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Abstract: Nowadays, microRNAs (miRNAs) are increasingly used as biomarkers due to their po-
tential contribution to the diagnosis and targeted treatment of a range of diseases. The aim of
the study was to analyze the miRNA expression profiles in serum and lung tissue from patients
with severe asthma treated with oral corticosteroids (OCS) and those without OCS treatment. For
this purpose, serum and lung tissue miRNAs of OCS and non-OCS asthmatic individuals were
evaluated by miRNAs-Seq, and subsequently miRNA validation was performed using RT-qPCR.
Additionally, pathway enrichment analysis of deregulated miRNAs was conducted. We observed
altered expression by the next-generation sequencing (NGS) of 11 miRNAs in serum, of which five
(hsa-miR-148b-3p, hsa-miR-221-5p, hsa-miR-618, hsa-miR-941, and hsa-miR-769-5p) were validated
by RT-qPCR, and three miRNAs in lung tissue (hsa-miR-144-3p, hsa-miR-144-5p, and hsa-miR-451a).
The best multivariate logistic regression model to differentiate individuals with severe asthma, treated
and untreated with OCS, was to combine the serum miRNAs hsa-miR-221-5p and hsa-miR-769-5p.
Expression of hsa-miR-148b-3p and hsa-miR-221-5p correlated with FEV;/FVC (%) and these altered
miRNAs act in key signaling pathways for asthma disease and the regulated expression of some genes
(FOXO3, PTEN, and MAPK3) involved in these pathways. In conclusion, there are miRNA profiles
differentially expressed in OCS-treated individuals with asthma and could be used as biomarkers of
OCS treatment.
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1. Introduction

Asthma is a heterogeneous disease of the lower airways that affects approximately
300 million people worldwide [1]. Chronic airway inflammation as well as airway damage
and remodeling are hallmark features of the disease and induce bronchial hyper-reactivity
and variable expiratory airflow limitation [2]. Individuals with asthma exhibit a broad
spectrum of disease severity. Severe asthma, defined as that which requires treatment
with high-dose inhaled corticosteroids plus a second controller and/or systemic corticos-
teroids [3], affects about 5-10% of the asthmatic population, and is associated with increased
mortality and morbidity, diminished quality of life, and greater health expenditure [4].

The pathophysiology of asthma is highly complex, comprising distinct phenotypes
and endotypes [5]. In addition, a broad range of triggers including environmental risk
factors, genetic polymorphisms, and epigenetic changes contribute to the onset of asthma,
variations in phenotypes, and response to steroid treatment [6]. Severe asthma comprises
two predominant inflammatory endotypes: Type 2 (T2)-high and T2-low disease [7]. T2-
high asthma is more severe and difficult to treat, and many patients with this endotype
require high-dose treatments and/or biological therapy for better control of the symptoms
and exacerbations, and to avoid adverse reactions caused by the administration of oral
corticosteroids (OCS) [8,9].

To help guide the selection of treatment in patients with severe asthma, currently avail-
able biomarkers such as peripheral blood and induced sputum eosinophil count, fraction of
exhaled nitric oxide (FeNO) level, and immunoglobulin-E (IgE) levels have been used [10].
However, interest in using microRNA (miRNA) profiles as biomarkers for diseases is
currently on the rise [11]. These small, single-stranded, non-coding RNA molecules [12]
participate in the regulation of gene expression by inhibiting protein translation [13] and
are useful as biomarkers as they are stable and disease-related particles [14]. Previous
studies have demonstrated that miRNAs hold great potential as asthma mediators and
biomarkers and can further be of use in asthma endotyping and phenotyping, thereby mak-
ing it possible to offer personalized therapies for patients [15,16]. Among them, Mirra et al.
recently identified a new expression profile of circulating miRNAs including a member of
the miR-181 family, related to lung inflammation, which could be used as a clinical marker
of bronchial asthma and response to pharmacological treatment [17].

The aim of this study was to search for a profile of differentially expressed miRNAs
between individuals with severe asthma receiving OCS treatment versus those without
OCS therapy using next-generation sequencing (NGS). The miRNAs found could serve
as lung-tissue or systemic biomarkers of oral corticosteroid treatment and facilitate the
selection of the most appropriate management approach.

2. Results
2.1. Characteristics of the Study Population

Descriptive data reflecting the demographic, inflammatory, functional, and clinical
characteristics of all individuals studied are summarized in Tables 1 and 2. The subjects
were distributed into two different analyses: 20 OCS-treated versus (vs.) 26 non-OCS-
treated severe asthmatics (serum samples analysis) and six OCS-treated vs. seven non-OCS-
treated asthmatic subjects (lung biopsy samples analysis).

As shown in Table 1, regarding inflammatory parameters, the OCS-treated and non-
OCS-treated severe asthmatics from which serum samples were used had significant
differences in IgE levels (366.0 and 96.8 IU, p < 0.05). Additionally, as expected, we
observed significant differences in treatment with systemic corticosteroids (p < 0.0001).
Other characteristics (i.e., demographic, inflammatory, functional, clinical) did not present
statistically significant differences.
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Moreover, comparing the treated and non-treated with OCS groups in the analysis
of lung biopsy samples (Table 2), the only significant differences were detected in the
percentage of monocytes (10.0% vs. 5.9%, p < 0.05) and, as planned, in the oral corticosteroid

treatment (p < 0.01).

Table 1. Demographic, inflammatory, functional, and clinical characteristics of the study subjects

(serum sample analysis).

OCS-Treated

Non-OCS-Treated

(n = 20) (n = 26) p-Value
Age (years) 54.5 (44.3-59.5) 53.0 (42.8-61.3) N.S.
Sex (%) Female 17 (85.0%) 23 (88.5%) N.S.
BMI 26.7 (23.1-30.4) 28.7 (24.2-33.4) N.S.
Smokers 1 (5.0%) 4/25 (16.0%) N.S.
Smoking habit (%) Passive 2 (10.0%) 2/25 (8.0%) N.S.
Ex-smokers 7 (35.0%) 9/25 (36.0%) N.S.
Non-smokers 10 (50.0%) 10/25 (40.0%) N.S.
Blood eosinophils (cells/pL) * 300.0 (100.0-500.0) 300.0 (200.0-525.0) N.S.
Sputum eosinophils (%) * 0.0% (0.0-35.0) 3.1% (2.0-22.1) N.S.
Atopy (%) 12 (60.0%) 17 (65.4%) N.S.

IgE (1U) * 366.0 (110.0-690.0) 96.8 (36.6-285.8) *

FEV,/FVC (%) * 67.4% (£15.9) 73.3% (£23.5) N.S.
FeNO (ppb) * 23.0 (13.5-78.3) 32.0 (13.8-62.0) N.S.
Exacerbations (%) 17 (85.0%) 16 (61.5%) N.S.
Severe 20 (100.0%) 26 (100.0%) N.S.
Severity (%) Moderate 0 (0.0%) 0 (0.0%) N.S.
Mild 0 (0.0%) 0(0.0%) N.S.
Intermittent 0 (0.0%) 0 (0.0%) N.S.
ACT# 16.8 (£5.9) 17.2 (£5.5) N.S.
ICS and LABA (%) 20 (100.0%) 26 (100.0%) N.S.
Systemic corticosteroid (%) 20 (100.0%) 0 (0.0%) R

Results are expressed as # mean (& SD) or * median (IQR); N.S., non-significant; ****, p < 0.0001; *, p < 0.05; BMI,
body mass index; FEVy, forced expiratory volume measured during the first second; FVC, forced vital capacity;
FeNO, fractional exhaled nitric oxide; ppb, parts per billion; ACT, asthma control test; ICS and LABA, inhaled
corticosteroids and long-acting (32-agonists; OCS, oral corticosteroids.

Table 2. Demographic, inflammatory, and clinical characteristics of the study subjects (lung biopsy

sample analysis).

OCS-Treated

Non-OCS-Treated

(n=6) (n=7) p-Value
Age (years) * 63.0 (56.8-66.3) 34.0 (27.0-74.0) N.S.
Sex (%) Female 3 (50.0%) 1(14.3%) N.S.
Smokers 1 (16.7%) 1/6 (16.7%) N.S.
Smoking habit (%) Ex-smokers 3 (50.0%) 4/6 (66.7%) N.S.
Non-smokers 2 (33.3%) 1/6 (16.7%) N.S.
Neutrophils (%) * 61.9% (50.3-72.5) 83.6% (70.6-89.5) N.S.
Lymphocytes (%) * 24.1% (16.5-35.5) 8.7% (5.9-16.5) N.S.

Monocytes (%) *

10.0% (8.9-12.2)

5.9% (4.4-9.0)

*
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Eosinophils (%) * 2.1% (0.3-3.0) 0.5% (0.1-3.1) NS.
Basophils (%) t 0.4% (0.3-0.7) 0.2% (0.1-0.5) NS.
Atopy (%) 1 (16.7%) 1(14.3%) NS.

OCS (%) 6 (100.0%) 0 (0.0%) o

Results are expressed as * median (IQR); N.S., non-significant; **, p < 0.01; *, p < 0.05; OCS, oral corticosteroids.

2.2. MiRNA Profile in Serum Samples

Analysis of the data obtained by NGS (miRNAs-seq) showed 11 differentially ex-
pressed serum miRNAs (hsa-miR-148b-3p, hsa-miR-221-5p, hsa-miR-618, hsa-miR-200b-3p,
hsa-miR-548], hsa-miR-200a-3p, hsa-miR-941, hsa-miR-181d-5p, hsa-miR-769-5p, hsa-miR-
133a-3p, and hsa-miR-3614-5p) between the OCS-treated and non-OCS-treated patients with

severe asthma (adjusted p < 0.05) (Figure 1a). All of these 11 miRNAs were overexpressed
in the OCS-treated subjects.
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Figure 1. miRNA expression profile in the serum samples from asthmatic patients. (a) Heatmap
of differentially expressed serum miRNAs between the OCS-treated and non-OCS-treated patients
with severe asthma (adjusted p < 0.05; Log2 fold change >1.5). (b) Principal component analysis
(PCA) of severe asthmatic serum samples showing the two different treatment groups (OCS-treated
vs. non-OCS-treated severe asthmatics). (c) RT-qPCR validation of the differentially expressed serum
miRNAs between OCS-treated and non-OCS-treated individuals with severe asthma. 27A4Ct
are represented in the graph (**, p < 0.01; *, p < 0.05).

values

When PCA was performed using the miRNA expression values, the results revealed
that both groups were clearly differentiated (Figure 1b).
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After the miRNAs-Seq analysis, RI-qPCR validation of miRNAs was performed in
a larger cohort of serum samples. Of the 11 differentially expressed miRNAs obtained
by miRNAs-Seq between the OCS-treated and non-OCS-treated individuals with severe
asthma, we found significantly increased levels in five of them (hsa-miR-148b-3p, hsa-
miR-221-5p, hsa-miR-618, hsa-miR-941, and hsa-miR-769-5p) in the OCS-treated patients
(Figure 1c). Hsa-miR-3614-5p was not detected by RT-qPCR, and the remaining miRNAs
evaluated did not reach statistical significance (Figure 1c).

These results confirm that serum hsa-miR-148b-3p, hsa-miR-221-5p, hsa-miR-618,
hsa-miR-941, and hsa-miR-769-5p were differentially expressed miRNAs between the OCS-
treated and non-OCS-treated subjects with severe asthma, suggesting that these could serve
as markers of treatment.

2.3. MiRNAs Correlation and Signaling Pathways

In order to establish some relation between the expression levels of these serum
miRNAs (ACt) and different clinical characteristics, we performed correlation analyses. We
observed a significant direct correlation between FEV; /FVC and hsa-miR-148b-3p in the
two groups (correlation coefficient (r) = 0.63 for the OCS-treated patients with severe asthma
or correlation coefficient (r) = 0.59 for non-OCS-treated subjects with severe asthma) and hsa-
miR-221-5p among the OCS-treated individuals with severe asthma (correlation coefficient
(r) = 0.56) (Figure 2a). Since there is a correlation between FEV; /FVC and hsa-miR-221-5p
in the OCS-treated severe asthmatics, it can explain the difference in treatment between the
two groups, whereas, since FEV; /FVC correlated with hsa-miR-148b-3p in both groups, we
can say that, in this case, there is no explanation for the difference in treatment, but there
was a link with asthma pathology. Furthermore, despite not being a result of statistical
significance, it is worth noting the opposite trend between the groups of the OCS-treated
and non-OCS-treated asthmatic individuals, in the correlation of hsa-miR-148b-3p with the
FeNO levels, perhaps because OCS treatment modified the FeNO/miR-148b-3p relation.

(b)

Hsa-miR-148b-3p | Hsa-miR-221-5p
CLINICAL PARAMETERS OCSs Non OCS | OCS |Non OCS
Peripheral blood eosinophils (cells/mm*3) | -0.009 -0.04 -0.12 -0.44
IgE (kU/L) -0.43 0.08 -0.36 0.14
FEV1/FVC (%) 0.63 0.59 0.56 0.23
FeNO -0.31 0.36 -0.22 0.08
Last year exacerbations (N°) -0.002 -0.22 -0.03 -0.30
Asthma control test (ACT) 0.01 -0.29 -0.01 -0.27
Continuous miRNAs
miRNAs in the logistic model
- - 221-5p
£ —- 769-5p
3‘§ B — 221-Bp + 769-5p
(% ; N
021 : Model AIC__ AUC (95%Cl) Sens. Spec. H-L
042 . ‘ Hsa-miR-221-5p 38.7 0.75(0.58,0.92) 0.50 0.68 0.044
0 06 08 1 Hsa-miR-769-5p 38.9 0.72(0.55,0.90) 0.64 0.63 0.538
1 - Specificity Hsa-miR-221-5p + Hsa-miR-769-5p 37.6 0.77 (0.60,0.93) 0.50 0.74 0.178

Figure 2. Correlation analyses and the ROC curves of differentially expressed serum miRNAs.
(a) Table showing the correlation coefficient (r) between the distinct clinical parameters and serum
miRNA expression levels. Red color intensity indicates a higher negative correlation, whereas green
color intensity shows higher positive correlations. Bold and underlined values were statistically
significant (p < 0.05). (b) ROC curves and multivariate logistic regression models (continuous
predictors) of serum hsa-miR-221-5p and hsa-miR-769-5p. Bold values indicate an AUC over 0.70.
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ROC curves were generated, and we calculated the areas under the curve (AUC).
Multivariate logistic regression models (continuous predictors) were created for better
discrimination of the OCS-treated and non-OCS-treated patients with severe asthma (Sup-
plementary Table S1). Hsa-miR-221-5p and hsa-miR-769-5p showed AUC values of 0.75 and
0.72, respectively, indicating that both are acceptable as univariate predictors. Furthermore,
when both serum miRNAs were combined, the AUC was even better (AUC = 0.77), as
this was the best multivariate logistic regression model for differentiating OCS-treated and
non-OCS-treated severe asthmatics (Figure 2b).

When an in silico analysis was carried out to determine their involvement in the biolog-
ical processes with the differently expressed miRNAs, we determined that these miRNAs
are involved in the regulation of several crucial asthma pathways, which are extracellular
matrix (ECM)-receptor interaction, fatty acid biosynthesis, steroid biosynthesis, the Hippo
signaling pathway, and adherens junction (Figure 3a). As TGFRB1, FOXO3, and PTEN are
target genes of hsa-miR-148b-3p, and MAPK3 is the objective gene of hsa-miR-221-5p, all
are involved in the signaling pathways related to asthma disease. The RT-qPCR assay was
conducted in lung tissue samples from asthmatic patients and healthy subjects, revealing
that FOXO3, PTEN, and MAPK3 were significantly increased in asthmatic individuals
compared to the controls (Figure 3b).

(a)

—_
(=2
-

Adherens junction

[
o
]

Hippo signaling pathway

-
o
1

Steroid biosynthesis
Fatty acid biosynthesis

ECM-receptor interaction

T
0 5 10 15 20 25
-log p value

Lung tissue genes expression (24
-
o
:

c

© @ _ s
Spearman r = 0.3486 °

8 P value < 0.05 .

o

(-]
8 2 Spearman r = 0.3910

P value < 0.05

24 Spearman r = 0.6154
P value < 0.05

S
1
o
Hsa-miR-221-5p (ACt values)
1 » N J
9|
;:o
g
b o b
9l
o
PP
(-]
Hsa-miR-221-5p (ACt values)
»
"
kW
d:
. I
of :
o
-]
o

MAPK3 (ACt values)

0 T O T 1

2 4 6 8 T T 1 T T T 1

—2- Hsa-miR-221-5p (ACt values) 0 2 4 6 8 0 2 4 6 8
% Eosinophils % Eosinophils

Figure 3. In silico pathway analysis, gene expression, and correlation data of serum miRNA results.
(a) Graph showing enrichment (as —log p value) of the signaling pathways obtained using the
DIANA-miRPath v3.0 bioinformatic tool. (b) RT-qPCR in the lung biopsies of target genes of the
differentially expressed serum miRNAs (hsa-miR-148b-3p and hsa-miR-221-5p). GAPDH was used
as a housekeeping gene (*, p < 0.05). (c) The relative miRINA expression of hsa-miR-221-5p (ACt)
correlated directly with MAPK3 in the lung tissue samples (p < 0.05). (d) Correlation graphs of hsa-
miR-221-5p in the lung biopsy samples with blood eosinophil percentage (%) in different population
groups (asthmatic individuals and total subjects) (p < 0.05). Dots (red and green) are individual
values, black dashed line indicates error bars and red/green solid line shows linear regression.

Furthermore, to verify the association between miRNAs and the expression levels
of their respective target genes (ACt), correlation analyses were carried out. We found a
significant positive correlation for the total population between hsa-miR-221-5p and their
target gene, MAPK3 (Spearman r = 0.35) (Figure 3c).
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Finally, we examined the relation between the miRNA expression levels and eosinophil
counts. We showed a statistically significant direct correlation between hsa-miR-221-5p
with the percentage of eosinophils in the different population subsets (i.e., total subjects
and asthmatic individuals) (Figure 3d).

2.4. MiRNA Profile in Lung Samples

Therefore, validated serum miRNAs were analyzed in the target tissue of asthma
disease. We found no statistically significant differences in the expression of these miRNAs
in the lung biopsies. For this reason, we decided to conduct miRNA-Seq in these samples
from asthmatic patients in order to understand the miRNA profile in lung tissue. Here,
three miRNAs were differentially expressed between the OCS-treated and non—OCS-treated
asthmatics (g > 8). Hsa-miR-144-3p, hsa-miR-144-5p, and hsa-miR-451a were overexpressed
in the OCS-treated patients (Figure 4).

250,000 *
= 200,000 Non-OCS-treated
$ 150,000 OCS-treated
£ 100,000
50,000

- *

4000 T *
3000
2000
1000

NOlseq values

aR N N2
A

Figure 4. miRNA expression profile in the lung tissue biopsies from asthmatic individuals. Graph
showing the mean NOIseq values obtained after miRNAs-Seq bioinformatic analyses (*, g > 0.8).

We then performed RT-qPCR on asthmatic lung biopsies from a larger cohort to
validate the miRNAs obtained by sequencing analysis. None of the three miRNAs were
validated, however, we observed a similar expression tendency in OCS-treated asthmatic
patients (2744t for each hsa-miR: 144-3p = 6.5, 144-5p = 5.2 and 451a = 2.0), as obtained in
miRNA-Seq.

3. Discussion

This article draws on data from a comprehensive study of the miRNAs differently
expressed by NGS in the serum (of which 5 were validated: hsa-miR-148b-3p, hsa-miR-221-
5p, hsa-miR-618, hsa-miR-941, and hsa-miR-769-5p) and in lung tissue (hsa-miR-144-3p,
hsa-miR-144-5p and hsa-miR-451a) between the OCS-treated and non-OCS-treated pa-
tients. These miRNNAs could be used as epigenetic biomarkers to distinguish individuals
with severe asthma under OCS treatment, although we do not know whether this miR-
NAs alteration is due to treatment or a characteristic of patients that need OCS in their
asthma control.

Asthma is a heterogeneous disease comprising different phenotypes and endotypes,
and as a result, patient stratification by inflammatory endotype is a central component
of the algorithm used to assess and manage severe disease [18,19]. Identification and
application of biomarkers used to identify phenotypes and endotypes of severe asthma and
guide therapeutic strategy is of increasing interest to clinicians, as individual approaches to
disease management and personalized medicine are imperative [20]. The severe asthma
endotype is currently defined by biomarkers of varying accuracy including blood and
sputum eosinophils, periostin, FeNO, and IgE for T2 asthma [16,21,22]. As reported in the
literature, we found that serum samples of OCS-treated asthmatic patients had elevated
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IgE levels compared to the non-treated asthmatics [23]. Here, it is worth mentioning that
the expression of biomarkers may be modified or even suppressed by pharmacological
treatment (i.e., oral corticosteroids for blood eosinophils), making it advisable to examine
biomarkers in combination. For example, we observed that the combination of two serum
miRNAs used as biomarkers (hsa-miR-221-5p and hsa-miR-769-5p) resulted in a better
AUC than when these were analyzed individually, suggesting that the profile of these two
miRNAs was greater than using them separately.

Biomarkers are promising tools for the recognition and management of non-adherence
to inhaled and oral corticosteroid therapy in asthma and can help to identify potential
responders to therapeutic options, thus enabling their use as predictors of treatment re-
sponse [24]. In recent years, miRNAs have been proposed as diagnostic and prognostic
biomarkers for diseases [25]. NGS is a valuable technique in these efforts and can be
employed for whole genome analysis including mRNA and small RNA expression such
as miRNAs [26]. Our group previously used NGS to describe 15 miRNAs differentially
expressed between eosinophilic and non-eosinophilic asthmatic patients, two of which
were validated and could serve as instruments to classify patients into different pheno-
types/endotypes [15]. In addition, hsa-miR-144-3p was previously described by our group
to present an increase in miRNA levels in corticosteroid treated subjects by RT-qPCR [27],
which validates the result obtained in miRNAs-Seq from the lung biopsy samples of asth-
matics.

In this study, we found different profiles of miRNAs in the serum and lung tissue.
Dysregulation of hsa-miR-148b-3p, hsa-miR-221-5p, hsa-miR-618, hsa-miR-941, hsa-miR-
769-5p, hsa-miR-144-3p, hsa-miR-144-5p, and hsa-miR-451a has been previously associated
with different aspects of asthma pathogenesis and/or other respiratory diseases [28-32].
Nevertheless, these profiles have never been described as indicators of treatment. These
miRNAs could be relevant molecules with implications for the phenotypic distinction of
patients based on whether they are treated or untreated and may be indicated for use in
asthma pathogenesis, since they were significantly correlated with clinical parameters.
Interestingly, we found different miRNA profiles in asthmatics regarding the sample origin,
which underscore the roles of these molecules as epigenetic regulators, as found in previous
studies of miRNA tissue specificity [33].

Furthermore, we observed an enrichment in the ECM-receptor interaction pathway,
which is widely associated with asthma due to the central role it plays in the development
of airway inflammation and remodeling associated with asthma [2]. Moreover, miRNAs
have been shown to affect the expression of multiple genes directly or indirectly, and for
this purpose, we studied target genes related to differential miRNA expression. Here,
FOXO3, PTEN, and MAPK3 exhibited increased expression in asthmatic samples, which
correlated with the miRNA expression studied, which emphasizes the implication of
these inflammatory genes in the disease, as previously described by others [34-36]. In
addition, in this study, we observed a positive correlation between hsa-miR-221-5p and
MAPK3, its target gene, instead of detecting, as usual, an inverse miRNA-target gene
correlation. Given that miRNAs generally behave as silencers of their target mRNAs, a
possible explanation would be that miRNA-mRNA relationships are complex, and the
lung tissue samples in which they have been studied differ from each other (influence of
genetic and/or environmental factors), while there may be other miRNAs involved in the
modulation of a particular mRNA (MAPK3 mRNA), and there could also be interaction
of other target genes of this miRNA (hsa-miR-221-5p) that could be inhibitors of MAPK3,
in this case, remarking the intricacy of miRNA-mRNA post-transcriptional regulation in
whole tissue.

One of the main limitations of this study is the lack of the same-subject pre-treatment
samples, which made it impossible to determine whether the difference in the miRNA
profiles between the groups of patients treated with OCS therapy was a consequence of
the treatment (reflects treatment response) or if, in contrast, the existence of differentially
expressed miRNAs between the groups was a baseline characteristic of the disease and
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selected the treatment. Another limitation is the low number of lung biopsy samples
available from asthmatic patients and, in fact, some of these samples were derived from
individuals with other severe lung pathology, which could probably explain the reason
why no significant differences were observed. Due to the limited number of analyzed lung
biopsy samples available from the asthmatic patients, it is a preliminary level study in
this case. Finally, it would be very interesting to evaluate the levels of protein expression
by ELISA of the genes regulated by two of the altered miRNAs (hsa-miR-148b-3p and
hsa-miR-221-5p) in this study.

4. Materials and Methods
4.1. Study Subjects and Sample Collection

Serum samples were obtained from 46 subjects with a severe asthma diagnosis who
were recruited from allergy and pulmonology units of a series of hospitals in Spain; from
these, we selected samples from 20 patients undergoing treatment with OCS and 26 not
receiving OCS. MiRNA-sequencing (miRNA-Seq) was performed on serum samples from
six of the OCS-treated and seven non-OCS-treated patients, respectively. Of the remaining
33 samples, 14 of those obtained from OCS-treated and 19 from non-OCS-treated subjects
were included for miRNA validation by means of quantitative real-time polymerase chain
reaction (qQPCR). Descriptive data representing the demographic, inflammatory, functional,
and clinical characteristics of the study subjects were collected.

All patients were participants in the MEGA project, which studies a cohort of asth-
matic individuals with varying grades of severity [37]. The inclusion criteria were as
follows: (i) acceptance to participate by providing signed informed consent; (ii) asthma
diagnosis following the 2021 GINA criteria [38]; and (iii) age between 18 and 75 years. The
definition of OCS-treated and non-OCS-treated severe asthmatic was established based on
their treatment.

The study was conducted in accordance with the tenets of the Declaration of Helsinki,
and the protocol was approved by the participating hospital ethics committees.

In addition, we analyzed the lung biopsy samples and relevant descriptive data
corresponding to 13 asthmatic patient donors; these were also subdivided depending on
whether the individuals were treated with OCS (OCS-treated) or not (non-OCS-treated).
Furthermore, we had 20 lung biopsy samples from the control subjects, required for
the gene expression analysis in lung tissue. Lung biopsy samples from these asthmatic
patients and control individuals were provided by the CIBERES Pulmonary Biobank
Consortium (PT13/0010/0030), a network currently formed by 12 tertiary Spanish hospitals
(www.ciberes.org, accessed on 10 January 2023) detailed in the Acknowledgements section,
and integrated in the Spanish National Biobanks Network. Lung biopsies were processed in
accordance with the standard operating procedures, and subsequent approval was granted
for processing by the local ethics and scientific committees.

Serum samples were obtained by blood clotting in anticoagulant-free tubes and subse-
quent centrifugation at 3000 rpm for 10 min at 4 °C and stored at —80 °C until use. Lung
tissue samples were preserved in the RNAlater stabilization solution at —80 °C until use.

4.2. Library Preparation, MiRNAs-Seq, Bioinformatic Analysis

Serum RNA (including miRNAs) was extracted from 200 pL of serum using the
miRNeasy Serum/Plasma Advanced Kit (Qiagen, Hilden, Germany), as indicated by the
manufacturer. Lung tissue RNA was purified using the QIAzol Lysis Reagent (Qiagen,
Hilden, Germany), followed by the application of the acid guanidinium thiocyanate-phenol-
chloroform extraction method [39]. In all cases, the RNA enriched in miRNAs was eluted
by adding 20 pL of RNase-free water.

Then, small RNA (miRNA-enriched RNA) was converted to Illumina sequencing
libraries using the NEXTFLEX® Small RNA-Seq Kit v3 (Bioo Scientific Corporation, Austin,
TX, USA), strictly according to the manufacturer’s instructions. The size profile of the indi-
vidual libraries was quantified using High Sensitivity D1000 Screentape on a 4200 TapeSta-
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tion System (both Agilent, Santa Clara, CA, USA). Quantified libraries were sequenced on
an Illumina MiniSeq 550 platform (Illumina, San Diego, CA, USA) using a MiniSeq 500/550
75-Cycle High Output Kit.

Bioinformatic analyses including quality control, pre-processing, and statistical analy-
sis of small RNA-Seq data were carried out by the Bioinformatics Unit of IIS-Fundacion
Jiménez Diaz. Adaptor removal and trimming of raw reads were performed using Cu-
tadapt [40] by following the instructions for the NEXTflex small RNA-Seq Kit. Adaptor-
trimmed reads between 17 and 25 nt were retained and aligned to the reference genome
(GRCh38 assembly) using Bowtie2 [41]. Mapping of reads to known miRNAs was per-
formed with HTSeq-count? [42] using mature miRNA annotation retrieved from the miR-
Base database (miRBase v22). Raw miRNA counts across samples were normalized by
sequencing depth and RNA composition using the trimmed mean of M-values (TMM)
function from the NOISeq Bioconductor R package [43]. Subsequent principal component
analysis (PCA) on normalized and scaled values was applied using the prcomp function
from the R stats package [44]. Comparison of the normalized expression levels across
groups was performed following two alternative methods for testing differential expres-
sion in the sequencing data: NOISeq [43] and DESeq2 [45]. Fold-change and p-values
adjusted by false discovery rate (FDR) were calculated and used to identify significant
differentially expressed miRNAs. MiRNAs were considered biologically relevant if they
were differentially expressed (adjusted p < 0.05) and presented a Log?2 fold change >1.5
between two groups, or if g > 0.8 in the case of NOISeq.

4.3. RT-gPCR and Pathway Enrichment Analyses

For validation of the miRNA-Seq results or the expression analysis of the validated
miRNAs, 4 uL of serum miRNA samples or 30 ng of lung tissue miRNA-enriched RNA
were reverse transcribed to cDNA using the miRCURY LNA RT Kit (Qiagen), following
the manufacturer’s protocol. The synthetic miRNAs SP6 and cel-miR-39-3p were used
to control for correct reverse transcription. The cDNA obtained was stored at —20 °C
until use. Then, miRNA expression was evaluated by qPCR using the miRCURY LNA
SYBR Green PCR Kit (Qiagen), as indicated in the instructions. For this purpose, we used
3 uL of cDNA from the serum or lung tissue miRNAs diluted 1:60 or 1:30, respectively,
in RNase-free water. Based on the results of the miRNA-Seq, the probes (Qiagen) used
for the validation analysis of miRNAs in the serum and lung tissue were the following;:
hsa-miR-148b-3p, hsa-miR-221-5p, hsa-miR-618, hsa-miR-200b-3p, hsa-miR-548I, hsa-miR-
200a-3p, hsa-miR-941, hsa-miR-181d-5p, hsa-miR-769-5p, hsa-miR-133a-3p, hsa-miR-451a,
hsa-miR-144-3p, and hsa-miR-144-5p. Additionally, hsa-miR-103a-3p, hsa-miR-191-5p, SP6,
cel-miR-39-3p, and U6 (Qiagen) were selected as housekeeping miRNAs. All samples
were run in triplicate, and reactions were performed in a Light Cycler® 96 thermocycler
(Roche, Basel, Switzerland). Cycle threshold (Ct) values were analyzed with LightCycler®
96 SW 1.1 (Roche) software and miRNA expression was calculated by normalizing to the
endogenous miRNA controls by applying the 2-8Ct method [46], where ACt = Ctyirna —
Cthousekeeping miRNAs- 1he relative quantification of differences in expression (RQ = 2-AACt,
where AACt = ACtocs treated — ACtnon-OCS-treated) Was carried out by the AACt method [46].

For gene expression analysis in lung tissue, 500 ng of RNA quantified by a Nanodrop
ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) was reverse
transcribed using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA, USA), followed by qPCR according to the manufacturer’s guidelines
on a StepOne Real-Time PCR System (Applied Biosystems). TagMan™ gene expression
probes were purchased for TGFBR1, FOXO3, PTEN, MAPK3, and GAPDH using TagMan™
Gene Expression MasterMix (Applied Biosystems). Gene expression was calculated by
normalizing to the endogenous gene GAPDH control by applying the 22t method as
previously reported (RQ = 2-AACt where AACt = ACtygthmatics — AClthealthy subjects) [46]-

In order to identify target genes linked to asthmatic pathology of hsa-miR-148b-3p,
hsa-miR-221-5p, hsa-miR-618, hsa-miR-941, and hsa-miR-769-5p, differentially expressed
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miRNAs in the serum between the OCS-treated and non-OCS-treated patients with severe
asthma, pathway enrichment analysis of dysregulated miRNAs was performed using the
DIANA-miRPath v3.0 bioinformatic online resource [47]. Relevant pathways for asthma
disease were represented when a p-value < 0.05, and the related genes were analyzed by
RT-PCR, as previously mentioned.

4.4. Statistical Analysis

Statistical analyses and graphs were created with GraphPad Prism® v6-8.0 (GraphPad
Software Inc., San Diego, CA, USA) and R software® v4.1.0 [44] (R Foundation for Statistical
Computing, Vienna, Austria).

Results are shown as the mean (standard deviation, SD) or median (interquartile
range, IQR) values. For all statistical analyses, differences showing p < 0.05 were considered
significant. Normality was analyzed by means of the Shapiro-Wilk test. For continuous
variables, comparisons of normally distributed data between non-paired groups were
performed via an unpaired f test (equal SD) and ¢ test with Welch’s correction (different
SD), and non-normally distributed data and non-paired groups were compared by the
Mann-Whitney test.

Additionally, correlations between the miRNA expression levels (ACt) and some
clinical parameters (quantitative variables) were estimated by Spearman (non-normally
distributed data) or Pearson (normally distributed data) correlation; the Fisher exact test
was applied to a 2 x 2 contingency table to test the null hypothesis of the independence
of groups and some clinical characteristics (qualitative variables). Finally, the expression
profile (ACt) of each differentially expressed miRNA was used to create receiver operator
characteristic (ROC) curves, and logistic regression models were developed to evaluate the
performance of miRNA as biomarkers; an area under the curve (AUC) of 0.7 indicated an
acceptable biomarker.

5. Conclusions

In summary, we describe the significant differences in the expression of eight miRNAs,
hsa-miR-148b-3p, hsa-miR-221-5p, hsa-miR-618, hsa-miR-941, hsa-miR-769-5p, hsa-miR-
144-3p, hsa-miR-144-5p, and hsa-miR-451a (the first five in serum and the last three in
lung tissue). These miRNAs could be used as biomarkers of oral corticosteroid treatment,
allowing for the differentiation of patients treated with OCS from the patients not treated
with OCS.
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