desired p-quinols (Scheme 1). Based on our recent findings regarding the activity of
copper (I) iodide [40], the model addition reaction of phenylboronic acid (1 mmol) and
benzoquinone (1 mmol) was conducted in distilled water at 20 ◦C under atmospheric
pressure (Scheme 1, Table 1, entry 1). As a result, the mixture of products 1 and 15 with 51%
and 9% yields, respectively (Scheme 1, Table 1, entry 1), was obtained. In order to discover
more reusable catalysts and to enhance the reaction efficiency, solid supported catalysts
have been developed for catalytic applications [48]. In addition to this, Cu(I) species
immobilized onto various supports, such as silica [49], zeolites [50], activated charcoal [51],
and amine functionalized polymers [52] have been reported recently. The character of
supporting materials on which nanoparticles are stabilized plays a crucial role in catalysis
as it provides a highly active catalyst surface, which increases the reaction rate. Inspired
by the work of Liu et al. [53], an anion exchange resin (Amberlite IRA 400) was employed
as the additive, resulting in target product 1 with an enhanced yield (Table 1, entry 2).
Encouraged by this result, various different adsorbents including ionic polymers having
quaternary ammonium were tested (Table 1). Further improvement in the reaction yield
was achieved by the application of montmorillonite, producing target product 1 with 64%
yield. It should be mention that the formation of 1,4-addition product 15 was not observed
(Table 1, entry 3). An application of basic amberylst [54] resulted in the formation of target
product 1 with a reduced reaction yield (18%, Table 1, entry 4), while the application of
quaternary ammonium based Dowex-1 provided p-quinol 1 with 68% (Table 1, entry 5).
Ionic polymers like Dowex-1 were already found to be efficient support for CuI catalysts in
Huisgen’s 1,3-dipolar cycloaddition [55]. No impact on the reaction yield was observed
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in the case of using silica gel or aluminum oxide (Table 1, entries 6 and 7). Chavan and
his group demonstrated cellulose supported cuprous iodide as an efficient catalyst in the
click synthesis of 1,4-disubstituted 1,2,3-triazoles [56]; however, we have not observed any
pivotal impact of this additive on the studied reaction (Table 1, entry 8).

Table 1. Model copper catalyzed 1,2-addition of phenylboronic acid to 1,4-benzoquinone.
a Optimization studies.
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Entry Additive T (◦C) Solvent Yield 1 [%] d Yield 15 [%] d

1 None 20 H2O 51 9

2 Amberlite
IRA-400 20 H2O 58 7

3 Montmorillonite 20 H2O 64 <1
4 Amberlyst 20 H2O 18 <1
5 Dowex-1 20 H2O 68 6
6 Silica gel 20 H2O 50 8
7 Al2O3 20 H2O 54 11
8 Cellulose 20 H2O 49 <1
9 MOF-1 20 H2O 38 11
10 MOF-2 20 H2O 42 <1
11 PVP 8000 20 H2O 74 <1
12 PVP 3500 20 H2O 84 <1
13 PVP 24000 20 H2O 62 <1
14 PVP 3500 [b] 20 H2O 81 <1
15 PVP 3500 [c] 20 H2O 79 <1
16 PVP 3500 30 H2O 89 <1
17 PVP 3500 40 H2O 83 <1
18 PVP 3500 30 Methanol 71 <1

a Reaction conditions: phenylboronic acid (1 mmol), benzoquinone (1 mmol), CuI (0.1 mmol, 10 mol%), and
additive (10 mol%) in distilled water (4 mL) for 8 h, magnetic stirring 600 rpm, reaction shielded from light with
aluminum foil. b PVP (15 mol%), c PVP (20 mol%). d Yield of the isolated product after chromatography on silica gel.

Metal organic frameworks (MOFs) have been effectively used as heterogeneous cata-
lysts improving efficiency and selectivity of various reactions. The specific porous structure
of MOF containing organic and inorganic active sites is a useful and effective alternative
to heterogeneous catalysts [57,58]. Two MOFs prepared in accordance with the literature
procedures [59,60] were tested in the model reaction. However, a product was obtained
with a moderate yield up to 42% (Table 1, entries 9 and 10). On the other hand, the
advantage of MOFs was their easy separation from the reaction mixture and reusability.
The MOF-1 catalyst was used three times. The yield after the third cycle was 27%. The
catalyst was isolated by filtration on a silica sinter. The decrease in yield could be related
to the physical loss of the catalyst during separation from the reaction mixture. Colloidal
synthesis offers a route to nanoparticles (NPs) with controlled composition and structural
features. Polyvinylpyrrolidone (PVP) can serve as a surface stabilizer, growth modifier,
nanoparticle dispersant, and reducing agent [61]. High surface-to-volume ratios make
metal colloids promising candidates for active catalysts [62]. Copper-PVP composites have
been found to be efficient catalysts for click reactions [63–65]. Among three different PVPs,
an application of this with 3500 average molecular weight provided target product 1 with
84% yield. Moreover, for each type of used PVP, only a formation of 1,2-addition product
1 was observed (Table 1, entries 11–13). An increased amount of the used PVP, 15 mol%
and 20 mol%, did not affect the reaction yield (Table 1, entries 14 and 15). Next, the impact
of temperature on the model reaction was studied. When the reaction was conducted at



Int. J. Mol. Sci. 2023, 24, 1623 4 of 14

30 ◦C, the yield increased to 89%. However, the further elevation of temperature led to
a decrease in yield, which may be explained by the changes in the colloidal structure of the
catalyst (Table 1, entries 16-17). The application of methanol as a reaction medium, which
was found previously [40] to be suitable for the studied reaction, resulted in target product
1 with reduced yield (Table 1, entry 18, Figure 2).
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Figure 2. Dynamic light scattering (DLS) measurements for hydrodynamic diameters of colloidal
copper particles.

The model reaction was carried out under the optimized procedure. Formed prod-
uct 1 was separated by extraction with EtOAc, followed by purification using column
chromatography. The remaining aqueous phase containing the CuI-PVP catalytic system
was employed for another run with the fresh portion of substrates (Figure 3). Due to the
possibility of repeated use of the reaction medium containing the catalyst, the E-factor for
the developed procedure is lower than that for the reaction with copper iodide alone.
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Figure 3. Reusability of CuI-PVP catalytic system in 1 synthesis. Phenylboronic acid (1 mmol),
benzoquinone (1 mmol), CuI (0.1 mmol, 10 mol%), and PVP (10 mol%) in distilled water (4 mL) for
8 h, magnetic stirring 600 rpm, reaction shielded from light with aluminum foil.

Finally, the elaborated protocol was applied for the synthesis of the series of p-quinols
2–10 with good to very high yields for various boronic acids (Figure 4). In case of using
2-methyl-1,4-benzoquinone as the substrate, only one of two possible regioisomers was
obtained with 82% (p-quinol 10). The developed protocols were also revealed to be efficient
for heterocyclic boronic acids, resulting in the formation of products 8 and 9 with good
yield. Principally, with the exception of compound 6, all others were obtained with much
higher yields compared to the reaction carried out under conditions without PVP presented
in the previous work [40].
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2.2. Cytotoxic Studies of the Library of p-Quinols 1–10, and Parent Benzo- and Hydroquinones 11–14

The toxic effect on bacterial cells was studied after the analysis of the MIC and MBC
test for all 14 tested compounds (Figures 4 and 5). The MIC values were observed in the
range of 0.2–1.4 µg/mL and 2–82 µg/mL for MBC values in the analyzed model strains
K12, R2, R3, and R4 (Figures 6 and 7), which had specific functional groups in the structure
of the 4-hydroxycyclohexa-2,5-dienones.
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2.3. Analysis of Bacterial DNA Isolated from E. coli R2–R4 Strains Modified with Tested p-Quinols

The obtained MIC values, as well as our previous studies with various types of
the analyzed compounds [65–80], (Figure 8) indicate that p-quinols show a strong toxic
effect on the analyzed bacterial model strains. Based on the MIC and MBC values, the
analyzed compounds 5, 7, 10, and 11 were selected for further analyses (on the basis of
their highest biological activity similar to that of antibiotics) and their values were selected
for further studies related to the analysis of oxidative stress in the cell by modifying them
with the bacterial DNA obtained from the analyzed strains. On the other hand, compounds
numbered 1–4, 6, 8, 9, and 12–14 showed higher activity than selected compounds 5, 7, 10,
and 11, with activity similar to the biological activity of antibiotics (see Figures S2–S25 in
Supplementary Materials, Table 2).

The conducted research proved that the analyzed and newly synthesized compounds
have the potential (further functionalization) to find a new innovative application in
the future after their more in-depth examination on e.g. specific cell cultures as poten-
tial “replacements” of currently used antibiotics commonly used in hospital and clinical
infections (Figure 9).
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Table 2. Statistical analysis of all analyzed compounds by MIC, MBC, and MBC/MIC; <0.05 *,
<0.01 **, <0.001 ***.

No. of Samples 5 7 10, 11 Type of Test

K12 ** ** ** MIC

R2 ** ** ** MIC

R3 ** ** ** MIC

R4 ** ** ** MIC

K12 ** ** *** MBC

R2 ** ** *** MBC

R3 ** ** *** MBC

R4 ** ** *** MBC

K12 *** *** * MBC/MIC

R2 *** *** * MBC/MIC

R3 *** *** * MBC/MIC

R4 *** *** * MBC/MIC

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 14 
 

 

R2 ** ** *** MBC 
R3 ** ** *** MBC 
R4 ** ** *** MBC 

K12 *** *** * MBC/MIC 
R2 *** *** * MBC/MIC 
R3 *** *** * MBC/MIC 
R4 *** *** * MBC/MIC 

The conducted research proved that the analyzed and newly synthesized com-
pounds have the potential (further functionalization) to find a new innovative application 
in the future after their more in-depth examination on e.g. specific cell cultures as poten-
tial “replacements” of currently used antibiotics commonly used in hospital and clinical 
infections (Figure 9).  

 
Figure 9. Percentage of plasmid DNA recognized by Fpg enzyme (y-axis) with model bacterial, 
K12, and R2–R4 strains (x-axis). 

It is noteworthy that both the hydrophilic compound 5 containing two methoxy 
groups in its structure as well as the lipophilic p-quinol 7 show the highest antimicrobial 
activity. This may indicate a different mechanism of action of these compounds on se-
lected strains of E. coli (Figures 10 and 11)A significant effect of the methyl group present 
in the 2-position of the p-quinol ring on the increased antimicrobial activity was also 
noted [67–80] (Figure 4). Dysfunction of bacterial membranes containing different 
lengths of LPS in model bacterial strains is an ideal model to assess the effectiveness of 
these compounds in relation to the antibiotics used [67–76]. 

Figure 9. Percentage of plasmid DNA recognized by Fpg enzyme (y-axis) with model bacterial, K12,
and R2–R4 strains (x-axis).

It is noteworthy that both the hydrophilic compound 5 containing two methoxy groups
in its structure as well as the lipophilic p-quinol 7 show the highest antimicrobial activity.
This may indicate a different mechanism of action of these compounds on selected strains
of E. coli (Figures 10 and 11)A significant effect of the methyl group present in the 2-position
of the p-quinol ring on the increased antimicrobial activity was also noted [67–80] (Figure 4).
Dysfunction of bacterial membranes containing different lengths of LPS in model bacterial
strains is an ideal model to assess the effectiveness of these compounds in relation to the
antibiotics used [67–76].
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3. Materials and Methods
3.1. Microorganisms and Media

The entire methodology and all materials and media used are detailed in previous
work [67–76], and data were analyzed by the Tukey test indicated by (p < 0.05): * p < 0.05,
** p < 0.1, *** p < 0.01.

3.2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)

The MIC was estimated by a microtiter plate method using sterile 48 or 96-well
plates [69–78]. The mother liquor was prepared in DMSO at a concentration of 20 mg/mL−1.
Samples at a given concentration were prepared by diluting the mother liquor with
distilled water.

3.3. Chemicals

The chemistry used for the research came from Sigma-Aldrich, Saint Louis, MI, USA.

3.4. General Procedure for the Synthesis of p-Quinols

Quinone derivative (0.4 mmol), boronic acid derivative (0.4 mmol), and catalyst (10 mol%)
together with PVP (10 mol%) were stirred in distilled water (2 mL) at room temperature.
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4-Hydroxy-4-phenyl-cyclohexa-2,5-dienone (1). Compound 1 was obtained accord-
ing to the general method with 89% yield (166 mg, 0.89 mmol) as a white solid; m.p.
103–104 ◦C [Lit. m.p. 102–103 ◦C; [81]; 1H NMR (400 MHz, CDCl3) δ 7.55–7.43 (m, 2H),
7.43–7.28 (m, 3H), 6.90 (d, J = 10.1 Hz, 2H), 6.22 (d, J = 10.1 Hz, 2H), 2.71 (s, 1H); 13C NMR
(100 MHz, CDCl3) δ 185.7, 150.8, 138.7, 128.9, 128.4, 126.8, 125.2, 71.0. NMR data were in
accordance with those reported in the literature [82].

4-Hydroxy-4-(4′-methyl)-phenyl-cyclohexa-2,5-dienone (2). Compound 2 was ob-
tained according to the general method with 72% yield (144 mg, 0.72 mmol) as a white
solid; m.p. 134–137 ◦C, Lit. m.p. 134–137 ◦C [83] 1H NMR (400 MHz, CDCl3) δ 7.36 (d,
J = 8.3 Hz, 2H), 7.21–7.13 (m, 2H), 6.88 (d, J = 10.0 Hz, 2H), 6.20 (d, J = 10.0 Hz, 2H), 2.64 (s,
1H), 2.35 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 185.7, 150.9, 138.3, 135.7, 129.6, 126.7, 125.1,
70.9, 21.0. NMR data were in accordance with those reported in the literature [84].

4-Hydroxy-4-(4′-chloro)-phenyl-cyclohexa-2,5-dienone (3). Compound 3 was ob-
tained according to the general method with 64% yield (141 mg, 0.64 mmol) as a white solid;
m.p. 170–172 ◦C, Lit. m.p. 171–172 [85]; 1H NMR (400 MHz, CDCl3) δ 7.41 (d, J = 8.7 Hz,
2H), 7.34 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 10.1 Hz, 2H), 6.22 (d, J = 10.1 Hz, 2H), 2.74 (s, 1H);
13C NMR (100 MHz, CDCl3) δ 185.4, 150.3, 137.2, 134.4, 130.4, 127.0, 126.8, 70.6. NMR data
were in accordance with those reported in the literature [40].

4-Hydroxy-4-(4′-formyl)-phenyl-cyclohexa-2,5-dienone (4). Compound 4 was ob-
tained according to the general method with 31% yield (66 mg, 0.31 mmol) as a white
solid; m.p. 158–159 ◦C; 1H NMR (400 MHz, CDCl3) δ 10.01 (s, 1H), 7.89 (d, J = 8.6 Hz, 2H),
7.66 (d, J = 8.3 Hz, 2H), 6.87 (d, J = 10.1 Hz, 2H), 6.28 (d, J = 10.1 Hz, 2H), 2.84 (s, 1H); 13C
NMR (100 MHz, CDCl3) δ 191.6, 185.2, 149.7, 145.2, 136.2, 130.2, 127.5, 126.1, 71.0. NMR
data were in accordance with those reported in the literature [40].

4-(3,4-Dimethoxyphenyl)-4-hydroxycyclohexa-2,5-dien-1-one (5). Compound 5 was
obtained according to the general method with 43% yield (106 mg, 0.43 mmol) as a white
solid; m.p. 164–166 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.43 (d, J = 8.6 Hz, 2H), 7.11–7.03 (m,
2H), 6.92 (d, J = 8.2 Hz, 1H), 6.89 (d, J = 8.6 Hz, 2H), 3.93 (s, 3H), 3.91 (s, 3H); 13C NMR
(100 MHz, CDCl3) δ 185.2, 154.8, 149.1, 134.0, 128.0, 118.9, 115.6, 111.6, 110.3, 69.7, 56.0, 55.9.
NMR data were in accordance with those reported in the literature [40].

4-Hydroxy-4-(4′-hydroxymethylphenyl)phenyl-cyclohexa-2,5-dienone (6). Compound
6 was obtained according to the general method with 29% yield (63 mg, 0.29 mmol) as
a white solid; m.p. 181–182 ◦C; 1H NMR (500 MHz, Acetone-d6) δ 8.20 (s, 1H), 7.30 (d,
J = 8.6 Hz, 2H), 6.92–6.78 (m, 6H), 4.57 (s, 2H); 13C NMR (126 MHz, Acetone) δ 186.2, 158.6,
154.5, 150.2, 137.3, 128.9, 121.5, 117.8, 117.0, 69.9, 64.2. NMR data were in accordance with
those reported in the literature [40].

4-Hydroxy-4-(4′-biphenyl)phenyl-cyclohexa-2,5-dienone (7). Compound 7 was ob-
tained according to the general method with 54% yield (142 mg, 0.54 mmol) as a white
solid; m.p. 146–148 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.59–7.48 (m, 4H), 7.48–7.37 (m,
2H), 7.37–7.27 (m, 1H), 7.03–6.93 (m, 3H), 6.84 (d, J = 8.9 Hz, 2H), 4.80 (s, 1H); 13C NMR
(101 MHz, CDCl3) δ 185.0, 158.0, 151.8, 150.2, 140.6, 135.6, 128.7, 128.3, 126.9, 126.8, 121.0,
117.8, 116.4, 70.4. NMR data were in accordance with those reported in the literature [86].

4-Hydroxy-4-(thiophen-3-yl) phenyl-cyclohexa-2,5-dienone (8). Compound 8 was
obtained according to the general method with 76% yield (204 mg, 0.76 mmol) as a white
solid; m.p. 138–139 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.41–7.21 (m, 2H), 7.09–6.89 (m, 3H),
6.26–6.04 (m, 2H), 3.64 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 185.9, 150.7, 140.3, 126.9, 126.5,
125.2, 122.0, 69.5.; HRMS calculated for C10H8O2S [M+H]+: 193.0323, found: 193.0320.

4-Hydroxy-4-(furan-3-yl) phenyl-cyclohexa-2,5-dienone (9). Compound 9 was ob-
tained according to the general method with 69% yield (174 mg, 0.69 mmol) as a white
solid; m.p. 131–133 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 24.8 Hz, 2H), 6.95 (d,
J = 10.1 Hz, 2H), 6.34 (d, J = 1.0 Hz, 1H), 6.19 (d, J = 10.2 Hz, 2H), 2.66 (s, 1H); 13C NMR
(100 MHz, CDCl3) δ 149.7, 143.9, 139.6, 127.0, 125.8, 108.1, 66.8.; HRMS calculated for
C10H8O3 [M+H]+: 177.0552, found: 177.0555.
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4-Hydroxy-2-methyl-4-phenyl-2,5-cyclohexadienone (10). Compound 10 was ob-
tained according to the general method with 82% yield (164 mg, 0.82 mmol) as a white
solid; m.p. 76–77 ◦C [Lit. m.p. 73–75 ◦C (diethyl ether, hexane) [86]; 1H NMR (400 MHz,
CDCl3) δ 7.47–7.25 (m, 5H), 6.87–6.77 (m, 1H), 6.19–6.03 (m, 2H), 2.99 (s, 1H), 1.83 (s, 3H);
13C NMR (100 MHz, CDCl3) δ 186.7, 161.7, 151.9, 138.5, 128.7, 128.0, 126.3, 125.7, 125.2, 73.2,
18.4. NMR data were in accordance with those reported in the literature [87].

2-Phenyl-1,4-benzoquinone (15). White solid; m.p. 118–119 ◦C [Lit. m.p. 117–118 [88];
1H NMR (400 MHz, CDCl3) δ 7.55–7.38 (m, 5H), 6.90–6.78 (m, 3H); 13C NMR (100 MHz,
CDCl3) δ 187.5, 186.6, 145.9, 137.0, 136.2, 132.6, 130.1, 129.2, 128.5. NMR data were in
accordance with those reported in the literature [88].

3.5. Preparation of Copper–PVP Colloids in Water

Colloidal solution of copper PVP was prepared by vigorously stirring for 30 minutes
at room temperature a mixture of CuI (8 mg, 0.04 mmol) and PVP (10%mol) in distilled
water (4 mL).

4. Conclusions

The novel efficient protocol for obtaining p-Quinols was developed. The crucial role of
additives in the reaction course was shown. The pivotal role of polyvinylpyrrolidone (PVP)
in a colloidal catalyst system was revealed, and it was applied for the synthesis of various
p-Quinols with very good yields and excellent chemo- and regioselctivity. Moreover, the
developed colloidal system can be reused several times, which significantly reduces the
overall cost of the synthesis.
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