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Abstract: Inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative colitis 

(UC), is a heterogeneous state of chronic intestinal inflammation with no exact known cause. Intes-

tinal innate immunity is enacted by neutrophils, monocytes, macrophages, and dendritic cells 

(DCs), and innate lymphoid cells and NK cells, characterized by their capacity to produce a rapid 

and nonspecific reaction as a first-line response. Innate immune cells (IIC) defend against pathogens 

and excessive entry of intestinal microorganisms, while preserving immune tolerance to resident 

intestinal microbiota. Changes to this equilibrium are linked to intestinal inflammation in the gut 

and IBD. IICs mediate host defense responses, inflammation, and tissue healing by producing cyto-

kines and chemokines, activating the complement cascade and phagocytosis, or presenting antigens 

to activate the adaptive immune response. IICs exert important functions that promote or ameliorate 

the cellular and molecular mechanisms that underlie and sustain IBD. A comprehensive under-

standing of the mechanisms underlying these clinical manifestations will be important for develop-

ing therapies targeting the innate immune system in IBD patients. This review examines the com-

plex roles of and interactions among IICs, and their interactions with other immune and non-im-

mune cells in homeostasis and pathological conditions. 
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1. Introduction 

Inflammatory bowel disease (IBD) encompasses a group of heterogeneous diseases 

that entail chronic, relapsing gastrointestinal tract inflammation of inexactly known etiol-

ogy and pathogenesis. IBD etiology may involve the host immune system, genetic varia-

bility, and environmental factors [1]. IBD is clinically classified as Crohn’s disease (CD) or 

ulcerative colitis (UC) based on symptoms, disease location, and histopathological char-

acteristics. UC causes long-lasting inflammation and superficial ulcerative disease in the 

colon, whereas CD is a transmural disease often associated with granuloma formation 

and can appear in any part of the gastrointestinal tract [2–5]. IBD can be associated with 

life-threatening conditions, including primary sclerosing cholangitis, blood clots, and co-

lon cancer [6]. IBD is usually diagnosed between the ages of 20 and 40 years, but can start 

at any age. IBD shows alternating periods of clinical relapse and remission. 
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The intestinal mucosa is composed of epithelial cells, goblet and Paneth cells, stroma 

and immune cells. The intestinal epithelium includes a monolayer of epithelial cells closely 

bound by tight junctions and interposed with immune cells. The intestine is structured as a 

series of protrusions known as villi and invaginations called crypts of Lieberkühn [7]. The 

epithelium participates in nutrient absorption and, at the same time, interposes a physical 

barrier to the contents of the intestinal lumen. The epithelium also interacts with the intesti-

nal microbiota and the immune system, sending receiving signals to and from both. 

The epithelium includes goblet and Paneth cells, which, respectively, produce mucus 

and antimicrobial peptides, thus limiting the spread of luminal microorganisms [7]. A 

marked reduction in goblet cell numbers has been linked to a loss of mucus layer thickness 

in Crohn’s disease [8], and abnormal mucus composition has been reported in UC [9]. 

Beneath the epithelium, the lamina propria contains stromal cells, including fibroblasts, 

myofibroblasts, and perivascular pericytes. These cells serve functions in fibrosis and 

wound healing [7], and may be related to the aggravation of UC through their capacity to 

produce chemokines, including chemokine (C-C motif) ligand (CCL)19, CCL21, and the 

immune-system regulator interleukin (IL)-33 [10]. 

Plasma cells release immunoglobulin (Ig)A, inhibiting the infiltration of pathogenic mi-

croorganisms and helping to sustain a homeostatic equilibrium between the host and com-

mensal microbiota. Both the epithelium and other non-immune intestinal components are 

important mediators of intestinal homeostasis and IBD pathophysiology, reviewed in 

[11,12]. However, some of the functions of these non-immune cells are mediated through 

interaction with components of the immune system, as will be described in this review. 

The immune system confers host defense against pathogens and provides anti-tumor 

protection. At the same time, regulatory mechanisms counterbalance these responses to 

prevent reactions against self and innocuous external antigens, thus promoting a state of 

tolerance. 

The immune system can be classified into innate and adaptive immunity. Innate im-

munity, composed of myeloid cells among other elements, initiates rapid and nonspecific 

responses to conserved structural motifs on microorganisms. Innate immune cells (IIC) ex-

press pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and Nod-like 

receptors (NLR), allowing them to distinguish pathogen-associated molecular patterns 

(PAMPs) and damage-associated molecular patterns (DAMPs). IIC promote host defense 

and inflammation by generating cytokines and chemokines, triggering the complement cas-

cade and phagocytosis, or stimulating adaptive immunity by presenting antigens. Notable 

IIC include neutrophils, monocytes, macrophages, and dendritic cells (DCs) [13,14]. 

2. IBD Pathophysiology 

The etiology of IBD remains elusive, but IBD appears to be sustained in genetically 

susceptible individuals by an impaired immune response against intestinal microorgan-

isms. This abnormal immune response is associated with dysregulation of both innate and 

adaptive immune responses. 

IBD features breach the epithelial barrier of specific zones in the intestine, and non-

resolving mucosal damage is thought to be an important characteristic of the disease [15]. 

While generally unknown, the cause of this damage could be related to an infectious agent 

[16], a chemical compound [1], or a metabolic alteration probably related to diet-mediated 

dysbiosis [17]. The disease is then thought to be perpetuated by deficient resolution of the 

inflammatory response to this initial injury [18]. Unsuccessful resolution of inflammation 

is possibly supported by disruption of tolerance towards commensal microorganisms or 

autologous signals of tissue damage [15,19] 

There is also some uncertainty as to whether the epithelial barrier alterations precede 

or follow the development of inflammation in the lamina propria [20]. 

2.1. Innate Immune Cells in the Pathogenesis of IBD 
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In IBD, the innate immune system is the first responder to PAMPs and to molecules 

released from damaged or dying cells, known as DAMPs. DAMPs and PAMPs activate 

the innate immune system by interacting with PRRs. These patterns can be sensed by sev-

eral components of the innate immune system, including granulocytes, neutrophils, mon-

ocytes, myeloid-derived suppressor cells, macrophages, and dendritic cells. In addition, 

these patterns can also be recognized by non-immune cells, such as intestinal epithelial 

cells (IECs) and myofibroblasts. 

IICs respond to these signals, temporarily enhance the epithelial barrier, and clean 

up the effects of inflammation [21]. The implication of IIC in IBD is the focus of this review. 

2.1.1. Neutrophils in Gut Homeostasis 

Neutrophils are the most numerous immune cells in the human circulation and are 

quickly recruited to sites of infection or inflammation [22], forming the first line of im-

mune defense. 

When the intestinal barrier is damaged, neutrophils are recruited from the circulation 

to the inflamed tissue through a plethora chemotactic gradients formed by cytokines such 

as IL-1β, IL-6, and tumor necrosis factor (TNF)-α; chemokines such as CCL8, chemokine 

(C-X-C motif) ligand (CXCL)10, and macrophage inflammatory protein 2 (MIP)-2 (also 

known as CXCL2); and growth factors such as granulocyte-macrophage colony-stimulat-

ing factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) [23–25]. Neutro-

phil recruitment is also mediated by bacteria-derived molecules such as formyl-methio-

nyl-leucyl-phenylalanine and short-chain fatty acids (SCFAs) [26–28] (Figure 1). 

Neutrophils participate in the elimination of microorganisms through phagocytosis, 

degranulation, the generation of reactive oxygen species (ROS), and the release of neutro-

phil extracellular traps (NETs). NETs are mesh-like structures made of DNA and its his-

tone scaffold together with granule components such as myeloperoxidase (MPO), cathep-

sin G, neutrophil elastase, and protease 3. NETs protrude from the membrane of the acti-

vated neutrophil to restrain large microorganisms, activate complement factors, and 

therefore facilitate contained lysis through their bactericidal and permeability-increasing 

actions [29–32]. Once their functions are completed, neutrophils undergo apoptosis and 

efferocytosis, facilitating resolution of the inflammatory response, repair, and a return to 

normal tissue homeostasis [33–35]. 
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Figure 1. In healthy intestine (left), damage to the intestinal barrier triggers the recruitment of neutro-

phils from the circulation to the inflamed tissue along a chemotactic gradient formed by cytokines (IL-

1β, IL-6, TNF-α), chemokines (CCL8, CXCL10, MIP-2), and growth factors (GM-CSF, G-CSF). Neutro-

phil recruitment is also mediated by bacteria-derived molecules such as formyl-methionyl-leucyl-phe-

nylalanine (fMLP) and short-chain fatty acids (SCFAs). The recruited neutrophils participate in the 

elimination of microorganisms through phagocytosis, degranulation, reactive oxygen species (ROS) 

generation, and the release of neutrophil extracellular traps (NETs). Once their functions are com-

pleted, neutrophils undergo apoptosis and efferocytosis, facilitating the resolution of inflammation, 

tissue repair, and a return to normal tissue homeostasis. The participation of neutrophils and NETs in 

IBD is a double-edged sword (right). Neutrophils cooperate in wound healing and the resolution of 

inflammation by releasing vascular endothelial growth factors (VEGFs) and lipid mediators (protectin 

D1, resolvin E1). These factors impede neutrophil recruitment and promote phagocytosis. NETs im-

pede the spread of microorganisms by trapping them in an environment of microbicidal components 

and stimulate the healing of the intestinal mucosa. Neutrophils directly cause tissue damage by releas-

ing neutrophil elastase, proteases (MMPs), pro-inflammatory cytokines (IL-8, TNF-α, IL-1β), leukotri-

ene B4, and ROS. These factors provoke not only injury to the epithelial barrier, but also the recruit-

ment of neutrophils and other immune cells to the inflamed tissue. Neutrophil recruitment is also pro-

moted by the cytokines IL-1α, IL-17, IL-22, G-CSF, and GM-CSF. Lack of the IBD protective gene 

CARD9 in neutrophils enhances ROS generation. IL-8, TNF-α, and PAD4 (increased in UC patients) 

contribute to NET production. Accumulation of NETs in the colon is accompanied by the induction of 

tissue damage and inflammation, as NETs also boost TNF-α and IL-1β production. Part of the figure 

was generated by using pictures from Servier Medical Art. 

2.1.2. Neutrophils in the Gut during IBD 

Some studies have described the participation of NETs in IBD as a double-edged 

sword. On the one hand, NETs can impede the spread of microorganisms by trapping 

them in an environment of microbicidal components, while also stimulating the healing 

of the intestinal mucosa upon injury and helping to sustain the stability of the intestinal 

epithelium [36,37]. On the other hand, increased neutrophil activity and exacerbated 
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NETs production can impair intestinal mucosal barrier function, damage the intestinal 

epithelium, and accentuate disease symptoms [38]. Neutrophils directly promote tissue 

damage by releasing proteases such as matrix metalloproteinases (MMPs) and neutrophil 

elastase, and by altering membrane properties by releasing ROS [39] (Figure 1). 

Proteomics studies and microscopy validations have identified eleven neutrophil- 

and NETs-associated proteins with increased abundance in biopsies from UC patients 

[40], and similar results have been reported by others [39]. 

Dextran sodium sulfate (DSS)-induced colitis in mice promotes the accumulation of 

NETs in the colon, accompanied by the induction of epithelial cell death by apoptosis, break-

age of tight junctions, increased permeability, and augmented bacterial translocation and in-

flammation [41]. Moreover, NETs accumulation boosts TNF-α and IL-1β production in 

plasma by signaling via the ERK1/2 pathway. The reduction of NETs protects against colitis 

and inhibits the augmentation of pro-inflammatory factors implicated in IBD [41]. 

An increase in neutrophil activity has been observed in IBD patients [42]. This in-

crease is associated with the release of TNF-α and the presence of lipopolysaccharides, 

two factors that contribute to neutrophil activation. Other factors that can contribute to 

NETs production are IL-8 produced by endothelial cells, and an increased abundance of 

protein arginine deiminase 4 (PAD4) [30,31,43]. PAD4 is more abundant in intestinal tis-

sue from UC patients than healthy individuals [31], and in damaged tissue rather than 

healthy tissue from the same individual [30–32]. PAD4 mediates histone citrullination, an 

important event in NETosis that precedes chromatin decondensation and DNA release. 

An analysis of NETs-associated proteins in colon samples from patients with UC, 

CD, and colon cancer showed a greater abundance of PAD4, MPO, neutrophil elastase, 

and citrullination histone H3 (CitH3) in UC than in CD. Moreover, neutrophils in UC tis-

sues produced more NETs upon treatment with TNF-α [44]. In a similar way, increased 

expression of Ly6G, CitH3, and PAD4 has been found in mouse colon in a model of colitis 

induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) [45]. This effect was associated with 

damage to the intestinal epithelial barrier [45]. Reduced NETs formation ameliorated co-

litis symptoms and tissue damage [46–49]. 

Neutrophils promote IBD gut inflammation by producing high levels of ROS that 

impair the epithelial barrier and promote redox-sensitive inflammatory pathways [50]. 

The epithelial barrier is also damaged by neutrophil-produced proteases, pro-inflamma-

tory cytokines such as IL-8, TNF-α, and leukotriene B4, which additionally recruit mono-

cytes and more neutrophils to the inflamed tissue [51,52]. 

Another cytokine recently proposed to promote neutrophil recruitment to colonic 

tissue is IL-22, whose levels correlate with neutrophil infiltration [53]. Neutrophils can be 

activated by the cytokines IL-1β and IL-18 [54], produced during inflammasome assembly 

[55,56], and upon the release by necrotic cells of the nuclear ‘alarmin’ IL-1α [57]. Other 

mediators of neutrophil action altered in IBD include GM-CSF and G-CSF [58] and IL-17A 

and IL-17F [59], which act through the IL-23–IL-17A–G-CSF axis [60,61], providing a pos-

sible explanation for the continuous regeneration of neutrophils in IBD [15]. Neutrophils 

also express the IBD-protective gene caspase recruitment domain 9 (Card9), which pro-

vides them with the capacity to protect against DSS-induced colitis; a lack of CARD9 en-

hances mitochondrial dysfunction and ROS generation, leading to neutrophil apoptosis 

and increased inflammation [62]. 

The intestinal epithelium constitutes a physical barrier that isolates subepithelial tis-

sues from luminal contents, providing a fundamental support for intestinal homeostasis. 

Neutrophils are associated with bystander tissue damage, but also play a role in epithelial 

restitution [63]. 

As well as killing microorganisms, neutrophils cooperate in wound healing and the 

resolution of inflammation by releasing vascular endothelial growth factors and beneficial 

lipid mediators such as protectin D1 and resolvin E1. These factors impede further neu-

trophil recruitment and augment the phagocytosis of apoptotic neutrophils by macro-
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phages. Neutrophils also remove cellular debris from sites of inflammation by phagocy-

tosis [61,64–66]. The release of proteases within NETs can regulate cytokine function by 

proteolysis [67], and this phenomenon might also regulate cytokines in IBD. 

Contrasting these protective effects, the accumulation of hyperactivated neutrophils 

promotes an alteration of crypt structure and the formation crypt abscesses. This process 

features a disproportionate enzymatic reaction, generation of the pro-inflammatory cyto-

kines TNF-α and IL-1β, and the secretion of the non-cytokine inflammatory molecules α 

defensins and calprotectin, attracting monocytes, T cells, and more neutrophils to the in-

flammation site and promoting the pathogenesis of IBD [68–72]. Neutrophils can also pro-

mote goblet-cell depletion, a main feature of IBD [73–75]. 

Neutrophils are also, themselves, regulated by the effects of intestinal epithelial cells 

during intestinal inflammation, a topic recently reviewed in [63]. 

In summary, neutrophils play intricate roles in intestinal inflammation, contributing 

to the elimination of invading pathogens and epithelial restitution, while at the same time 

participating in the disruption of crypt architecture and generating bystander tissue dam-

age, roles that impede and promote the development of the IBD, respectively. 

Under the influence of neutrophils, other phagocytic cells such as monocytes and 

macrophages remove cell debris and help to distinguish damaged areas from tissue areas 

less affected by acute inflammation [76]. 

2.1.3. Macrophages in the Gut in Steady State Conditions 

Macrophages are highly plastic cells, and their functions depend on their developmental 

ontogeny and surrounding environment [77–79] (Figure 2). During embryonic development, 

self-maintaining tissue-resident macrophages derive from the yolk sac and fetal liver progen-

itors [80–83]. After birth, blood circulating bone marrow-derived monocytes are recruited to 

tissues, where they differentiate to macrophages, replenishing tissue-resident populations and 

adopting a phenotype conditioned by the local tissue environment [82,84–86]. 

 

Figure 2. Macrophages and dendritic cell in homeostasis and IBD. Macrophages and DCs play im-

portant roles in homeostasis and in the development of IBD by phagocytosing cellular debris, pro-
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ducing cytokines, regulating tissue repair, and interacting with other cells. In the intestine, mono-

cyte-derived macrophages (MΦ) are more abundant than tissue-resident macrophages of embryonic 

origin. Both perform phagocytosis, produce cytokines, and interact with other cells. Upon weaning, 

bone marrow-derived monocytes egress from the circulation and extravasate into the tissue, where 

they undergo differentiation and maturation (downregulation of Ly6C, production of MHCII, and 

increased expression of CX3CR1). In homeostasis, tissue-resident macrophages in the muscularis 

externa interact with enteric and myenteric neurons controlling intestinal secretion and motility, 

while in the lamina propria, macrophages provide signals to intestinal stem cells that give rise to 

goblet cells, Paneth cells, and intestinal epithelial cells. These macrophages also modulate T cell 

activities and functions, via the secretion of IL-10 for Tregs and IL-1β for Th17 cells. In addition, 

they affect ILC3 cells through the production of IL-1α and IL-1β. The migration of antigen-loaded 

CX3CR1high intestinal macrophages to mesenteric lymph nodes is impaired by intestinal microbiota, 

thus affecting antigen presentation to T cells and effectively sustaining tolerance towards commen-

sal bacteria. On the other hand, XCR1+ DCs play a tolerogenic role upon recognizing commensal 

bacterial components, while CD103+ cDC2s seem to be important for initiating oral tolerance 

through their capacity to generate RA and IL-10. In IBD, large numbers of Ly6Chigh inflammatory 

monocytes are recruited to the intestine in a CCR2-dependent manner, becoming pro-inflammatory 

effector cells. These inflammatory macrophages produce TNFα, IL-6, and iNOS, and directly cause 

the onset and development of fibrosis through a disproportionate accumulation of ECM. The intes-

tinal microbiota is impaired during chronic colitis, and CX3CR1high macrophages can change their 

habits and migrate to lymph nodes. CD103+ cDC numbers are significantly reduced in the inflamed 

and uninflamed intestine in IBD; however, activated DCs can release inflammatory cytokines, in 

addition to type I IFN produced by pDCs. All these phenomena contribute to a generalized inflam-

mation. Part of the figure was generated by using pictures from Servier Medical Art. 

Both tissue-resident and monocyte-derived macrophages perform the typical macro-

phage functions of phagocytosis, cytokine production, and host interaction [87]. In the 

intestine, monocyte-derived macrophages are more abundant than macrophages of em-

bryonic origin [77]; however, distinct subsets of embryonic-derived macrophages remain 

in the intestine even after weaning [88]. 

Upon weaning, bone marrow-derived monocytes egress from the circulation and ex-

travasate into the tissue, contributing to macrophage replenishment in the intestine [89]. 

After extravasation, monocytes undergo differentiation and maturation processes, acquir-

ing a more macrophage-like phenotype. These changes include downregulation of Ly6C 

generation, production of class II major histocompatibility complex molecules (MHCII), 

and increased expression of C-X3-C motif chemokine receptor1 (CX3CR1); monocyte-to-

macrophage transition thus involves a switch from a Ly6Chigh, CX3CR1int state to a mature 

Ly6C−, CX3CR1high, CD64+, MHCII+ state [77,90,91]. 

In steady-state conditions, intestinal macrophages are distributed throughout the gut 

structure, including the lamina propria, submucosa and the muscularis externa [92]. 

Distal to the gut lumen, in the muscularis externa, are located long-lived, bipolar, and 

stellate self-renewing embryonic-derived macrophages [93]. Muscularis macrophages in-

teract with enteric and myenteric neurons, influencing enteric neurons [94], and control-

ling intestinal functions including secretion and motility [95–97]. 

The macrophages of the lamina propria are rounded monocyte-derived cells that are 

constantly replenished [89,94]. These macrophages are short lived and are distributed 

close to the lumen, where they constantly encounter the gut microbiota [93,98] and con-

tribute to oral tolerance [99,100]. In this layer, macrophages provide signals to the intesti-

nal stem cells, which give rise to goblet cells, Paneth cells, and intestinal epithelial cells 

[101,102]. These macrophages also modulate regulatory T cell (Treg) activity and function 

via the secretion of IL-10 [103] and T helper (Th)17 cells by providing IL-1β [104]. Lamina 

propria macrophages thus support intestinal homeostasis through a mix of phagocytic 

and antibacterial functions, immune modulation, and tissue repair [105,106]. 
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Intestinal-tissue macrophage phenotypes and functions depend on the microbiota 

and their metabolites and on microenvironmental cues [77,107–109]. Intestinal macro-

phages can thus be classified into three distinct populations according to their homeostatic 

function: host defense, wound healing, and immune regulation [110]. 

Host defense macrophages have microbicidal activity and, upon stimulation with in-

terferon (IFN)γ or TNF-α, generate cytokines that are commonly secreted by T cells, nat-

ural killer cells, or antigen presenting cells (APC). Wound healing macrophages develop 

upon contact with IL-4 released by T cells or granulocytes, and play a role in tissue repair. 

Regulatory macrophages, which have an anti-inflammatory function, are generated in re-

sponse to several stimuli, including IL-10, glucocorticoids, and apoptotic cells [110]. 

Intestinal macrophages need to combat invading pathogenic bacteria while tolerating 

beneficial probiotic bacteria [111]. To discern between commensal and harmful bacteria, 

macrophages recognize harmful bacteria through PRRs such as TLRs and NOD-like re-

ceptors (NLRs) [110,112,113]. Intestinal macrophages are excellent phagocytes of harmful 

bacteria, but upon engulfing or recognizing harmful bacteria they produce low amounts 

of pro-inflammatory cytokines [114–117]. In contrast, they naturally produce elevated 

amounts of IL-10, which is associated with their reduced response to TLR-triggering 

[103,114,118–122], suggesting a somewhat anti-inflammatory phenotype for resident in-

testinal macrophages, which avoid bacteria-activated inflammation in the gut under 

steady state conditions [117,123]. 

In the gut, IL-34 and CSF-1 (also called M-CSF)—both ligands for the CSF-1 receptor 

(CSF-1R)—promote monocyte and macrophage differentiation [124,125], and mice lack-

ing CSF-1 or CSF-1R are deficient for tissue macrophages [126–129]. Supporting this, ad-

ministration of anti-CSFR antibodies reduces macrophage numbers [130], while recombi-

nant CSF-1 increases intestinal macrophage infiltration [131]. 

Intestinal macrophages are involved in phagocytosis and the clearance of apoptotic 

cells [132,133], including apoptotic IECs, helping to maintain epithelial barrier integrity 

under steady state conditions [134]. 

CX3CR1high intestinal macrophages sense and take up bacterial antigens from the in-

testinal lumen through their transepithelial dendrites [135–140]. In homeostasis, intestinal 

microbiota inhibit the migration of antigen-loaded CX3CR1high intestinal macrophages to 

mesenteric lymph nodes, thereby also inhibiting antigen presentation to T cells and effec-

tively sustaining tolerance towards commensal bacteria. When the intestinal microbiota 

is disturbed or under chronic colitis conditions, CX3CR1high macrophages can change their 

habits and migrate to lymph nodes [121]. 

Intestinal macrophages also regulate other immune cells. CX3CR1high macrophages 

capture soluble food antigens and transfer them to CD103+ dendritic cells, promoting an-

tigen presentation and food tolerance [141,142]. Lamina propria macrophages produce IL-

10, which promotes the differentiation of Forkhead Box P3 (Foxp3)+ Tregs [103,118,143], 

and also produce IL-1β, which acts on Th17 cells [104]. Intestinal macrophages also pro-

duce IL-1α and IL-1β in response to commensal microbiota, affecting Group 3 innate lym-

phoid cells (ILC3), and GM-CSF, which acts on macrophages and dendritic cells to main-

tain Treg homeostasis [107]. CX3CR1+ mononuclear phagocytes prime T cells and promote 

Th17 cell differentiation [144]. Taken together, these observations show that intestinal 

macrophages and their secreted cytokines regulate T cell responses in the gut. 

2.1.4. Macrophages in the Pathogenesis of IBD 

In IBD, the local release of PAMPs and DAMPs at the site of injury triggers intestinal 

inflammation. During this process, large numbers of Ly6Chigh inflammatory monocytes 

are recruited to the intestinal tissue in a process dependent on C-C motif chemokine lig-

and 2 (CCR2) [89,90,145,146], which is also known as monocyte chemoattractant protein 

(MCP)-1. Lack of CCR2 in mice abrogates the recruitment of TLR2+ CCR2+ Gr-1+, TNF-

α−producing macrophages to the inflamed intestine [147], and reduces symptoms of DSS-

induced colitis [147,148] (Figure 2). 
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Monocyte migration to the lamina propria is also controlled by IL-8 and transforming 

growth factor (TGF)-β, constitutively generated by mucosal epithelial cells [149]. 

Mouse models of IBD reveal significantly elevated numbers of macrophages in the 

colon, characterized by an increase in the proportion of Ly6C+ macrophages relative to 

mature Ly6C− macrophages. This Ly6C+ macrophage recruitment is dependent on the ex-

pression of CCR2 [90,147]. Interestingly, a pronounced elevation in colonic macrophage 

numbers, and an increased proportion of Ly6C+MHCII+ monocyte-derived macrophages 

are key features of spontaneous colitis in IL-10R-deficient mice on the C57BL/6 back-

ground [150]. 

IBD patients also have an increased number of pro-inflammatory macrophages 

[90,151,152], and pediatric IBD patients show accumulation of activated mucosal macro-

phages [153]. Usually, these macrophages have augmented expression of pro-inflamma-

tory molecules such as TNF-α, IL-1β, IL-6, and inducible nitric oxide synthase (iNOS) 

[151,154]. Recruited Ly6Chigh monocytes in IBD upregulate TLR2 and NOD2, which in-

creases their sensitivity to bacteria and triggers their differentiation to pro-inflammatory 

effector cells [122]. These inflammatory macrophages produce TNF-α, IL-6, and iNOS 

[110,155]. Resident CX3CR1high macrophages maintain their anti-inflammatory phenotype 

even when sharing the intestine with Ly6Chigh inflammatory macrophages [90,116]. 

In steady state conditions, CX3CR1high resident macrophages, which are highly phag-

ocytic and MHCIIhigh but resilient to TLR-stimulation and constitutively IL-10 producers, 

are accompanied by a small population of CX3CR1int cells, mainly resulting in a 

CX3CR1high resident macrophage population. CX3CR1int cells give rise to CX3CR1high mac-

rophage. In IBD, this CX3CR1int to CX3CR1high macrophage conversion is diminished, lead-

ing to the accumulation of TLR-reactive inflammatory CX3CR1int macrophages [90]. 

CX3CR1 and its ligand CX3CL1 are upregulated in the colon of IBD mice and seem 

to play an important role in the disease [156], with CX3CR1 and CX3CL1 polymorphisms 

in patients linked to the clinical manifestations of IBD [157,158]. However, it is unclear if 

they play a protective or harmful role, since their deficiency protects from [138] or aggra-

vates [156] experimentally induced colitis depending on the study. 

Macrophage-expressed IL-10 and its receptor IL-10R support intestinal homeostasis 

and are implicated in the development of IBD [159–165]. IL-10–IL-10R-signaling mediates 

the differentiation and function of intestinal macrophages in mice and IBD patients [166]. 

The absence of IL-10 in mice provokes a shift from the resident CX3CR1high macrophage 

phenotype in the colon to a pro-inflammatory phenotype [121]. Interestingly, specific de-

pletion of IL-10 in CX3CR1high intestinal macrophages has no effect on intestinal homeo-

stasis or Treg regulation [121], but the intestinal macrophage-specific lack of IL-10R alters 

intestinal homeostasis and provokes severe gut inflammation [121,167]. The absence of Il-

10ra in intestinal macrophages promotes the production of IL-23, which in turn mediates 

IL-22 secretion by Th17 and ILC3 cells. IL-22 activates IECs to express an antimicrobial 

peptide that induces neutrophil recruitment, promoting IBD [167]. Moreover, colitis 

symptoms are ameliorated by manipulation of the microbiota to increase IL-10 producing 

macrophage numbers [109]. 

Lamina propria macrophages produce the chemokine CCL8, recruiting circulating 

Ly6Chigh monocytes in IBD [122,168]. 

Intestinal macrophages are also important for epithelial tissue repair. These macro-

phages produce molecules that control epithelial regeneration [169]. As mentioned, intes-

tinal macrophages in the pericryptal stem cell niche stimulate neighboring colonic epithe-

lial progenitors and promote epithelial recuperation after injury [170]. Epithelial recovery 

is also stimulated by intestinal macrophage-derived IL-10, through the stimulation of the 

CREB/WISP-1 pathway in epithelial cells [171,172] or by macrophage production of he-

patic growth factor (HGF). Curiously, CD-patient-derived macrophages show diminished 

HGF secretion, possibly affecting epithelial restoration in these patients [173]. Classically, 

two main polarized macrophage phenotypes have been proposed, pro-inflammatory M1 
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and anti-inflammatory M2 [174]. Tissue repairing M2-like macrophages promote stimu-

lation of wingless-related integration site (WNT) signaling in response to differentiation 

driven by signal transducer and activator of transcription (STAT)-6 [175] through a mech-

anism dependent on the alarmin IL-33 [176]. STAT6-dependent M2-like macrophage dif-

ferentiation promotes the stimulation of WNT signaling to promote tissue repair [175]. 

The alarmin IL-33 also favors protective M2-like macrophages polarization and subse-

quent mucosal repair [176,177]. Another study showed that altered α4β7-mediated intes-

tinal-homing of non-classical monocytes might reduce the number of wound-healing 

macrophages, leading to impaired intestinal wound healing [178]. 

Upon tissue injury, macrophages are activated to combat microbiota invasion 

through phagocytosis and to facilitate repair of the damaged tissue. However, when mac-

rophages are improperly activated, they directly cause the onset and development of fi-

brosis [179,180]. Fibrosis is a disproportionate accumulation of extracellular matrix (ECM) 

components such as collagen [181]. Excessive fibrosis produces a non-optimal tissue ar-

chitecture, and intestinal fibrosis is a common problematic characteristic of IBD [182,183]. 

Advanced intestinal fibrosis frequently results in intestinal strictures [106]. Macrophages 

promote myofibroblast-mediated fibrosis by producing TGF-β1, connective tissue growth 

factor (CTGF), and fibroblast activation protein (FAP). They also undergo macrophage-

to-myofibroblast transition (MMT), favoring myofibroblast accumulation and excess ECM 

production [106]. In contrast, intestinal macrophages can restrict intestinal fibrosis by pro-

moting myofibroblast senescence, degrading the ECM, and clearing profibrotic compo-

nents [184]. Macrophages are not the only source of gut fibrosis in IBD; IL-34, which is 

overproduced in IBD and mediates macrophage maturation [125], also activates collagen 

synthesis by gut fibroblasts [185]. 

In summary, macrophages play an important role in homeostasis and in the devel-

opment of IBD [121,150,166,167], both in mouse models and in patients, by phagocytosing 

cellular debris, producing multiple cytokines, and regulating tissue repair [105]. 

2.1.5. Innate Lymphoid Cells in IBD 

Another important component of the innate immune system in the intestine is the 

population of innate lymphoid cells (ILCs). ILCs are important mediators of antimicrobial 

defense and contribute to organ development, tissue protection and regeneration, and 

mucosal homeostasis [186,187]. These cells belong to the innate immune system, but are 

derived from the same common lymphoid progenitor population as lymphocytes 

[188,189]. ILCs act early in the immune response by replying quickly to cytokines and 

other signals produced by other cells [188,190–194]. Recent discoveries have highlighted 

the essential role of ILCs in intestinal mucosal homeostasis and IBD [195–200]. However, 

they will be not discussed in this review since we and others have recently reviewed their 

role in IBD [194,201–204]. 

2.1.6. Dendritic Cells in Homeostasis 

DCs link the innate and adaptive immune systems by presenting antigens to and 

activating T cells. Several DC subtypes are derived from a specific common dendritic pro-

genitor (CDP). CDPs generate plasmacytoid DCs (pDCs) in bone marrow, as well as pre-

DCs that circulate in the blood and give rise to conventional or classical DCs (cDCs) in 

lymphoid and nonlymphoid organs [205–209]. The production of pDCs versus cDCs is 

determined by the growth factor fms-like tyrosine kinase 3 ligand (Flt3L) [210] (Figure 2). 

Monocytes originate in the bone marrow and circulate in blood. DCs can also origi-

nate from circulating monocytes after monocyte migration to inflamed tissues, where they 

differentiate to macrophages or monocyte-derived DCs through the action of M-CSF or 

GM-CSF, respectively. Monocyte-derived DCs belong to the mononuclear phagocyte sys-

tem (MPS), and are better APCs than monocytes [211,212]. Through their function as pro-

fessional APCs and their capacity to release cytokines, DCs play important roles in initi-

ating immune responses to invading pathogens; cDCs and monocyte-derived DCs are 
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powerful APCs, whereas pDCs specialize in secreting type I IFN [213]. Moreover, cDC 

subpopulations included chemokine (C motif) receptor 1 (XCR1)+ cDC1s and signal-regu-

latory protein alpha (SIPRα)+ cDC2s [205–209]. cDC2s can be subclassified as CD103+ or 

CD103-. These DC subsets possess distinctive functional, phenotypical, and transcrip-

tional features. While cDC1 are excellent APCs to cytotoxic T cells, cDC2s are more similar 

to pDCs in their capacity to polarize CD4+ T cell responses and to promote anti-viral re-

sponses via type I IFN [12]. 

Under physiological conditions, immature DCs patrol peripheral tissues, where they 

encounter and take up antigens [214]. Upon activation, maturing DCs increase their ex-

pression of MHCII and the costimulatory molecules CD80, CD86, and CD83 [209,213] and 

migrate along a chemokine gradient to draining lymph nodes, where they enter paracor-

tical T cell zones to activate and prime antigen-specific naïve T cells and secrete cytokines 

[215–218]. In this way, DCs link innate and adaptive immunity by presenting antigens to 

and activating T cells. 

2.1.7. Dendritic Cells in IBD 

DCs accumulate in specific gut locations such as Peyer’s patches, isolated lymphoid 

follicles, and gut-associated lymphoid tissues. Like macrophages, DCs are constantly re-

plenished from bone marrow-derived progenitors [88] (Figure 2). 

Like some macrophages, DCs take up soluble food antigens directly from the intesti-

nal lumen [136], but also take up food antigens from epithelial M-cells in the follicle-asso-

ciated epithelium of Peyer’s patches [219]. As mentioned, DCs also receive antigens from 

CX3CR1high lamina propria macrophages through gap junctions [141,142]. In steady state, 

DCs play a tolerogenic role upon recognizing commensal bacterial components. XCR1+ 

cDC1s are important for intestinal homeostasis and in particular the expression of XCR1; 

mice lacking XCR1 in cDC1 lack intraepithelial and lamina propria T cell populations, and 

are more vulnerable to chemically-induced colitis [220]. 

CD103+ cDC2s seem to be important for initiating oral tolerance, in part through their 

capacity to generate retinoic acid (RA) required for the development of Foxp3+ Treg cells 

[221,222]. Furthermore, mammalian target of rapamycin (mTOR) protein kinase inter-

venes in the regulation of intestinal homeostasis by enhancing IL-10 production in cDC2s. 

Indeed, loss of mTOR signaling in DCs blocks IL-10 generation by cDC2s and increases 

sensitivity to DSS-induced colitis [223]. 

Colonic DCs display an abnormal immature phenotype in IBD that includes the ex-

pression of homing markers [224]. Intestinal DCs from UC patients have diminished ex-

pression of cutaneous lymphocyte antigen (CLA) and CCR4, while showing enhanced ex-

pression of CCR9 and β7 integrin [225,226]. 

DCs from CD-patient mucosa express more CD40 and release more IL-6 and IL-12 

than DCs from healthy individuals [224]. In IBD, mucosal DCs show increased expression 

of TLR2 and TLR4 [225]. CD103+ CD11b+ cDCs are significantly reduced in abundance in 

the inflamed and uninflamed intestinal tissue of CD patients [227]. pDCs are also found 

in the inflamed gut, although their specific role is still undetermined [228]. 

The activation of intestinal CD103+ DCs in IBD patients results in the upregulation of 

PRRs. Thus, local variations in the gut microbiota may change the balance and regulation 

signals received by mucosal DCs. Upon activation, DCs are able to release inflammatory 

cytokines [229]. In summary, DCs play an essential role in IBD pathogenesis. 

IBD pathogenesis can be augmented by inappropriate macrophage and DC re-

sponses to the microbiota [230]. These responses involve inadequate protection and 

strengthen pathogenicity. 

Intestinal DCs promote tolerance to luminal antigens under physiological conditions, 

but can develop into an inflammatory response after inflammation or direct stimulation 

by TLR ligands. In these circumstances, intestinal DCs can release inflammatory cytokines 

such as IL-12, IL-6, and IL-18 and mediate Th1 responses when triggered. Supporting this, 
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the circulation of IBD patients with active disease contains pDCs that migrate to second-

ary lymphoid organs, where they produce Th1 cytokines (IL-6, IL-8, and TNF-α), thereby 

perpetuating disease [230]. In addition, inflamed, and uninflamed intestine of CD patients 

has a reduced abundance of CD11c+ DCs, conferring an increased capacity to produce 

Th1/Th2/Th17 responses [231]. 

The role of cDC2s in IBD is less clear, with some studies pointing to an implication in 

T cell-mediated colitis [232,233], while others show no effect of lamina propria CD103+ 

cDC2s [233,234]. However, conditional absence of interferon regulatory factor (IRF)4 in mice 

results in abnormal development of colon lamina propria cDC2s and late initiation of T cell-

dependent colitis [232], indicating a role of IRF4-expressing cDC2s in the initial priming of 

colitogenic T cells. Remarkably, cDC1s may play a protective role in the development of 

IBD, since lack of these cells increases predisposition to DSS-induced colitis [220,233]. 

3. Discussion 

Comparison of first-degree relatives of IBD patients with the general population re-

veals a heritable risk of CD and UC [235,236]. Technological advances in genetic testing 

and DNA sequencing have allowed the development of genome-wide association studies 

(GWAS), which have identified more than 240 risk variants associated with IBD. These 

variants are found in genes related to bacteria recognition (eg, NOD2), autophagy (eg, 

ATG16L1 and IRGM), regulation of epithelial barrier (eg, ECM1), and innate and adaptive 

immunity (eg,IL-23R, IL-10, ITGAL, and ICAM1 variants) [237,238]. From these data, it 

has been possible to uncover fundamental molecular features underlying the disease and 

to identify genes and signaling pathways that represent potential therapeutic targets or 

biomarkers. However, only a small percentage of the disease variance in CD and UC can 

be linked to recognized IBD risk loci [239]. Most GWAS analyses in the field have exam-

ined whole intestinal tissue. One consequence of this is that that the data obtained reflect 

the most highly expressed mRNA transcripts in the more abundant cell populations, thus 

potentially missing less abundantly expressed genes. Moreover, the obtained data cannot 

be unambiguously associated with a specific cell population. 

To resolve this limitation, new techniques have allowed the study of single-cell-spe-

cific transcriptional profiles. For example, single-cell RNA sequencing (scRNA-seq) and 

high-dimensional protein analyses, such as mass cytometry and multichannel spectral cy-

tometry, have defined IBD-linked profiles and detected cell subpopulations that are ele-

vated or diminished in IBD, particularly populations of fibroblasts [10], epithelial cells [9], 

and immune cells [240–248]. 

A complementary approach to GWAS is through transcriptome-wide association studies 

(TWAS), which associate gene expression with genetic susceptibility to disease, providing 

functional insight into risk loci [249]. TWAS findings have provided understanding of tissue-

specific molecular events underlying genetic susceptibility to IBD. Associated genes are po-

tential targets for new treatments and could be prioritized in functional studies. 

Neutrophils play a dual role in intestinal homeostasis and inflammation, playing an 

essential role in gut defense but also, upon excessive recruitment, being an important me-

diator of tissue damage in the inflamed mucosa. Several studies demonstrate the effect of 

neutrophils on other components of the intestinal mucosa in IBD, such as other immune 

cells and epithelial cells and other non-immune cells. However, less is known about the 

reciprocal effect on neutrophils of these other cells, particularly intra-epithelial cell com-

ponents as stroma and epithelial cells, although some studies point to the importance of 

neutrophil–epithelial cell communication for essential neutrophil functions such as re-

cruitment, transepithelial migration, cell death, and clearance (Reviewed in [63]). 

Pharmacological inhibition of NET formation ameliorates IBD [39]. Potentiation of 

the protective functions of neutrophils, in combination with a reduction in the adverse 

effects of NET formation, offers an interesting approach to the treatment of intestinal dis-

eases; however, this regulation must be achieved without compromising neutrophil im-
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mune-defense functions. Targeting NETs is a potentially interesting approach to achiev-

ing complete mucosal healing in IBD. Another area of interest for therapeutic intervention 

is the development of markers of NET formation in vivo. Supporting this, calprotectin 

(s100A8/9), the most commonly used fecal biomarker in IBD, constitutes up to 60% of neu-

trophil cytosolic protein content [250,251]. Calprotectin is also found in NETs [36]. Other 

neutrophil-associated IBD biomarkers of potential therapeutic interest include lactoferrin, 

CXCR1, CXCR2, MMP-9, NGAL, elafin, HNE, pANCAs, MPO, CD16, CD177, CD64, 

HNPs, SLPI, and PTX3 [252–254]. 

In addition to the biomarker calprotectin, some other biomarkers have been related 

to inflammatory bowel disease. The serum levels of the peptide adropin, which acts as an 

energy regulator through lipid and glucose metabolism [255] and is considered an inflam-

matory biomarker [256], are reduced in patients with inflammatory bowel diseases, show-

ing a negative correlation with fecal calprotectin [257]. Moreover, serum catestatin levels 

are increased in patients with inflammatory bowel disease when compared to control sub-

jects [258–260]. Catestatin is a peptide proteolytically cleaved from chromogranin A, that 

primarily acts as an inhibitor of catecholamine secretion, and as stimulator of histamine 

release [261]. Enterochromaffin cells (EC) in the intestinal epithelium are a major source 

of chromogranin A [262]. Chromogranin A and catestatin regulate gut permeability via 

the antagonistic actions of its proteolytic peptides [259]. Catestatin regulates epithelial cell 

dynamics [263], and alters gut microbiota composition in mice [264]. Human catestatin 

also regulates intestinal inflammation via the macrophage population and through a 

STAT-3 dependent pathway in a murine model of colitis [260]. 

The mucosal immune system is the most extensive part of the immune system. Con-

trasting the situation in the systemic immune system, intestinal immune cells are involved 

in a highly balanced immune response aimed at controlling pathogen invasion, while 

stopping excessive immune responses against innocuous food antigens and commensal 

microbes that could risk unintentional tissue injury. 

Some intestinal cell populations can adjust their functions to the needs of the intesti-

nal microenvironment under steady state, and even modify their phenotype and behavior 

to adapt to inflammatory conditions. This adaptation can be harmful in IBD, but is also a 

potential therapeutic target for the treatment of the disease. 

This is the case of intestinal macrophages, which restrain their robust pro-inflammatory 

potential through a natural resistance to producing inflammatory mediators in response to 

pattern-recognition molecules, while also retaining several of their homeostatic abilities, in-

cluding scavenging and phagocytosing bacteria, preserving Tregs and maintaining tolerance, 

and promoting epithelial cell renewal [265]. In the intestinal microenvironment, macrophages 

adapt their functions to the context. For example, CX3CR1high macrophages can distinguish 

harmful from commensal bacteria via TLR and NLR recognition. In the intestinal microenvi-

ronment, CX3CR1high macrophages are excellent phagocytes, but produce low levels of pro-

inflammatory cytokines and maintain tolerance through the production of anti-inflammatory 

cytokines such as IL-10 [111]. CX3CR1high intestinal macrophages sense and take up bacterial 

antigen from the intestinal lumen via their transepithelial dendrites [135–140]. In homeostasis, 

the intestinal microbiota inhibit the migration of antigen-loaded CX3CR1high intestinal macro-

phages to mesenteric lymph nodes, thereby also inhibiting antigen presentation to T cells, and 

effectively sustaining tolerance towards commensal bacteria. 

If the intestinal microbiota is impaired or exposed to inflammatory conditions, 

CX3CR1high macrophages can differentiate to pro-inflammatory effector cells and acquire 

the capacity to migrate to lymph nodes and present antigens to lymphocytes, which are 

critically involved in the development of IBD [121]. However, it is not known whether 

resident macrophages modify their phenotype during inflammation according to the mi-

croenvironment [122,266], or if there are distinct macrophage populations that perform 

distinct functions [90]. The continuous replenishment of intestinal macrophages from 

monocytes might facilitate plasticity and adaptation of macrophage populations in re-
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sponse to signals from the local intestinal microenvironment, and this might modify mac-

rophage properties such as migration, cytokine-release profile, antigen presentation, and 

T and B cell activation, and tissue healing. The use of scRNA-seq helps to define the con-

tribution of several cell types to IBD, including macrophages and other innate immune 

cells. scRNA-seq studies provide precise knowledge of the spatial immune specialization 

and dysregulated immune response during IBD at single-cell resolution. For example, this 

technique has revealed that macrophages and CD8+ T cells in the lamina propria of the 

human colon during ulcerative colitis have an effector phenotype and are activated, while 

their lipid metabolism is suppressed compared with these cells in the epithelial layer [248]. 

Given the complexity of the mucosal environment and the peculiarity of its immune pop-

ulations, tailored therapeutic strategies will require better knowledge of the networks reg-

ulating this delicate intestinal balance. 

Biological treatments have provided an effective therapeutic advance for many IBD 

patients; nevertheless, one-third of patients do not respond to therapy (known as primary 

non-responders). In addition, a subset of patients who initially respond to anti-TNF drugs 

discontinue therapy because they lose their response (secondary non-responders) or de-

velop intolerance [267,268]. Although these limitations can be explained by low drug lev-

els in the target tissue or immune responses to the treatment, the complexity of IBD path-

ophysiology is likely to contribute to these treatment failures. Therefore, it is essential to 

gain a better understanding of the cellular and molecular basis of IBD in order to achieve 

complete mucosal healing and reversal of inflammation. 
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APC Antigen presenting cell 

Card9 Caspase recruitment domain 9 

CCL Chemokine (C-C motif) ligand 

CCR C-C motif chemokine receptor 
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CLA Cutaneous lymphocyte antigen 
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DAMPs Damage-associated molecular patterns 
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Flt3L Fms-like tyrosine kinase 3 ligand 
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G-CSF Granulocyte colony-stimulating factor 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

GWAS Genome-wide association studies 

IBD Inflammatory bowel disease 

IFN Interferon 

Ig Immunoglobulin 

IIC Innate immune cells 

iNOS Inducible nitric oxide synthetase 

ILCs Innate lymphoid cells 

IL Interleukin 

IRF Interferon regulatory factor 

MCP Monocyte chemoattractant protein 

MHCII Major histocompatibility complex molecules class II 

MIP Macrophage inflammatory proteins 

MMPs Matrix metalloproteinases 

MMT Myofibroblast transition 

MPO Myeloperoxidase 

mTOR Mammalian target of rapamycin 

NK Natural killer 

NETs Neutrophil extracellular traps 

NOD2 Nucleotide binding oligomerization domain containing 2 

NLR Nod-like receptors 

PAD4 Protein arginine deiminase 4 

PAMPs Pathogen-associated molecular patterns 

pDC Plasmacytoid DCs 

RA Retinoic acid 

PRRs Pattern recognition receptors 

RORγt RAR-related orphan receptor gamma t 

SCFAs Short-chain fatty acids 

scRNA-seq Single cell RNA sequencing 

SIPRα Signal-regulatory protein alpha 

STAT Signal transducer and activator of transcription 

Th T-helper 

TGF Transforming growth factor 

TL1A TNF-like ligand 1 A 

TLRs Toll-like receptors 

TNBS 2,4,6-trinitrobenzene sulfonic acid 

TNF Tumor necrosis factor 

Treg T regulatory 

Tr1 T regulatory type 1 

TWAS Transcriptome-wide association studies 

UC Ulcerative colitis 

WNT Wingless-related integration site 

XCR1 Chemokine (C motif) receptor 1 
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