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Abstract: Kunitz domain-containing proteins are ubiquitous serine protease inhibitors with promis-
ing therapeutic potential. They target key proteases involved in major cellular processes such as
inflammation or hemostasis through competitive inhibition in a substrate-like manner. Protease
inhibitors from the Kunitz superfamily have a low molecular weight (18–24 kDa) and are character-
ized by the presence of one or more Kunitz motifs consisting of α-helices and antiparallel β-sheets
stabilized by three disulfide bonds. Kunitz-type inhibitors are an important fraction of the protease in-
hibitors found in tick saliva. Their roles in inhibiting and/or suppressing host homeostatic responses
continue to be shown to be additive or synergistic with other protease inhibitors such as cystatins
or serpins, ultimately mediating successful blood feeding for the tick. In this review, we discuss the
biochemical features of tick salivary Kunitz-type protease inhibitors. We focus on their various effects
on host hemostasis and immunity at the molecular and cellular level and their potential therapeutic
applications. In doing so, we highlight that their pharmacological properties can be exploited for the
development of novel therapies and vaccines.
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1. Introduction

Many arthropods developed hematophagy over an evolutionary timescale of millions
of years with the primary objective of feeding on vertebrate blood [1]. This evolution
included the development of complex physiological and molecular mechanisms to circum-
vent vertebrate host defense mechanisms, such as hemostasis and immunity [2]. These
mechanisms developed from the cretaceous era onwards across over 500 arthropod genera
comprising at least 19,000 species [3]. Of these arthropods, ticks have received particular
attention due to their worldwide distribution and veterinary and medical importance [4].
Ticks are the second most common vector of pathogens after mosquitos and cause important
human diseases including tick-borne encephalitis and Lyme borreliosis [5].

Ticks have therefore evolved and developed unique strategies to escape vertebrate host
defenses to remain attached and complete a long-lasting blood meal [6,7]. To achieve this,
ticks release their saliva—a complex mixture of pharmacologically bioactive compounds
(peptides/proteins, lipids, nucleic acids, and other molecules) [8]—at the bite site to avoid
host defenses such as hemostasis, inflammation, and innate and adaptive immunity [9]. To
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maintain host blood fluidity, tick saliva contains specific proteins and low molecular weight
molecules that specifically target hemostatic cascades and consequently block the triad of
blood coagulation, platelet aggregation, and vasoconstriction [10]. These antihemostatic
molecules have been extensively investigated, as their manipulation may prevent ticks
from feeding and, consequently, pathogen transmission [11]. Furthermore, recent advances
in high-throughput technologies (transcriptomics, proteomics, among others) have rapidly
expanded our understanding and identification of tick salivary gland and midgut proteins
that act at the tick–host interface to facilitate pathogen transmission [12].

Several proteomic and transcriptomic studies of the saliva and salivary glands (to
produce sialoproteomes and sialotranscriptomes, respectively) of infected and non-infected
ticks have revealed differences in the expression profiles in the presence or absence of
pathogens [13]. As host hemostasis and immune responses are tightly regulated by pro-
teases, tick saliva is particularly rich in protease inhibitors (PIs), of which only a small
fraction has been biochemically and functionally characterized [8,9]. PIs regulate several
biochemical processes to prevent protease activity that might harm the host organism [14].
At the tick–host interface, these PIs act in favor of the ectoparasite by neutralizing host
proteases involved in immune responses and hemostasis [15]. Depending on their targets,
tick salivary PIs can be subclassified such as serine, cysteine, aspartyl, threonine, and gluta-
mate proteases [5]. Since the serine proteases are the most abundant protease family [16],
their respective inhibitors represent the largest group of PIs in animals, plants, and microor-
ganisms and are themselves divided into superfamilies including Kunitz-type protease
inhibitors, Bowman–Birk inhibitors, serpins, Kazal-type protease inhibitors, thryropin, and
trypsin inhibitor-like domain (TIL) inhibitors [11].

Members of the Kunitz-type inhibitor superfamily are among the most abundant PIs in
tick saliva and, in most cases, they inhibit trypsin-like serine proteases [17]. Members of this
superfamily contain at least one characteristic Kunitz domain: a 3D structure formed from
α-helices and anti-parallel β-sheets compacted by three disulfide bonds [18]. Kunitz-type
inhibitors can contain several Kunitz motif repeats, and proteins with a single (monolaris),
double (bilaris), or up to five (penthalaris) motifs have been reported in tick saliva [19].

In this review, we provide an overview of current knowledge about Kunitz-type
inhibitors, their structure, and their inhibitory mechanisms. We also describe the various
reported effects of tick salivary Kunitz-type inhibitors on host hemostasis and immunity to
provide insights into their potential use as immunobiologics and vaccines against ticks and
tick-borne diseases.

2. Kunitz-Type Inhibitors: Low Molecular Weight Serine Protease Inhibitors

Kunitz domain-containing proteins are serine PIs found in almost all living organisms
including animals, plants, and microbes. The first identified member of this family, bovine
pancreatic trypsin inhibitor (BPTI), was described over 80 years ago [20] and is one of the
most extensively studied globular proteins due to its use as a model system for protein
structure and folding investigations [21]. In addition to their serine PI activity, some
Kunitz domain-containing proteins can act as ion channel blockers [22], especially in the
venom of poisonous animals, so are also called Kunitz-type toxins, although they have also
been reported in parasite secretions [22,23]. While Kunitz-type PIs are essential regulators
of inflammatory processes in vertebrates, their function in invertebrates is broad, with
anticoagulant, fibrinolytic, and antimicrobial activities all described [17]. Structurally, these
proteins are typically small molecules with a molecular weight between 18 and 24 kDa [24].
A Kunitz domain is usually 60 amino acid long, weighs around 7 kDa, and consists of
two antiparallel β-strands and one or two α-helices [24]. The Kunitz domain contains six
conserved cysteines forming three disulfide bridges that stabilize the structure, one of them
stabilizing the two binding domains [25].

Most Kunitz-type inhibitors are competitive inhibitors that bind reversibly to the
active site in a substrate-like manner [26]. The protease-binding loop formed by the
Kunitz-type domain executes protease inhibition by tightly but non-covalently binding
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the serine protease active site. The most exposed region of the loop harbors position P1,
which is the reactive site and the critical determinant of inhibitor recognition specificity
[17,25]. The enzyme is thus blocked without any conformational changes, and the Kunitz
inhibitor forms an anti-parallel β-sheet between the enzyme and inhibitor, where numerous
non-covalent interactions ensure tight binding [17]. The reactive center loop (RCL) of
Kunitz-type inhibitors is structurally adapted to a wide panel of proteases, which explains
why several tick salivary Kunitz-type inhibitors have multiple targets [27]. Conversely,
some tick-derived Kunitz-type inhibitors targeting thrombin do not follow the canonical
mechanism of protease inhibition. Instead, their N-terminal residues bind across the
thrombin active site cleft, while their C-terminal modules interact with the basic exosite I
of the protease [1]. The pluripotency of these PIs and their implication in various pathways
including hemostasis, inflammation, immunomodulation, or tumor biology make them
very attractive candidates as therapeutics and also establishes them as valuable tools for
biochemical studies.

3. Tick Saliva as a Source of Bioactive Kunitz-Type Inhibitors

As noted above, serine PIs are abundant in tick salivary glands, where they play
a role in blocking vertebrate host responses to guarantee success of blood feeding. Of
the four main classes of serine PIs, proteins with Kunitz domains are usually the most
represented in salivary gland transcriptomes, both in terms of number and expression
levels [28]. This abundance is seen in both the argasid (soft tick) and ixodid (hard tick)
families at all development instars (larvae, nymphs, and adults), although there is marked
variability in different tick species [29,30].

In tick salivary gland transcriptomes, Kunitz-type domains are usually found within
the five most expressed classes of protein along with lipocalins, basic and acid tail pro-
teins, and proteases. Their relative expression levels vary between tick species, and in
argasids of the genus Ornithodoros (e.g., O. brasiliensis, O. erraticus, and O. moubata) and
some ixodid species (e.g., Amblyomma triste), Kunitz proteins are the fourth or fifth most
abundant class [30–33]. For some tick species of the Amblyomma genus, proteins with
Kunitz domains are even more abundant, being the first or second most commonly ex-
pressed, as seen for A. tuberculatum, A. americanum, A. sculptum (sin A. cajennense), and
A. parvum [33–35]. Additionally, a dataset of high-quality expressed sequence tags (ESTs)
from the eight libraries of Rhipicephalus (Boophilus) microplus (RMallHxN) estimated that
up to 1% of the total putative secreted proteins of the species are from the Kunitz-type
inhibitor superfamily [36].

In general, Kunitz-type inhibitors account for 1 to 10% of reads of secreted proteins
in salivary gland transcriptomes. However, their expression levels increase over the
course of feeding over an estimated three-fold range [30]. This increase in expression
varies according to each protein, with some showing no regulation during feeding and
others showing substantial upregulation (Table 1); for example, AsKunitz transcripts are
~18.8 million-fold upregulated one day after the start of feeding [29].

The number of contig IDs of Kunitz-type proteins is also highly variable between
tick species, from as low as 24–42 proteins in some transcriptomes (as seen for the ar-
gasids O. rostratus and O. brasiliensis [30,37] and the ixodid A. tuberculatum [34]) to over
100 in O. moubata [32] and O. erraticus [31]. An extensive database of tick salivary proteins
from forty-four species from ten genera showed that six classes contain the majority of
sequences, and Kunitz-type PIs represent the second most abundant class with 1882 pro-
teins [28]. The function of most of these proteins is still unknown, although a few have been
functionally characterized.

4. Hemostasis Modulation by Tick Salivary Kunitz Inhibitors

Following the cutaneous and vascular injury caused by the introduction of the tick
mouthparts into the host, the vertebrate host initiates different but interrelated mechanisms
including inflammation and other immune reactions triggered by different endogenous
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and/or exogenous factors [2,10]. Here we focus on the effect of tick salivary Kunitz-type
inhibitors on hemostasis and host immune responses, although it should be noted that the
effects of these protease inhibitors are wider [1].

With the primary objective of preventing blood loss, hemostasis encompasses three
major synchronized mechanisms to achieve that objective [2]: vasoconstriction, blood
coagulation, and thrombus formation/platelet aggregation. Vasoconstriction occurs after
the release of several compounds such as leukotrienes by mast cells, endothelins by the
local endothelium, serotonin and thromboxane by activated platelets, and other blood
proteins such as angiotensin I [2,38]. The coagulation cascade represents an interconnected
network of enzymatic cascades with several amplification and regulatory mechanisms [39].
With its extrinsic and intrinsic pathways, blood coagulation produces the fibrin needed
for platelets to form the thrombi [40]. Consequently, platelets are another key actor in
thrombus formation that assemble through fibrin binding to their αIIbβ3 integrin [2].

Despite the complexity of host hemostatic responses, ticks have developed several
evasive measures to block hemostasis, since maintaining availability of vertebrate host
blood is essential to survival [10,25]. As noted above, Kunitz-domain PIs are highly
represented in tick saliva and constitute the largest group of serine PIs [2]. In 1990, the
first tick anticoagulant peptide (TAP) belonging to the Kunitz superfamily was purified
from a whole-body extract of O. moubata and showed high specificity for factor X (FX) [41].
TAP displayed interesting anti-hemostatic effects, including inhibiting thromboplastin-
induced fibrinopeptide production in monkeys or significantly inhibiting thrombosis in an
arterial thrombosis model in its recombinant form (rTAP) [41,42]. Thus, TAP stimulated
interest in tick salivary glands as a source of Kunitz-type inhibitors with important anti-
hemostatic properties and therefore potential therapeutic value. Following on from studies
of TAP, disagregin was the first inhibitor of platelet aggregation and platelet adhesion to
fibrinogen directly isolated from tick salivary gland extracts (also from O. moubata) [43].
Since then, many other Kunitz-type inhibitors have been reported in hard ticks that target
the coagulation cascade and platelet aggregation through high potency for key serine
proteases such as trypsin, elastase, thrombin, or FX [2]. For instance, Ir-CPI isolated from
the salivary glands of Ixodes ricinus was reported as a multifunctional Kunitz-type inhibitor
that reduced venous thrombus formation in rat and mouse venous and arterial thrombosis
models. Moreover, Ir-CPI protected against thromboembolism induced by epinephrine or
collagen [44].

Other Kunitz-type inhibitors have since shown anti-angiogenic and anti-tumor activ-
ities. Ixolaris from Ixodes scapularis [18] and Amblyomin-X from A. sculptum (a member
of A. cajennense species complex) [39] showed potent anti-hemostatic activities, mainly
related to FX inhibition. Amblyomin-X was reported as a non-competitive inhibitor of
FX with a consequent inhibitory effect on prothrombinase and tenase complexes [39,45].
Conversely, Ixolaris inhibits FX through exosite binding to form a complex with factor VIIa
(fVIIa) and tissue factor (TF) [46]. Moreover, by inhibiting the extrinsic pathway, Ixolaris
showed concentration-dependent inhibition of thrombus formation in a venous thrombosis
model [47].

Table 1 provides an up-to-date list of salivary Kunitz-type inhibitors originating from
ticks with different hemostasis-related properties. In addition to anti-tumor and anti-
angiogenic activities, other tick salivary Kunitz-type inhibitors with immunomodulatory
activities have been reported, as discussed below.

Table 1. Kunitz-type inhibitors characterized in tick saliva.

Kunitz
Protein Tick Species

Number of
Kunitz

Domains
Target Protease(s) Biological Effect

Transcriptomic
Induction/Elevation
by Blood Feeding

Vaccine-Related
Study (Observed
Effect on Ticks)

Reference

HA11 Hyalomma
asiaticum Monolaris Anticoagulant

(intrinsic pathway) Yes
Yes (reduced

engorged body
weight)

[48]
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Table 1. Cont.

Kunitz
Protein Tick Species

Number of
Kunitz

Domains
Target Protease(s) Biological Effect

Transcriptomic
Induction/Elevation
by Blood Feeding

Vaccine-Related
Study (Observed
Effect on Ticks)

Reference

Rhipilin-1
Rhipicephalus

hemaphysa-
loides

Monolaris Anticoagulant
(intrinsic pathway) Yes No [49]

Rhipilin-2
Rhipicephalus

hemaphysa-
loides

Monolaris Trypsin, elastase Anticoagulant
(intrinsic pathway) Yes No [50]

AsKunitz Amblyomma
sculptum Monolaris Thrombin

Anticoagulant,
anti-complement

(classical and
alternative pathways)

Yes
Yes (reduced egg

hatching, increased
mortality)

[29]

Amblyomin-X Amblyomma
sculptum Monolaris FXa

Anticoagulant,
antithrombotic,
antiangiogenic,

antitumor (reduces
tumor growth and
metastasis, induces

apoptosis in tumor cell
lines)

No No [39]

Amblin Amblyomma
hebraeum Bilaris Thrombin Anticoagulant No No [51]

IrSPI Ixodes ricinus Monolaris Elastase

Immunomodulatory
(repression of

proliferation of CD4+

T lymphocytes and
proinflammatory
cytokine secretion

from both splenocytes
and macrophages)

Yes

Yes (increased
engorgement,

decreased mortality,
increased molting)

[52,53]

Ir-CPI Ixodes ricinus Monolaris FXIa, FXIIa,
kallikrein

Anticoagulant
(intrinsic pathway),

antifibrinolytic,
antithrombotic

No No [44]

Ixolaris Ixodes
scapularis Bilaris FX(a)

Anticoagulant
(extrinsic pathway),

antithrombotic,
antiangiogenic,

antitumor

No No [47,54]

Penthalaris Ixodes
scapularis Pentalaris Fx(a) Anticoagulant No No [55]

Tryptogalinin Ixodes
scapularis Monolaris

Human skin
β-tryptase,
matriptase,

plasmin, elastase,
α-chymotrypsin,

trypsin

Not characterized yet No No [56]

Ra-KLP Rhipicephalus
appendiculatus Monolaris No anti-protease

activity
Activates maxiK

channels Yes No [57]

Boophilin Rhipicephalus
microplus Bilaris

Thrombin, trypsin,
plasmin, FXIa,

kallikrein, elastase

Anticoagulant, platelet
antiaggregant No No [58,59]

rBmTI-A Rhipicephalus
microplus Bilaris Trypsin, kallikrein,

elastase, plasmin

Anti-inflammatory,
antiangiogenic;

protective role in
pulmonary disorders

(emphysema and
allergic inflammation)

No No [60–64]

rBmTI-6 Rhipicephalus
microplus Trilaris Trypsin, plasmin

Attenuates
inflammation in
elastase-induced

emphysema

No No [65,66]

Haemangin Haemaphysalis
longicornis Monolaris

Trypsin,
chymotrypsin,

plasmin

Anti-angiogenic
(inhibits proliferation
and induces apoptosis

of endothelial cells),
modulates wound

healing

Yes No [67]

HlMKI Haemaphysalis
longicornis Monolaris

Haemaphysalis
longicornis

trypsin-like serine
proteinase (HlSP)

Not characterized yet Yes No [68]

HlChI Haemaphysalis
longicornis Monolaris Chymotrypsin,

trypsin Not characterized yet Yes No [69]
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Table 1. Cont.

Kunitz
Protein Tick Species

Number of
Kunitz

Domains
Target Protease(s) Biological Effect

Transcriptomic
Induction/Elevation
by Blood Feeding

Vaccine-Related
Study (Observed
Effect on Ticks)

Reference

KPI Dermacentor
variabilis Pentalaris Trypsin Anticoagulant

(intrinsic pathway) Yes (in midgut) No [70]

Ornithodorin Ornithodoros
moubata Bilaris Thrombin Not characterized yet No No [71]

Disagregin Ornithodoros
moubata

No anti-protease
activity Platelet antiaggregant No No [72]

Savignygrin Ornithodoros
savignyi Monolaris No anti-protease

activity Platelet antiaggregant No No [73]

5. Modulation of Host Inflammation and Immunity by Tick Salivary Kunitz Inhibitors

Although a Kunitz-type inhibitor in ticks was first described in 1990, study of their role
in tick–host relationships was largely restricted to hemostasis over the following 20 years.
The first evidence of their potential activity in tick immunity came from two related studies
demonstrating that Dermacentor variabilis expresses a Kunitz-type inhibitor in its midgut
capable of limiting Rickettsia montanensis growth/invasion both in vitro [70] and in vivo [74].
Such control of bacterial growth by a Kunitz-type inhibitor, observed in nodules of winged
bean plants colonized by Rhizobium spp. [75], has opened up new avenues for evaluating the
role of Kunitz-type inhibitors in host inflammation and immunity. However, compared with
other protease inhibitors (e.g., serpins and cystatins), the activities of salivary Kunitz-type
PIs in vertebrate immune phenotypes are far less studied and most remain elusive.

The bidirectional interface between coagulation and inflammation is now well estab-
lished [76]. For example, TF is the main activator of clotting under physiological conditions,
and several studies have now demonstrated a TF-dependent coagulation–inflammation
circuit [77]. The sialotranscriptome of I. scapularis revealed a sequence with homology to TF
pathway inhibitor (TFPI) with two Kunitz-like domains. The expressed recombinant protein
was named Ixolaris (Figure 1) and characterized as an inhibitor of FVIIa/TF-induced FX
activation in the picomolar range [18]. Interestingly, TF-expressing monocytes produce more
proinflammatory cytokines IL-1β, IL-6, and TNF-α than TF-negative monocytes when stimu-
lated by LPS. However, although Ixolaris inhibited TF function in LPS-stimulated monocytes
in vitro, it did not affect TF expression or proinflammatory cytokine production in these
cells [78]. Penthalaris, another TFPI homolog found in the I. scapularis sialotranscriptome
containing five tandem Kunitz domains, also inhibits FX activation through the FVIIa/TF
pathway. However, its potential role in inflammation still needs to be established [55].
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Figure 1. Cartoon representation of the second Kunitz domain of human TFPI (PDB: 1TFX) (A), the
two Kunitz domains of Ixolaris (PDB: 6NAN) (B), and the superposition of the two mentioned Kunitz
domains (C).

Rhipicephalus spp. have atypical Kunitz/BPTI proteins in their saliva that target
unusual proteases. For example, Rhipicephalus sanguineus TdPI (from Tick-derived Protease
Inhibitor) is a salivary protein with a modified Kunitz fold and disulfide-bond pattern that



Int. J. Mol. Sci. 2023, 24, 1556 7 of 15

inhibits human β-tryptase, a human mast cell-derived serine protease [79]. Interestingly,
when injected into mouse ears, TdPI accumulated in the cytoplasmic granules of dermal
mast cells and was detectable for two days [79]. Given the role of mast cell tryptase in
inflammation and allergy [80], it can be hypothesized that TdPI treatment might work as a
mast cell-stabilizing agent, either suppressing the release of mast cell-derived mediators or
neutralizing tryptase release, with a clear benefit for tick feeding. Of note, I. scapularis also
possesses a Kunitz sequence closely related to TdPI that displays an unusual cysteine motif
compared with other Kunitz-type inhibitors; this inhibitor was named tryptogalinin and
it also targets human β-tryptase, suggesting similar functions to TdPI [56]. On the other
hand, R. appendiculatus secretes a Kunitz/BPTI-like protein (Ra-KLP) with an extensive
modification in its Kunitz fold and devoid of any anti-protease or anti-hemostatic activity.
However, it does have a stimulatory effect on large-conductance Ca2+-activated K+ (maxiK)
channels [57], similar to the Kunitz-type toxins described in helminths and poisonous
animals [22,23]. Given these data, a machine learning algorithm was developed and
validated in I. ricinus sialotranscriptomes to improve the identification Kunitz-domain
proteins that also lack the PI function but interact with ion channels [81]. Of their many
functions, this type of non-PI Kunitz proteins may act on elements of the cutaneous immune
system, although such putative activities still require experimental proof.

Elastase contributes to many activities reported for neutrophils [82], and neutrophil
elastase inhibitors are under investigation to treat a number of inflammatory conditions [83].
As a proof of concept, a recombinant preparation of B. microplus Trypsin Inhibitor A
(rBmTI-A)—originally extracted from tick larvae—is a strong neutrophil elastase inhibitor
and presented anti-inflammatory properties in experimental models of elastase-induced
emphysema and other pulmonary inflammatory disorders [84]. Interestingly, both Rhipilin-
2 from R. hemaphysaloides [50] and IrSPI from I. ricinus [52] inhibit elastase but no other
enzymes typically targeted by Kunitz-type inhibitors. Thus, Rhipilin-2 and IrSPI are likely
to be promising modulators of neutrophil function and neutrophil-associated inflammation.
In addition, IrSPI has already been demonstrated to decrease CD4+ T cell proliferation and
proinflammatory cytokine secretion by splenocytes and macrophages [52].

Some tick salivary Kunitz-type inhibitors display interesting effects on cell death.
Haemangin, originally described in Haemaphysalis longicornis salivary glands, suppressed
angiogenesis and would healing by inhibiting vascular endothelial cell proliferation and
inducing apoptosis [67]. A transcript found in the sialotranscriptome of A. sculptum, coding
a protein containing an N-terminal Kunitz-type domain and a C-terminus with no homology
to any annotated sequences, was also identified and, like many other Kunitz-type proteins, it
was initially shown to be an activated FX (FXa) inhibitor and to affect blood clotting in vitro
and in vivo [85]. However, electrostatic potential mapping of its Kunitz-type region revealed
a different pattern of charged residues compared with human TFPI-1 and TFPI-2, suggesting
additional functional and structural features [86]. The molecule, named Amblyomin-X, in
fact inhibited angiogenesis induced by VEGF-A (vascular endothelial growth factor A) in
murine subcutaneous tissue and chicken chorioallantoic membrane models, delayed cell
cycle progression, decreased cell proliferation and adhesion, and reduced tube formation and
membrane expression of PECAM-1 (adhesion molecule platelet–endothelial cell adhesion
molecule-1) [87]. In addition, Amblyomin-X showed antitumoral activity in vivo and in
vitro, with investigation of its mechanisms of action revealing alterations in the ubiquitin-
proteasome system and apoptosis induction [88]. Strikingly, these cytotoxic effects were
selective to tumor cell lines (e.g., human melanoma, pancreatic adenocarcinoma, renal cell
carcinoma) but not primary cells (human fibroblasts) nor non-tumor-derived cell lines,
which may indicate that Amblyomin-X may not have off-target effects as a therapeutic
drug [89–91].

In addition to Amblyomin-X, a second Kunitz-type inhibitor was identified in one
of the A. sculptum sialotranscriptomes as the most expressed transcript of this family
during blood feeding [33]. The recombinant protein, named AsKunitz, possesses eight
cysteines, a typical Kunitz/BPTI domain, and inhibits thrombin but not FXa or trypsin.
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Among many activities, AsKunitz was the first salivary Kunitz shown to inhibit both the
classical and alternative pathways of complement activation [29]. The complement system
is considered an important line of defense against ticks since some of its components trigger
mast cell degranulation and induce leukocyte recruitment to the skin [92], in addition to
causing direct cell damage through the activation of the membrane attack complex [10].
This selective pressure by the host explains the high number anti-complement bioactive
molecules found in tick saliva and midgut [93]. In addition, the complement system
represents an important host effector mechanism against the pathogens transmitted by
ticks [94,95]. Thus, by inhibiting the complement system components present in the blood,
ticks assure a double-edged sword effect: the acquisition of a less harmful blood meal while
enhancing the transmission of tick-borne diseases.

Table 1 also provides details of tick salivary Kunitz-type inhibitors with confirmed
impacts on immunity in vertebrate hosts.

6. Kunitz-Type Inhibitors Used as Vaccine Antigens against Ticks and Tick-Borne Diseases

Anti-tick vaccines became commercially available in the early 1990s for the control
of cattle tick infestations; they were the first commercial vaccines to target a multicellular
ectoparasite [96]. More recently, evidence has accumulated that targeting tick proteins
by vaccination not only reduces tick feeding and reproduction but also interferes with
pathogen infection and transmission from the tick to the vertebrate host. However, despite
the diversity of biochemical targets and functions in host immunity, only a few Kunitz-
type inhibitors have been tested as antigen candidates in vaccination trials. The first
was BmTI, purified from R. microplus larvae extracts, which elicited a protective immune
response in vaccinated cattle with 72.8% efficacy and a 69.7% reduction in the number
of adult females completing the parasitic phase of the life cycle [97]. However, when a
synthetic peptide designed from BmTI N-terminal fragment was used in similar conditions,
it offered only 18.4% protection against tick infestation in cattle [98]. Immunization of
cattle with another trypsin inhibitor from R. microplus larvae (rRmLT), which resembles
the three-headed Kunitz-type inhibitor BmTI-6, showed 32% efficacy against cattle tick
infestation [99]. Only recently, a Kunitz-type inhibitor from tick saliva was tested as
a tick vaccine. Mice immunized with AsKunitz, the anticoagulant inhibitor that also
affects complement activation, showed >85% efficacy against challenge with adult female
A. sculptum, while the mortality of nymphs fed on immunized mice reached 70% [29].

Besides immunization experiments, RNA interference (RNAi) has been shown to be
a valuable tool for the study of tick gene function, characterization of the tick–pathogen
interface, and screening and characterization of protective tick antigens [100]. RNAi is
performed by inoculating double-stranded RNA (dsRNA) homologs of specific messenger
RNAs (mRNA). This results in sequence-specific degradation, interference with gene
expression, and subsequent loss of gene function. The Kunitz-type inhibitor hemalin is
a thrombin inhibitor present in the midgut, salivary glands, hemocytes, and fat body of
adult females and the nymphs and larvae of H. longicornis ticks. Silencing hemalin by
RNAi led to a two-day extension of the tick blood feeding period, and 27.7% of RNA-
treated ticks did not successfully complete blood feeding [101]. Haemangin was the second
Kunitz-type inhibitor from H. longicornis ticks to have its biological function assessed by
RNAi. Haemangin inhibits trypsin, chymotrypsin, and plasmin and disrupts angiogenesis
and wound healing via inhibition of vascular endothelial cell proliferation and induction
of apoptosis. Haemangin transcript is upregulated prior to complete feeding. Notably,
RNAi-treated adult ticks had significantly diminished engorgement, while knock-down
ticks failed to impair angiogenesis in vivo [67].

Boophilin, an anticoagulant and antithrombotic inhibitor of two Kunitz-type domains
expressed in the intestine of fully engorged R. microplus females, inhibits thrombin, elastase,
kallikrein, cathepsin G, and plasmin [58,59,102]. Silencing the boophilin gene by RNAi
decreased egg production, indicating that boophilin expression is important but not vital,
possibly due to functional overlap with other serine peptidase inhibitors in the R. microplus
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midgut. However, it is important to note that the RNAi experiment was performed
using fully engorged females, and the role of boophilin during blood feeding was not
evaluated [58]. Rhipilin-1 from R. haemaphysaloides ticks, homologous to TFPI, appears to be
crucial for tick feeding, since it is transcribed in fed but not unfed ticks. Silencing Rhipilin-1
by RNAi led to a decreased rate of attachment and engorgement [49].

Given the level of structural and functional similarity between some vertebrate- and
tick-derived Kunitz-type inhibitors, the development of vaccines against ticks using these
proteins should include the evaluation of potential cross-reactivity of the antibodies gen-
erated. Although not likely and not reported in the scientific literature on the tick saliva-
based vaccines, such cross-reactivity could possibly trigger some level of autoimmunity in
the host.

7. Future Perspectives

Kunitz-type inhibitors became part of the vocabulary of tick research about 30 years
ago [41]. A timeline of discoveries and advances in this exciting area is depicted in Figure 2.
During this time, there have been significant advances in the quantitative and qualitative
technologies used to isolate, identify, and characterize salivary PIs (as for other biological
active molecules derived from ticks). The fractionation of crude preparations (e.g., saliva or
salivary glands extracts) followed by identification of individual molecules employed in
earlier studies have been replaced with large-scale databases generated by high-throughput
sequencing efforts of proteomes, transcriptomes, and, sometimes, genomes of different tick
species. Since the pioneering sialome study that introduced a set of mRNAs and proteins
expressed in the salivary glands of I. scapularis [101], dozens of similar studies have since
been performed on several tick species, some of them revealing over a thousand potentially
secreted proteins for each species. Initiatives such as TickSialoFam have been helping
researchers to cope with the huge amount of information generated by these large-scale
studies [28].

Among the seven categories of salivary proteins organized in TickSialoFam, PIs are
the third largest in terms of relative number of sequences, and Kunitz-type inhibitors are by
far the most abundant in this category, representing almost 70% of predicted proteins [28].
Such abundance contrasts with the 85 articles retrieved from PubMed using the search
terms “ticks AND Kunitz” (as of November 2022) compared with 71 for “ticks AND serpin”
and 54 for “ticks AND cystatin”, despite these families representing ~7% and ~4% of the
predicted proteins, respectively. Even considering studies missing from the search or the
strategy used, these results reinforce that research on tick salivary Kunitz-type inhibitors is
still in its infancy.

Most early studies on Kunitz-type inhibitors from tick saliva focused on their anti-
hemostatic activities. In fact, most of the inhibitors in this superfamily target proteases
involved in coagulation. However, deeper biochemical characterization revealed unex-
pected new targets for some of the inhibitors, suggesting novel potential activities of
Kunitz-type inhibitors in host immunity. While some of these activities still need to be
experimentally confirmed, functional studies using synthetic or recombinant molecules
have highlighted that Kunitz-type inhibitors are exciting anti-inflammatory, immunomod-
ulatory, and antitumoral agents or vaccine antigens capable of blocking or decreasing
tick infestation.

We believe that the next significant advance in the field will be the development of
Kunitz-derived immunobiologics to treat clinical conditions and saliva-based vaccines
against ticks or tick-borne diseases. Preparations containing these molecules have been
patented around the world. At least one Kunitz-type inhibitor is already under investigation
for human use after preclinical animal studies [102]. Amblyomin-X was approved for a
Phase 1 clinical trial for patients with advanced solid tumors (https://clinicaltrials.gov/
ct2/show/NCT03120130, accessed on 10 December 2022). In addition, some Kunitz-type
inhibitors also showed anti-tick activity and protected against tick-borne diseases when
used as a vaccine preparation either in experimental models or in real-world evaluations

https://clinicaltrials.gov/ct2/show/NCT03120130
https://clinicaltrials.gov/ct2/show/NCT03120130
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with natural tick-vertebrate host pairs. We are hopeful that these biotechnological products
will make it to market in the near future.
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