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Abstract: Colorectal cancer (CRC) is critically related to aging and severely threatens human lives.
To better explore the effects of aging on CRC progression and therapy outcome, a reliable aging
subtypes identification of CRC is urgently desired. Here, 28 aging-related genes associated with the
CRC prognosis were selected by univariate Cox analyses. Based on these 28 genes, CRC patients were
divided into the aging subtype and young subtype by non-negative matrix factorization clustering.
Aging subtype and young subtype of CRC were identified with distinct molecular features and clinical
prognosis. The aging subtype was characterized by upregulation of senescence-associated secretory
phenotype, higher frequencies of TP53 and immune checkpoint molecules, and high sensitivity to
protein kinase and angiogenesis inhibitors. Furthermore, 14 genes were selected by LASSO penalized
Cox regression analyses for aging-related risk signature construction. The constructed aging risk
signature exhibited good prediction and the nomogram showed robust discrimination power over
the traditional CRC staging system. In conclusion, this study successfully established aging subtype
and young subtype of CRC, which is helpful to identify patients with aging characteristics to evaluate
prognosis and treatment outcomes. Introducing aging-based subtypes into clinical concern and
patient prognostication provides new opportunities for personalized CRC treatment.

Keywords: colorectal cancer; aging; unsupervised clustering; tumor microenvironment; prognosis

1. Introduction

Colorectal cancer (CRC) is the second most deadly cancer worldwide [1]. CRC treat-
ments include surgical resection combined with chemotherapy, radiotherapy, and im-
munotherapy. Although this combination therapy achieved relatively long survival rates,
the benefit was limited to a small portion of patients. Many patients still suffer recurrence
and metastasis due to the high molecular heterogeneity of CRC [2]. Despite the tradi-
tional tumor–node–metastasis (TNM) staging system and conventional biomarkers, cancer
sub-classification based on pathological characteristics and gene expression features has
been increasingly developed for accurate prognosis assessment and personalized clinical
management [3,4]. The consensus molecular subtype (CMS) is the most reliable classifica-
tion system currently available for CRC subtyping [5]. In addition, several CRC subtypes
have been identified to predict prognosis and therapeutic responses, including hypoxia-
related subtypes [6], metabolism-related subtypes [7], pyroptosis-related subtypes [8], and
immune-related subtypes [9]. These tumor subtype classification strategies provide accurate
prediction tools for cancer prognosis, and broaden the targeted therapy options.

Int. J. Mol. Sci. 2023, 24, 1516. https://doi.org/10.3390/ijms24021516 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24021516
https://doi.org/10.3390/ijms24021516
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms24021516
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24021516?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 1516 2 of 17

Aging is an important physiological process of living organisms, and it has been
reported to have pleiotropic effects on cancer promotion [10]. Studies have shown that
senescent cells have highly enhanced pro-survival and anti-apoptotic abilities to facilitate
cancer development [11]. Moreover, senescent cells are thought to mediate cancer invasion
and metastasis by secreting the senescence-associated secretory phenotype (SASP) [12].
Senescent cells remodel the tumor microenvironment (TME) of multi-types of tumors,
including lung adenocarcinoma and CRC, resulting in poor prognosis [13,14]. In addition,
senescent tumor cells are involved in immunotherapy resistance and become therapeutic
targets in CRC therapies [15]. Recently, Yue et al. demonstrated that aging is an independent
prognostic factor of CRC and an aging-based risk signature can predict the survival of CRC
patients [16]. However, there is no reliable aging subtype classification of CRC to facilitate
personalized treatment.

In this study, two aging-related CRC subtypes (aging subtype and young subtype)
were distinguished. Their subtype-specific molecular changes, immune characteristics,
chemotherapy response, and survival stratification were comprehensively analyzed. Fur-
thermore, gene signature and clinicopathological features were integrated to develop a
risk model with high prognostic accuracy and predictive power, offering an alternative
approach for CRC prediction. Our findings throw light on the prognostic significance of
aging in CRC and contribute to the emerging field of aging-related CRC classification and
targeted therapy.

2. Results
2.1. Aging-Related Genes-Based Clustering and Subtypes Identification

A total of 279 aging-related genes were acquired from the CellAge database. By
univariate Cox regression analysis, we obtained 28 genes associated with CRC prognosis, of
which 11 genes were protective factors, whereas the rest were risk factors (Supplementary
Materials, Figure S1a). The associations of these genes were identified based on the PPI
network that was explored using the STRING database and visualized by Cytoscape
(Supplementary Materials, Figure S1b).

The non-negative matrix factorization (NMF) was applied to identify the CRC subtypes
based on aging-related genes (Figure 1a,b). The results showed that the clustering effect
was optimal when CRC patients were divided into two subgroups with good internal
consistency and stability, which was further confirmed by principal component analysis
(PCA) (Figure 1c). Similarly, CRC patients can be classified into two subgroups by consensus
clustering (Figure 1d–f). In addition, there was a statistically significant difference between
CRC patients in the two cluster groups in terms of T stage, N stage, M stage, clinical stage,
lymphatic invasion, venous invasion, and alive outcome (Figure 1g and Table 1). Cluster 2
shows better prognosis than Cluster 1 according to survival analysis. Similar results were
revealed in an independent dataset (Supplementary Materials, Figure S2a–e).

We also found that Cluster 1 was related to higher expression of SASP (Figure 1i and
Supplementary Materials, Figure S2f). In addition, gene set enrichment analysis (GSEA)
showed that the aging-related gene sets were significantly activated in Cluster 1 (Supple-
mentary Materials, Figure S3). Considering the above results, two CRC subgroups were
identified. Cluster 1 was designated as the aging subtype, and Cluster 2 was thereafter des-
ignated as the young subtype based on the relative downregulation of aging-related genes.
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Figure 1. Unsupervised clustering of aging-related genes in CRC. (a,b) CRC samples were clustered
by the NMF method. (c) Visualization of NMF results using PCA. (d,e) CRC samples were clus-
tered by consensus clustering method. (f) Visualization of consensus clustering results using PCA.
(g) The relationships between the clinicopathological features and aging-related gene subgroups.
(h) Kaplan−Meier curves for OS of TCGA cohort with the aging classes. (i) Gene expression of SASP
gene sets between two distinct clusters. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns,
not significant.
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Table 1. Correlation of two cluster groups with clinicopathological parameters based on TCGA CRC
data.

Clinical
Features N Cluster 1 Cluster 2 p Value

Age (years)
≤65 180 57 123 0.391
>65 250 69 181
Gender
Female 198 59 139 0.915
Male 232 67 165
Status
Alive 336 85 251 0.0008
Dead 94 41 53
Lymphatic
invasion
Yes 151 68 83 <0.0001
No 239 47 192
Venous invasion
Yes 89 40 49 0.0001
No 286 66 220
Pathologic stage
Stage1 + 2 238 52 186 <0.0001
Stage3 + 4 181 72 109
Metastasis
M0 318 86 232 0.0034
M1 60 28 32
Lymph node
status
N0 253 56 197 0.0002
N1 + 2 + 3 177 70 107
Tumor stage
T1 + T2 87 12 75 0.0007
T3 + T4 320 103 217

2.2. Clinical Characteristics of Aging-Related Genes-Based Subtypes

We next compared the clinical outcomes between the developed two subtypes using
stratified survival analysis. We found that two subtypes showed significant differences
in the OS of CRC patients subgrouped by age, stage, T, N, and M (Figure 2a). Moreover,
univariable and multivariable Cox regression analysis showed that aging was an indepen-
dent and significant risk prognostic factor for survival in patients with CRC (Figure 2b,c).
Together, our evidence suggests that aging-based clustering has excellent predictive power
for the prognosis of CRC patients, while aging subtypes of CRC patients have an infe-
rior prognosis.

2.3. The Difference in Molecular Characteristics between Aging-Related Genes-Based Subtypes

Considering the crucial role of genomic alterations in the progression of CRC, we
also investigated genetic mutation differences between two subtypes. As shown in the
mutation map, the top three mutational genes in both subtypes were TP53, APC, and
TTN (Figure 3a,b). TP53 was frequently mutated in the aging subtype, whereas APC was
frequently mutated in the young subtype. Furthermore, gene set variation analysis (GSVA)
was introduced to uncover the potential pathways involved in the two subtypes (Figure 3c).
The EMT, ANGIOGENESIS, and HEDGEHOG_SIGNALING pathways were mainly en-
riched in the aging subgroup. Meanwhile, the “cell cycle”-associated pathways (e.g.,
E2F_TARGETS and G2M_CHECPOINT) were enriched in the young subgroup (Figure 3d).
Similar results were observed in the GSEA analysis in the TCGA database subsequently.
Moreover, the aging subgroup was resistant to typical cell cycle inhibitors and sensitive
to most protein kinase inhibitors and angiogenesis inhibitors (Figure 3e). These findings
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suggest that care should be taken when using chemotherapeutic agents in patients with
different subtypes of CRC.
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Figure 2. Clinical significance of aging subtypes in the TCGA cohort. (a) Survival curve analysis
between different subtypes. (b,c) Univariate and multivariate Cox regression analyses of aging
subtypes and other clinical factors.
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Figure 3. Molecular characteristics of different aging subgroups. (a) Landscape of genomic aberra-
tions of cluster 1. (b) Landscape of genomic aberrations of cluster 2. (c,d) GSVA and GSEA analyzed
the biological pathways of two aging subtypes. (e) Eight common therapeutic drugs with differential
IC50 between two aging subtypes.
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2.4. Aging-Related Genes-Based Subtypes Show Different Immune Features

Given that the infiltration of immune cells is the crucial factor affecting tumor progres-
sion and immunotherapy response, we estimated the differences in immune cell infiltration
of TME between the two subtypes. The stromal, immune, and estimate score of aging
subtypes was higher than that of the young subtype (Figure 4a). Plasma cells, activated
memory CD4+ T cells, and activated DC cells were significantly upregulated in the young
subtype. Regulatory T cells (Tregs), M0 macrophages, endothelial cells, and fibroblasts
were markedly upregulated in the aging subtype (Figure 4b and Supplementary Materials,
Figure S4). Notably, as shown in Figure 4c, a series of immune checkpoints were widely
upregulated in the aging subtype. Furthermore, compared with the young subtype, the
TIDE score for immunotherapy and microsatellite instability value were elevated in the
aging subtype (Figure 4d). Conversely, the IPS score of the aging subtype was lower than
that of the young subtype (Figure 4e). In conclusion, the estimate score, TIDE score, and
IPS score together demonstrated the insensitivity of the aging subtype to immunotherapy.

2.5. Aging-Related Gene Signature Is a Prediction Tool for CRC Prognosis

Differential expression genes (DEGs) were profiled by volcano plot analysis (Figure 5a).
The GO enrichment analysis showed that the DEGs were enriched in ECM–receptor inter-
action, Malaria, and PI3K-Akt signaling pathway (Figure 5b). The LASSO penalized Cox
regression analysis was utilized to construct the aging risk signature of CRC patients from
DEGs (Figure 5c,d). A total of 14 aging-related genes (CLCA1, FBXO16, HOXC6, HOTAIR,
HOXC8, HOXC11, KCNQ2, MUC16, NOG, NKAIN4, PCOLCE2, PANX2, SULT1B, and
TNNT1) were finally selected, and were introduced to establish a novel risk score (Figure 5e).
ROC analysis showed that the area under the curve was 0.851 (Figure 5f), indicating that
our risk signature can accurately distinguish the aging and young subtype. GSEA found
that the expression of the aging group genes was positively enriched in GOBP_AGING,
GOBP_CELL_AGING, and CELLULAR_SENESCENCE (Figure 5g).

Then, we calculated the aging risk signature score of CRC patients based on the
expression levels of 14 genes and patients were divided into a high risk group and a low
risk group (Figure 5h). Kaplan–Meier analysis revealed that CRC patients with higher risk
scores had a poor prognosis (Figure 5i). More importantly, our aging-related gene signature
had good prognostic accuracy indicated by the time-dependent ROC analysis (Figure 5j).
The same results were observed in two independent data sets (Supplementary Materials,
Figure S5a–h).

2.6. Aging-Based Nomogram Improves Survival Prediction for CRC

To validate the prognostic value of the aging signature in five different indepen-
dent cohorts, we integrated the survival outcomes from GSE39852, GSE16158, GSE17536,
GSE38832, and GSE17537 cohorts. As shown in Figure 6a, a positive correlation between
aging and overall mortality was observed in CRC patients, suggesting that the aging signa-
ture is a prognostic factor in different cohorts. At last, we constructed a nomogram with
five independent prognostic factors to provide a quantitative tool for OS prediction of CRC
patients, and used the nomogram to calculate the total scores of individuals (Figure 6b).
The nomogram exhibited high consistencies between the observed and predicted survival
probability (Figure 6c).

In addition, the time-dependent AUC values of the nomogram for predicting 1-, 3-,
and 5-year OS were 0.838, 0.836, and 0.804 (Figure 6d), respectively, indicating the favorable
discrimination ability of this nomogram. Encouragingly, the prediction ability of this
nomogram was better than that of the stage and risk score (Figure 6e).
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Figure 4. Immune characteristics of different aging subgroups. (a) Box plots of the immune, stromal,
and estimate score between different aging subtypes. (b) Relative proportions of 22 immune cells in
different aging subgroups. (c) Gene expression of immune checkpoints between two distinct clusters.
(d,e) Violin plot of the TIDE and IPS score between two aging subtypes. *, p < 0.05; **, p < 0.01;
***, p < 0.001; ****, p < 0.0001.
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Figure 5. Construction of aging-related risk score to predict CRC prognosis. (a) Volcano plots show
DEGs between the two subtypes. (b) Bubble chart shows the functional enrichment results of DEGs.
(c,d) Aging-related risk score models were constructed using least absolute shrinkage and LASSO
methods. (e) LASSO coefficients of the 14 aging-related genes. (f) ROC curves for predicting aging
subtypes by risk score. (g) GSEA of aging pathway in high- and low-risk groups. (h,i) The association
of high-risk score with prognosis of CRC patients. (j) ROC curves for predicting 1-, 5-, and 10-year
OS by risk score.



Int. J. Mol. Sci. 2023, 24, 1516 10 of 17

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 6. Developed nomogram to predict the probability of survival in CRC patients. (a) Univariate 

Cox regression analyses of risk scores in multiple independent cohorts. (b) Prognostic nomogram 

based on risk scores and clinicopathological characteristics in CRC patients. (c) Calibration curves. 

(d) Time-dependent ROC curves at 1, 3 and 5 years. (e) Line graph of the area under the curve. 

Figure 6. Developed nomogram to predict the probability of survival in CRC patients. (a) Univariate
Cox regression analyses of risk scores in multiple independent cohorts. (b) Prognostic nomogram
based on risk scores and clinicopathological characteristics in CRC patients. (c) Calibration curves.
(d) Time-dependent ROC curves at 1, 3 and 5 years. (e) Line graph of the area under the curve.

2.7. Validation of Aging-Related Genes

Studies have demonstrated that upregulation of P21, CCL2, MMP-1, and downregula-
tion of LMNB1 are common markers of cellular senescence [17]. To validate the expression
patterns of aging-related genes in colon cancer cell lines, we compared the mRNA expres-
sion levels of these senescence markers between the LoVo, DLD1, SW48, and SW620. We
found that the mRNA expression levels of P21, CCL2, and MMP-1 in LoVo were higher
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than those of DLD1, SW48, and SW620. The opposite results were observed in LoVo for
LMNB1 expression (Figure 7a). We hypothesized that LoVo cells were relatively senescent
compared with other cell lines. As shown in Figure 7b, the mRNA expression levels of
KCNQ2, PCOLCE2, and TNNT1 in LoVo cells were significantly increased, while the
expression levels of protective factors SULT1B1 and FBXO16 were decreased (Figure 7b),
which is in line with the above results in Figure 5e. At the single-cell level, FBXO16 and
SULT1B1 were mainly expressed in epithelial cells. TNNT1 was mainly expressed in
endothelial cells, epithelial cells, macrophages, and monocytes. PCOLCE2 was mainly
expressed in smooth muscle cells, and KCNQ2 was primarily expressed in endothelial cells,
suggesting that these cell types may mainly contribute to the senescence in CRC (Figure 7c
and Supplementary Materials, Figure S6).
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Figure 7. Validation of aging-related genes. (a) mRNA expression levels of cellular senescence
markers. (b) mRNA expression levels of KCNQ2, PCOLCE2, TNNT1, SULT1B1, and FBXO16. (c) Dot
plot represented the expression of FBXO16, SULT1B1, TNNT1, PCOLCE2, and KCNQ2 of each cell
type in CRC tissues. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns, not significant.
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3. Discussion

In vertebrates, aging is a universal physiological feature of organisms that is character-
ized by the degeneration and functional decline of tissues and cells. Cellular senescence
is historically considered an anti-tumor mechanism in response to oncogenic stress. Re-
cently, studies suggest that senescent cells also create an immunosuppressive, vascularized,
and pro-inflammatory tumor microenvironment through SASP, thereby promoting tumor
growth and progression [18]. An increasing number of studies have found that the expres-
sion features of aging-related genes could predict the survival and treatment response of
cancer patients, including CRC. However, whether CRC patients can be classified into dif-
ferent subtypes based on aging-related genes and understand their distinct characteristics
for better clinical management has not yet been proposed. Hence, the further identification
of aging-related subtypes may help to explain the aging heterogeneity among CRC patients
and pre-recognize patients with aging features, thus providing precise treatment options.

Herein, we first recognized two distinct aging-related subtypes, which are named the
aging subtype (Cluster 1) and the young subtype (Cluster 2) according to the expression
status of aging-related genes. The two subtypes showed different clinical outcomes, molec-
ular characteristics, tumor microenvironment, and drug sensitivity. We found that patients
in the aging subtype have an inferior prognosis, immune suppression features, and low
immunotherapy responsiveness. Subsequently, an aging risk signature was established for
prognostic prediction for CRC patients and its reliable predictive ability was validated in
five independent cohorts. The aging-based nomogram showed outstanding advantages in
predicting the prognosis of CRC patients compared with the traditional prediction tools.

Studies suggest that senescent cells secrete a spectrum of SASP factors, including
cytokines, matrix proteases, chemokines, growth factors, and receptors, which reshape
the tumor microenvironment and disrupt tissue homeostasis by affecting neighboring
cells, inducing immune cell recruitment and pro-inflammation. Consistent with this, we
noticed that patients in the aging subtype had a higher expression of SASP, including
a series of interleukins (IL-6, IL-13, and IL-15), chemokines (CCL3, CCL8, CCL13, and
CCL26), matrix proteases (MMP-1, MMP-9, MMP-13, and MMP-14), receptors or ligands
(TNFRSF1A, TNFRSF1B, and PLAUR), etc. The pleiotropic effect of SASP can facilitate
tumor invasion and metastasis. For example, inflammatory SASP such as CCL3 and IL-6
remodels the TME by recruiting immunosuppressive cells, thus protecting tumor cells from
immunosurveillance [19,20]. MMPs can degrade the extracellular matrix to mediate CRC
metastasis [21]. Thus, we hypothesized that the high levels of SASP may be one of the
reasons for the poor prognosis of patients in aging subtypes.

Consensus molecular subtypes (CMS), the most robust classification system, divide
CRC into four subtypes. CMS1 has a high BRAF mutation rate; CMS2 has a high APC
mutation rate, and the WNT/MYC signaling pathway is significantly activated. CMS3 was
characterized by a high frequency of KRAS mutations. CMS4 is characterized by high TP53
mutations. We found distinct genomic alterations in two subtypes, and TP53 mutation
was more frequent in the aging subtype, which was similar to the characteristics of CMS4.
As a key transcription factor, TP53 participates in cellular senescence through various
signaling pathways. For example, the p53/p21 pathway is involved in cell cycle arrest
and tumor suppression [22]. Hence, TP53 mutation in the aging subtype may lead to loss
of the tumor-suppressive function and promote CRC progression. In the young subtype,
APC mutation frequency was higher and the MYC signaling pathway was enriched and
had a favorable prognosis, which was similar to the characteristics of CMS2. However, no
significant differences were found in BRAF mutations and KRAS mutations between the
aging and the young subtype.

The aging subtype was enriched in pathways related to the tumor development and
metastasis, such as EMT, angiogenesis, and Notch signaling pathways. Studies have shown
that these signaling pathways are involved in aging. For instance, EMT-inducing tran-
scription factors are involved in the regulation of p53 and Bcl-2 expression, thus affecting
cellular senescence [23]. In addition, the activated angiogenesis pathway has been observed
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in aging patterns of various cancer types, such as CRC and LUAD [14,15]. Moreover, the
Hedgehog signaling pathway is dysregulated in senescent cells and often reactivated in
cancer [24]. This may explain the inferior prognosis of patients in the aging subtype. EMT
plays a pivotal role in tumor invasion and metastasis [25]. Senescent cells may influence
EMT through secretion of SASP. For example, IL-6 has been reported to facilitate tumor
invasion by disrupting cell adhesion [26,27]. In return, epithelial transformed mesenchymal
cells degrade the extracellular matrix by highly expressed MMPs, a type of SASP, thereby
enhancing tumor invasion [28]. Moreover, it is known that pathological angiogenesis
provides nutritional support for tumor growth and is related to the distant metastasis of
tumor cells [29]. Consistent with the enrichment of the angiogenesis signaling pathway, we
found high expression of pro-angiogenic SASP factors such as IL-6 and VEGF in the aging
subtype. These changes may promote CRC metastasis. Additionally, the aging subtype
was also positively correlated with a Hedgehog signaling pathway whose non-canonical
activation has been shown to be associated with cancer progression [30]. As expected,
cell-cycle-related signaling pathways such as E2F_TARGETS and G2M_CHECKPOINT
were negatively correlated with the aging subtype. More importantly, the aging subtype
was insensitive to treatment with cell-cycle-specific anti-tumor drugs such as gemcitabine
and etoposide, which was attributed to the cell-cycle arrest features of senescent cells. In ad-
dition, the aging subtype was more sensitive to angiogenesis and protein kinase inhibitors
including pazopanib and imatinib. We hypothesized that this might be correlated with the
enrichment of the above signaling pathways in the aging subtype. Our findings reveal that
the patients of the aging subtype of CRC may not benefit from the cell cycle inhibitors but
from antiangiogenic agents. Overall, this aging-based subtype classification can provide
useful guidance for precise treatment.

Senescent cells establish the immunosuppressive microenvironment through a variety
of mechanisms, including inducing the accumulation of immunosuppressive cells, and the
secretion of immunosuppressive SASP factors, so as to evade the immune surveillance and
anti-tumor immune response of the host. The two aging-related subtypes have different
immune cell infiltration profiles. Activated memory CD4+ T cells and activated dendritic
cells were significantly upregulated in the young subtype. Activated memory CD4+ T
cells induce a robust anti-tumor response in the early stage of tumor progression [31].
Dendritic cells, as effective antigen-presenting cells, are generally associated with better
tumor prognosis [32,33]. M0 macrophages and regulatory T cells (Tregs) were enriched
in the aging subtype. In this study, we did not observe significant differences in M1
and M2 macrophage infiltration between the aging and young subtypes. However, M0
macrophages, the precursors of M1 and M2 macrophages, were highly infiltrated in the
aging subtype. Evidence suggests that the accumulation of M0 macrophages in tumors
is associated with a worse prognosis [34,35]. However, the clinical significance of M0
macrophage in the aging subtype of CRC still needs further study [36]. Tregs contribute
to tumor development by hindering effective anti-tumor-specific immune responses in
CRC patients [37]. Excessive accumulation of Tregs reduces the efficacy of immunotherapy
and is often associated with poor prognosis [38]. Patients in the aging subtype showed
higher infiltration of Tregs and overexpression of immune checkpoints, such as PD-L1,
CTLA-4, and TIM3, indicating that TME was strongly inhibited. Furthermore, patients in
the aging subtype had higher TIDE scores, suggesting the high immune escape potential of
the aging subtype. The lower IPS scores confirmed the low immunogenicity of the aging
subtype, which is consistent with the TIDE score prediction. Taken together, the above
results suggest that the aging subtype with immunosuppression characteristics is mainly
manifested by an increase in Tregs and immune checkpoints, which may be the reason for
the low response to immune checkpoint inhibitor (ICI) therapy. On the contrary, patients in
the young subtype are more likely to benefit from ICI therapy. These findings highlight the
promoting role of aging-based subtype classification in personalized ICI therapy.

Some limitations should be acknowledged in the present study. First of all, the predic-
tive reliability and clinical application of the aging risk signature need further validation in



Int. J. Mol. Sci. 2023, 24, 1516 14 of 17

prospective clinical trials. Second, the predictive roles of aging-related genes determined
in our study need to be verified in larger clinical samples. Last but certainly not least,
fundamental experiments are urgently needed to elucidate the biological function of aging
in tumorigenesis and development of CRC.

4. Materials and Methods
4.1. Data Preprocessing

A total of five available CRC gene expression datasets (GSE39582, GSE16158, GSE17536,
GSE38832, and GSE17537) and relevant clinical information were downloaded from the
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/, accessed on 20
April 2022). The RNA-sequencing and somatic mutation data of TCGA-COAD were
obtained from the UCSC public (https://xenabrowser.net/, accessed on 20 April 2022).
Patients without specific survival data were excluded. The FPKM values of TCGA-COAD
were transformed into transcripts per kilobase million (TPM) for subsequent analyses. The
somatic mutation data of TCGA-COAD patients were analyzed by R package “maftools”.
All expression profiles were normalized and log2 transformed as previously reported [39].

4.2. Unsupervised Clustering Analysis of Aging-Related Genes

The latest summary of 279 aging-related genes was obtained from the CellAge database
(https://genomic.senescence.info/cells/, accessed on 20 April 2022). Then, 28 aging-related
genes were selected via univariate Cox analysis. On the basis of the expression level of these
28 genes, 430 CRC from TCGA were classified using the Nonnegative Matrix Factorization
(NMF) clustering analysis. To verify the accuracy of the clustering, the consensus clustering
algorithm was also used for unsupervised clustering analysis. Ultimately, unsupervised
clustering identified two subtypes. The dataset GSE39582 with larger sample size and more
complete clinical information was used to validate the clustering results.

4.3. Clinicopathological Features between the Aging and Young Subtypes

To examine the clinical value of the two subtypes identified by unsupervised clustering,
a chi-square test was used to demonstrate the relationship between molecular subtypes and
clinicopathological features. Clinicopathological features included age, gender, survival
status, lymphatic invasion, venous invasion, and tumor stage.

4.4. Immune Infiltration Analysis

To reveal the distinct tumor microenvironment between the aging and young subtypes,
two algorithms named CIBERSORT [40] and MCP-counter [41] were used to quantify the
relative or absolute abundance of immune cell populations in CRC. The estimate package
predicts the amount of mesenchymal cells and immune cells in malignant tumor tissues.
This scoring system is based on a single sample gene set enrichment analysis and generates
three scores: stromal score, immune score, and estimate score [42]. The “estimate” R
package was used to evaluate each patient′s immune score and stromal score.

4.5. Differentially Expressed Genes (DEGs) Identification

The DEGs between the aging and young subtypes were identified using the “limma”
R package. Genes with an adjusted p value < 0.05 and a fold change of 1 were considered
significantly different. Functional enrichment analysis of DEGs was performed using the
David database (https://david.ncifcrf.gov/, accessed on 5 May 2022).

4.6. Construction of Aging-Related Gene Signature

To quantify the aging modification patterns of each patient, the aging score was
calculated to assess all individuals with CRC. Univariate Cox regression analysis was
performed on DEG to identify genes associated with CRC overall survival (OS). Based on
aging-related prognostic genes, risk scores were calculated using 10-fold cross-validated
least absolute shrinkage and selection operator (LASSO) regression. The 14 genes and
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their correlation coefficients were used to construct an aging gene signature, defined as an
aging score. CRC patients were divided into high-risk and low-risk groups based on the
median aging score. Survival analysis of high- and low-risk groups was performed using
the Kaplan–Meier method. The receiver operating characteristic (ROC) curve was used to
evaluate the ability of survival prediction.

4.7. Quantitative Real-Time Polymerase Chain Reaction PCR (RT-qPCR)

Total RNA was extracted from four colon cancer cells (DLD-1, LoVo, SW48, and
SW620) using TRIzol reagent (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA).
Total RNA was reverse transcribed to cDNA using a RT reagent kit (Vazyme Biotech,
Nanjing, China). The RT-qPCR was performed using a SYBR-Green assays (Vazyme
Biotech, Nanjing, China) on a StepOnePlusTM real-time PCR instrument (Thermo Fisher
Scientific, Inc., USA). The mRNA expression level of P21, CCL2, MMP-1, LMNB1, KCNQ2,
NOG, PCOLCE2, NKAIN4, HOXC6, HOTAIR, HOXC8, PANX2, HOXC11, TNNT1, MUC16,
CLCA1, SULT1B1, and FBX016 was normalized with GAPDH and the data were calculated
through the 2−∆∆Ct method. The primer sequences are listed in Table S1.

4.8. Single-Cell RNA-Seq Data Analysis

The single-cell data of CRC were obtained from GSE132465. The raw data were
converted into Seurat objects using the Seurat R package and filtered according to the
following criteria: cells with >1000 unique molecular identifier (UMI) counts; >200 genes
and <6000 genes; and <20% of mitochondrial gene expression. After batch effect correction
based on the CCA, the cells were clustered into different subgroups by t-SNE projection,
and cell types were annotated by SingleR. Subsequently, the expression of aging-related
genes in different cell types was analyzed.

4.9. Additional Bioinformatic and Statistical Analysis

Principal component analysis (PCA) was used to visualize the differences between
different groups. The “GSVA” and “GSEA” packages were used to analyze pathway
enrichment between the two subtypes. The “pRophetic” package was used to predict half-
inhibitory concentration (IC50) values of CRC therapeutics. Tumor immune dysfunction
and exclusion (TIDE) [43] and immunophenoscore (IPS) [44] algorithms were used to
predict potential immune checkpoint blockade treatment response. All statistical analyses
were performed using R version 4.0.3. The Wilcoxon test was used for special variables
(risk score, aging-related genes, and aging-related gene clusters) between the two groups.
The chi-square test was used for categorical variables between the two groups. p < 0.05 was
considered to be statistically significant.

5. Conclusions

In conclusion, this study first identified two aging-related subtypes of CRC with
different clinical outcomes, transcriptome characteristics, immune status, and treatment
response. A novel aging risk model contributes to the accurate assessment of the prog-
nosis of individual CRC patients. More importantly, the subtypes classification of CRC
based on aging may provide a promising direction for therapeutic decision making in a
clinical setting.
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