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Abstract: Wheat is an important staple crop since its proteins contribute to human and animal nutri-
tion and are important for its end-use quality. However, wheat proteins can also cause adverse human
reactions for a large number of people. We performed a genome wide association study (GWAS)
on 114 proteins quantified by LC-MS-based proteomics and expressed in an environmentally stable
manner in 148 wheat cultivars with a heritability > 0.6. For 54 proteins, we detected quantitative trait
loci (QTL) that exceeded the Bonferroni-corrected significance threshold and explained 17.3–84.5%
of the genotypic variance. Proteins in the same family often clustered at a very close chromosomal
position or the potential homeolog. Major QTLs were found for four well-known glutenin and gliadin
subunits, and the QTL segregation pattern in the protein encoding the high molecular weight glutenin
subunit Dx5 could be confirmed by SDS gel-electrophoresis. For nine potential allergenic proteins,
large QTLs could be identified, and their measured allele frequencies open the possibility to select for
low protein abundance by markers as long as their relevance for human health has been conclusively
demonstrated. A potential allergen was introduced in the beginning of 1980s that may be linked
to the cluster of resistance genes introgressed on chromosome 2AS from Triticum ventricosum. The
reported sequence information for the 54 major QTLs can be used to design efficient markers for
future wheat breeding.

Keywords: wheat; proteins; quality; allergen; QTL; breeding

1. Introduction

Wheat (Triticum aestivum ssp. aestivum) is the most widely grown crop and a major
component of the human diet worldwide. This staple crop is one of the most important
sources of energy [1] and on average provides 20% of the total protein and calories in
human nutrition [2]. Wheat is consumed in many different forms, and each type of end-
product requires a particular quality based on the viscoelastic properties of the dough,
which are mainly influenced by the amount and composition of gluten [3]. Gluten accounts
for approximately 80% of the total protein in the grain and can be divided into gliadins
and glutenins. Glutenins are classified into high and low molecular weight subunits
(HMW-GS and LMW-GS) [4], which are encoded by the loci Glu-1 and Glu-3, respectively.
Differences between allele pairs in glutenin subunits have a strong influence on the end-use
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quality [5]. For example, several studies have shown that the alleles Dx5 + Dy10 (Glu-D1d)
are associated with high quality, whereas Dx2 + Dy12 (Glu-D1a) lead to poor quality [6–8].
Consequently, wheat breeders have intensively selected for specific combinations of HMW-
GS since the pioneering work of Payne et al. [9]. In addition to its effect on end-product
quality, gluten and non-gluten proteins, such as wheat amylase trypsin inhibitors (ATIs),
are also associated with various human health disorders, such as celiac disease, allergic
reactions, and non-celiac wheat sensitivity [10–12]. However, targeting wheat allergens
has never been a goal of breeding programs other than improving gluten quality due to its
impact on end-product quality. For instance, the abundance of many allergenic proteins
or ATIs in wheat cultivars released in the last century has not changed [13,14]. While
only a few proteins have been investigated in detail in recent decades [15], the recent
developments in the field of mass spectrometry-based proteomics has led to the possibility
to determine hundreds of proteins in a single sample [16]. Afzal et al. [17] analyzed the flour
proteome of 15 spelt and wheat cultivars grown in three different locations and identified
3050 proteins, including 300 proteins with moderate-to-high heritability (>0.4). However,
to our knowledge, no study investigated the genetic architecture of the large number of
proteins that have been discovered with modern proteomic tools so far.

Therefore, we performed a GWAS to investigate the genetic architecture of 114 pro-
teins quantified using liquid chromatography-mass spectrometry (LC-MS)-based label-free
quantitative (LFQ) proteomics from 148 bread wheat cultivars grown in three environments.
In addition, the genetic and temporal trend of the alleles of some major QTLs associated
with relevant proteins were investigated, and the sequence information for relevant QTLs
is provided so that it is possible to design molecular markers.

2. Results

In a previous study, we measured 756 proteins in aqueous extracts from the whole-
grain flour of 148 wheat cultivars grown in three environments [18]. Only 114 of these
756 proteins had a stable expression across environments in most wheat cultivars with
a heritability larger than 0.6. For these 114 proteins, we performed a GWAS and de-
tected QTLs for 54 proteins that exceeded the Bonferroni-corrected significance threshold
(Figures 1 and 2). For all these 54 proteins, a single major QTL explaining 17.3 to 84.5%
of the genotypic variance was identified (Figure 2b, Table 1, Table S1). For 24 proteins,
the identified QTLs explained >50% of the genotypic variance (Figure 2b). In contrast,
for 60 proteins, no marker-trait association was detected that exceeded the Bonferroni-
corrected significance threshold.
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Table 1. QTLs controlling two gluten proteins, four non-gluten allergenic proteins and five gluten proteins, which were also listed as allergens in Allergome database;
identified in this study (HMW = High molecular weight; LMW = Low molecular weight; LTP = Lipid transfer protein).

Trait UniProt ID UniProt Name Marker Chr. p-Value LOD Gen Pos. (cM) Phy Pos.
Start (bp)

Phy Pos.
Stop (bp) PG α-Effect

Gluten
prot051 A0A3B6I2R2 1212683D 4A 4.65 × 10−9 8.33 2,310,811 725,135,595 725,135,664 45.53 7006.50
prot104 A0A3B6RB62 1283144D 7A 1.48 × 10−13 12.83 211,140 16,051,783 16,366,772 54.70 13,071.91

Gluten and
allergen

prot017 G1E6K7 HMW-Dx5 999473S 1D 1.18 × 10−6 5.93 1,492,346 414,170,821 414,170,890 42.73 −1947.51
prot028 Q94G97 γ-Gliadin 3027396D 1A 1.93 × 10−16 15.72 150,899 4,462,173 4,462,215 82.41 12,546.17
prot066 D2KFH0 Gliadin/avenin 999766S 3B 2.07 × 10−16 15.68 1,607,210 734,966,174 734,966,228 82.01 5516.69
prot139 I1XB56 LMW-GS 1201279D 1B 9.60 × 10−14 13.02 182,700 6,301,587 6,301,656 73.82 10,631.02
prot203 C3VN75 LMW-GluA3 1043336S 1A 2.51 × 10−9 8.60 149,830 1,235,911 1,235,980 49.85 −12,552.71

Non-gluten
allergen

prot008 Q6W8Q2 Peroxiredoxin 1039232S 2A 5.61 × 10−16 15.25 1,198,150 98,916,927 102,957,935 75.2 6937.00
prot189 Q2PCC3 LTP 1203564D 5B 7.33 × 10−11 10.13 2,583,420 690,570,279 690,570,348 32.32 3056.54
prot235 Q2PCC5 LTP 1219351D 5A 5.60 × 10−14 13.25 2,978,100 707,857,285 707,857,336 56.53 −47,278.73
prot288 A0A1D5UB33 1126529D 2A 2.51 × 10−17 16.60 80,770 5,395,135 10,230,260 84.51 −34,444.07

Chr. Chromosome, Gen Pos. chromosome position in cM, Phy Pos. start/stop sequence position in base pairs according to the bread wheat reference genome (IWGSC RefSeq v2.1), PG
proportion of genotypic variance explained by the QTL in percent, and allele substitution α-effect.
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Figure 2. (a) Pie chart showing the distribution of the 54 major QTLs on different chromosomes;
(b) frequency of the proportion of explained genotypic variance by the 54 QTLs.

The major QTLs were distributed across many chromosomes and partly clustered in
similar chromosomal regions (Figures 2 and 3). QTLs were identified on chromosomes
1A, 2A, 4A, 5A, 7A, 1B, 3B, 4B, 5B, 6B, 7B, 1D, 4D, 6D, and 7D with a relatively similar
distribution on the A and B genomes, whereas only 12% of the identified QTLs were
located on the D genome. A higher number of proteins seemed to be affected by the major
QTLs on chromosomes 1A, 2A, 1B, and 3B. Interestingly, some QTLs for different proteins
were identified at almost the same genomic position (Figure 3, Table S1). For instance,
on chromosome 5A, the QTLs for prot085 and prot141, both ß-amylases according to the
UniProt database, had the same chromosomal and physical position. Similarly, the QTLs
for prot171 and prot179 had the same physical position on chromosome 3B, but according
to the various protein annotation databases available, it is not yet clear whether these
proteins belong to the same family (Table S1). To design easy-to-use markers for breeding,
we have summarized the SNP, genomic position, and sequence information of all identified
54 QTLs in Table S1.

We further investigated the allele frequencies of QTLs associated with these eleven
proteins (Figure 4). For prot008, prot017, prot066, and prot235, allele frequencies of their
QTLs were found to be around 0.5. In contrast, for the QTLs of the other seven proteins,
allele frequencies tended to a considerably higher frequency of one allele. Interestingly,
for five of these seven proteins, the QTLs alleles increasing protein abundance were more
frequent. As the wheat cultivars used in this study were released in different decades of
the last century, we grouped them accordingly to visualize potential selection trends by
wheat breeders. For four proteins, we observed shifts in QTLs allele frequencies across the
decades of breeding.
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Figure 3. Chromosome map showing the distribution of 54 QTLs with their respective protein name
and physical position (Mbp). For a detailed investigation of wheat flour proteins, we focused on the
eleven proteins associated with gluten and potential allergenicity based on UniProt and InterPro
databases (Table 1). Five of the seven gluten proteins were also present in the Allergome database
(https://allergome.org/, accessed on 16 February 2021). We assigned these eleven proteins to the
following groups: gluten, gluten and allergen, and non-gluten allergen. Using the UniProt database,
we were able to name eight of these eleven proteins, including proteins important for baking quality
such as HMW-GS Dx5 and LMW Glu-A3. QTLs for two lipid transfer proteins could be identified,
but not for other known, potentially allergenic wheat proteins such as ATIs or serpins.

Finally, we investigated the chromosomal regions harboring the QTLs of the 11 pro-
teins in detail (Table S4). For these regions, we extracted high confidence (HC) genes from
the bread wheat reference genome (IWGSC RefSeq v2.1) and evaluated these as potential
candidate genes with functional annotations in the Pfam and InterPro databases similar
to the different domains of gluten and allergenic proteins. Eight, five, and twenty-two
potential candidate genes were identified in the QTLs target regions associated with gluten
proteins (prot051 and prot104), allergens and gluten (prot017, prot028, prot139 and prot203),
and non-gluten allergens (prot189, prot235), respectively (Table S4). No potential candidate
genes could be identified for the QTLs detected for the prot066, prot008, and prot288.

https://allergome.org/
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Figure 4. The effect of the major QTLs for gluten proteins prot051 and prot104 (a); gluten and aller-
genic proteins prot017, prot028, prot066, prot139, and prot203 (b); and non-gluten allergenic proteins
prot008, prot189, prot235, and prot288 (c), and their allele frequencies according to the cultivar’s year
of release (numbers below boxes represent the number of cultivars in the respective group). The
leftmost boxplot in gray show the protein values for all cultivars. The protein-increasing allele is
colored in orange; The protein-decreasing allele is colored in green. *** indicates significant difference
at p < 0.001 between the two groups of cultivars containing contrasting alleles of a given marker.
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3. Discussion
3.1. Major QTLs Identified for 54 Proteins

Implementing a GWAS using statistically conservative Bonferroni-corrected signifi-
cance threshold, we identified major QTLs for 54 out of 114 proteins (Figures 1 and 2). Our
findings suggest that more than half of the investigated proteins are quantitatively inherited
and controlled by many genes, each with rather small effect. This quantitative inheritance
is well-described in literature for the most investigated traits, e.g., yield, but also classi-
cally determined protein content [19–21]. In contrast, many of the QTLs identified for the
54 proteins had very high peaks in the Manhattan plot (Figure 1) and explained a large pro-
portion of the genotypic variance of the individual proteins (Figure 2b, Table 1). In wheat,
major QTLs are known, such as for plant height (Rht genes), heading time (Ppd genes),
and disease resistance (e.g., Lr genes), but in most cases, the proportion of the explained
genotypic variance was much lower than for many proteins in our study [22,23]. Therefore,
the identified QTLs could be very interesting for future wheat breeding, provided that the
relevance of the respective proteins for future wheat supply chains is demonstrated.

The 54 identified QTLs were similarly distributed across the A and B genomes, but
only a small number of them were detected on the D genome (Figures 2a and 3). This is in
line with the literature on genomics in wheat [24,25] and can be explained by the limited
genetic diversity of the D genome compared to the A and B genomes. Interesting breeding
approaches have begun to utilize the genetic potential of the D genome of wheat, such
as synthetic wheat [26,27]. As these breeding lines are quite new and, to our knowledge,
not yet present in European wheat cultivars, they were also not present in our wheat
cultivar list.

For proteins belonging to the same family, we found that they are controlled by loci
whose physical positions are located close to one another on the same chromosome or
by loci on potential homologous chromosomes (Figure 3). For instance, we identified
QTLs for six Cupin 1 proteins, all located on chromosomes 4A and 4B (Figure 3, Table 1).
QTLs of proteins 045 and 092 were located on the identical physical map position on 4A,
whereas QTLs for proteins 040, 054, and 120 were very close to each other on 4B. We
found further QTLs clusters for other protein families. These QTLs are found for three
late embryogenesis abundant proteins on 2A, two proteins of the aldo/keto reductase
family on 1B, two β-amylases on 5A, and two proteins of chitinase class 1 on 7B. Potentially
homologous chromosomal positions were identified for QTLs of two lipid transfer proteins
on 5A and 5B, two plant antimicrobial proteins on 6B and 6D, three proteins of chitinase
class 1 on 7A and 7B, and for two LMW-GS on 1A and 1B (Figure 3, Table 1). These findings
are comparable to other traits where important gene families are located on the same group
of homologous chromosomes, e.g., for plant height on chromosomes of group 4 (Rht1
and Rht2 genes) or heading time on chromosomes of group 2 (Ppd-1 genes). In summary,
to our knowledge, this largest GWAS study on the wheat proteome revealed a similar
genetic architecture of proteins as reported for other traits, with major QTLs for 24 out of
114 proteins.

3.2. QTLs for Important Gluten Proteins

High and low molecular weight glutenins are of great importance for wheat end-use
quality. They have been under intensive research and use in wheat breeding since the
pioneering work of Payne and colleagues [4,9]. We identified three major QTLs under-
pinning three proteins specifically related to glutenins, one HMW- and two LMW-GS
proteins (Table 1). On chromosome 1D, we found a major QTL explaining 42.7% of the
genotypic variance for prot017, which is annotated as HMW-Dx5 according to the Uniprot
database (Table 1). Electrophoretic analysis by SDS-PAGE on our wheat cultivars revealed
that the QTL allele GG of prot017 was represented by HMW banding unit 5 and the QTL
allele AA by the HMW banding unit 2 for a total of 143 out of 148 wheat cultivars (Table
S2), confirming the Uniprot annotation. Interestingly, the allelic difference from the SDS
banding pattern could be deduced from the quantitative measurements of a single protein
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(017), where cultivars with the Dx5 (GG) unit had a lower abundance than cultivars with
the Dx2 (AA) unit (Figure 4, Table S2). While it was not possible to qualitatively distinguish
the highly homologous protein isoforms by the tryptic peptides quantified by our mass-
spectrometry-based proteomics workflow, the apparently allele-dependent expression level
of the gene product was perfectly captured by the complementary SDS-PAGE approach.
This case study highlights that quantitative protein measurements can provide additional
relevant information content to purely genetic analyses for breeding studies.

In addition, we observed a temporal trend in selection for the QTL alleles of prot017.
Wheat cultivars released after 2001 had a higher frequency of the Dx5 allele (GG) than
the Dx2 allele (AA) compared with wheat cultivars bred before the year 2000 (Figure 4).
Wheat breeders have intensively selected for the Dx5 unit since the 1980s using SDS
gel-electrophoresis, increasingly combined with molecular markers [28,29] such as the
codominant markers ‘UMN25’ and ‘UMN26’ developed by Liu et al. [30] and the SNP
markers used to discriminate Dx subunits developed and validated by Schwarz et al. [31].
However, >30% of modern wheat cultivars in our panel carry the allele Dx2 (AA), showing
further potential for improving baking quality. Since our panel does not contain any
very modern wheat varieties, it is likely that breeders have already further increased the
frequency of Dx5.

The major QTLs identified for two LMW proteins (prot139, prot203) were in similar
regions on chromosome 1A and 1B (Figure 3). According to the UniProt database, prot203
corresponds to Glu-A3 (Table S1), and we speculate that prot139 might be the homologous
Glu-B3 warranting further confirmation. For prot203 (=Glu-A3), a selection trend towards
fixation of the QTL allele AA was evident over the different decades of wheat breeding
(Figure 4). For prot139, the QTL allele that increases protein abundance appears to be close
to fixation. The LMW glutenin subunits are much more difficult to identify than the HMW-
GS described above due to their complexity, heterogeneity, and similarity to each other, as
well as to some gliadins [32], and thus, have not been directly selected by wheat breeders
in the last decades. The visible selection trend could come from indirect selection for these
proteins by measuring dough and baking quality. Nevertheless, molecular markers capable
of distinguishing sixteen different alleles at Glu-A3 and -B3 were recently developed [32],
which will somewhat facilitate future selection.

Close by the genomic location of Glu-A3, we identified a major QTL explaining 82.4%
of the genotypic variance of prot028, which is a γ-gliadin according to the UniProt database
(Table 1). It is known that Glu-A3, Glu-B3, and Glu-D3 are tightly linked to Gli-A1, Gli-B1,
and Gli-D1, respectively, the latter representing multigene families encoding γ- and ω-
gliadin subunits [33]. As with Glu-A3, a selection trend in wheat cultivars towards fixation
of the protein-increasing QTL allele was evident for prot028 (Figure 4). Consequently, the
selection for dough and baking quality in wheat has continuously modified the frequency of
protein abundance of Glu-A3 but also of γ-gliadin. In summary, new proteomic approaches
were used to confirm the results of single protein analyses. Those approaches are now
able to deliver thousands of proteins per sample [34], paving the way for much deeper
exploration of their expression and relationship to agronomic and quality traits in crops.

3.3. Possibility to Breed for Low Allergen Content

Although wheat is an important and mostly healthy staple crop, a sizeable number
of people suffer from wheat sensitivities, with most potential triggers being proteins [34].
We followed the approach of Zimmermann et al. [35] and Afzal et al. [34] and compiled
a list of allergens based on data on seed-borne wheat allergens [36] and the Allergome
database (http://www.allergome.org/index.php accessed on 16 February 2021) [37]. For
nine proteins from this list, we detected major QTLs in our study (Table 1), which explained
between 32.3% and 84.5% of the genotypic variance of the respective protein. Five of
these were gluten proteins, two probable lipid transfer proteins, one peroxiredoxin, and
one a potential protease inhibitor (Table S1). For three out of these nine proteins, we
could observe a selection trend at the major QTLs in the wheat cultivars from the past

http://www.allergome.org/index.php
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decades (Figure 4). The marker allele producing high protein abundance was increased
for prot288, a protease inhibitor, whereas the marker allele responsible for low protein
abundance was increased for prot017, HMW-Dx5, and prot203, LMW-GS Glu-A3. The latter
two are important wheat-quality proteins that plant breeders have intensively selected
for, as discussed earlier, and at the same time, appear to be potential allergens for a small
number of people. Interestingly, the better baking quality at these two loci appears to be
correlated with lower protein abundance, i.e., lower allergen levels.

The selection trend for prot288 is interesting in that the QTL allele, which increases
protein abundance was introgressed in the early 1980s and its frequency then steadily
increased by wheat breeders. Selection for or against potentially allergenic proteins has
never been a goal in wheat breeding. Therefore, this selection trend may be due to the
linkage with another target trait in wheat breeding that has been used since the 1980s and
is largely influenced by the genomic region on the short arm of chromosome 2A. This
chromosomal region contains an introgression from Triticum ventricosum that has a roughly
comparable history [38]. This introgression carries several important disease-resistance
genes (e.g., Lr37 and Sr38-Yr17-Lr34) to various important rust diseases [39,40]. In addition,
the introgression also appears to improve yield stability [41] and resistance to rice blast [42],
all traits that are of great importance for many wheat breeding programs worldwide. For
a large proportion of our wheat cultivars, molecular marker information for the disease
resistance cluster Sr38-Yr17-Lr34 (Table S3) is available, which matches almost perfectly
with the different QTL alleles of prot288. Consequently, the increase in the QTL allele that
increases the abundance of the potential allergen prot288 could be due to indirect selection
of disease-resistance genes nearby. According to the physical positions, our identified QTL
is 6 Mbp away from the locus reported for the disease resistance cluster. Future studies
will have to show whether this potential linkage can be broken by targeted selection using
markers for both loci.

For the QTLs of six potential allergenic proteins, we did not detect clear selection
trends over the decades of wheat breeding, but either an almost fixation on the QTL allele
causing high protein abundance (prot139, prot189) or similar frequencies of both alleles.
This is confirmed by our companion study in which we quantified the absolute protein
amounts of eight ATIs by isotopically labeled standard peptides [14]. Therein, major
QTLs were identified for monomeric and dimeric ATIs with similar allele frequencies for
the monomeric ATI 0.28 but near fixation of the QTL allele responsible for high protein
abundance of the dimeric ATI 0.19-like. Consequently, the reported sequence information
for the major QTLs identified in both studies could largely facilitate breeding for the low
protein abundance of eleven potentially allergenic proteins. Further studies are, therefore,
urgently needed to work out the relevance of reducing these proteins abundance for human
and animal health, so that the laborious breeding progress for these additional traits can
finally be addressed.

4. Materials and Methods
4.1. Plant Material and Field Experiments

Details of the plant material and field experiments were originally reported by Rapp
et al. [43] Briefly, a panel of 148 bread wheat cultivars originating from different European
countries and registered between 1921 and 2013 were grown in three different locations in
Germany (Hohenheim, Oberer Lindenhof, and Eckartsweier). Field trials were executed
using a partially replicated (P-rep) design with a net plot size of 1.25 m2. The list of the
cultivars and their details are provided in Table S5.

4.2. LFQ Proteomic

LFQ bottom-up proteomics data were retrieved from a previous study by Afzal
et al. [18], publicly available as ProteomeXchange [44] dataset with the identifier PXD023654,
in which the proteomics workflow was described in detail. Briefly, water/salt-soluble pro-
teins were extracted from the full-kernel flours of the wheat samples described in Section 3.1
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using a buffer composed of 10 mM sodium bicarbonate and 500 mM sodium chloride dis-
solved in water (pH 7.8). After centrifugation, 5 µL of the clear supernatant was diluted in
50 mM ammonium bicarbonate and 0.1% (w/v) RapiGest surfactant (Waters Corporation,
Milford, MA, USA) and incubated at 80 ◦C for 15 min. Proteins were reduced with dithio-
threitol (DTT), alkylated with iodoacetamide (IAA) and digested overnight by the addition
of trypsin at 37 ◦C. Samples were acidified with trifluoroacetic acid and desalted using
Sep-Pak tC18 cartridges (Waters Corporation). Purified peptides were lyophilized and
reconstituted in water with 0.1% (v/v) formic acid (FA). Consecutive LC-MS measurements
were performed using a nanoACQUITY ultra-performance LC system (Waters corporation)
coupled to a SYNAPT G2-S mass spectrometer (Waters Corporation). Peptides were loaded
onto a reversed-phase column (HSS T3 300 µm × 100 mm, 1.8 µm, Waters Corporation,
column temperature 55 ◦C) and separated at a flow rate of 8 µL/min over 15 min using a
gradient of 1–36% solvent B, which was acetonitrile with 0.1% (v/v) FA, while solvent A
was water with 0.1% (v/v) FA. Dimethyl sulfoxide was added to the mobile phase after
the column, as previously described [45]. Mass spectra were acquired in data-independent
mode by MSE [46]. Raw data were processed using ProteinLynx Global Server v.2.0.3 (Wa-
ters Corporation) and searched against a T. aestivum protein sequence database (UniProtKB
release 2019_02, taxon ID: 4565, 142,700 entries). Postprocessing and LFQ was performed
using ISOQuant v1.8 [47], applying a false-discovery rate cut-off of 0.01 at the peptide and
protein level and Top3-based [48] protein quantification.

4.3. Statistical Analysis of Phenotypic Data

Details of the phenotypic data analysis were described in our previous study by Afzal
et al. [18]. A total of 756 proteins were detected across the 148 wheat cultivars grown in
three environments. However, only 114 proteins had a stable expression across all envi-
ronments in at least one cultivar and met the following quality criteria: a heritability > 0.6,
missing data < 20%, and expression in >50% and >80% of the cultivars in three and two
environments, respectively.

Best Linear Unbiased Estimates (BLUEs) used in our GWAS analyses were estimated
across the three environments (locations) assuming fixed genotypic effect in a mixed linear
model. All phenotypic analyses were conducted using the statistical software R 3.3.2 [49]
and software package ASReml-R 3.0 [50].

4.4. Genomic Data and Genotyping

Details of the genotyping approach were originally described by Rapp et al. [43].
Briefly, the cultivars were genotyped using the Diversity Arrays Technology (DArT)
genotyping-by-sequencing platform (DArTseq). Two types of markers were delivered
by DArTseq, codominant SNP (S) and dominant DArT (D) markers. SNP and DArT
markers with more than 25% missing data and a minor allele frequency below 5% were
omitted. The remaining missing values were imputed using the package LinkImpute [51].
A selection of 12,203 high-quality markers with a known genetic map positions and com-
mon chromosomal position between the wheat reference genome IWGSC RefSeq v1.0 and
v2.1 were obtained. These polymorphic DArTseq markers were used for the subsequent
genetic analyses. The physical map positions of the markers were retrieved from the
Chinese Spring wheat genome (IWGSC CS RefSeq v2.1) implementing BLAST search by
using NCBI database keeping the default parameter settings (https://www.ncbi.nlm.nih.
gov/assembly/GCF_018294505.1, accessed on 15 February 2022). The default stringent
Megablast algorithm did not produce any hits for some markers. We used BlastN algo-
rithm for such markers, which allows a word-size down to seven bases. Implementing
BLAST search using any of the two algorithms, when multiple hits for a given marker
sequence were returned, only the top hit was kept because of its lowest e-value. In case
of ties for the first position between two markers, the top hit was retrieved. In addition
to using BLAST to determine positions of the DArTseq sequences, the sequences were
mapped against the v2.1 IWGSC assembly [52]. DartSeq reads were first converted to fastq

https://www.ncbi.nlm.nih.gov/assembly/GCF_018294505.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_018294505.1
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format using custom Python scripts (v.3.9.12) [53]. Reads were then mapped to v2.1 IWGSC
assembly [52] using bwa mem v 0.7.17 [54] with the default parameters and the -M flag.
Samtools view v1.14 [55] was used to obtain mapped reads with quality > 30 (-q30) and
primary alignments (-F256). Bam files were then sorted with samtools sort v1.14 [55] and
transformed to bed format using bedtools bamtobed v2.29.2 [56]. Finally, mapped regions
were compared to BLAST regions using bedtools intersect v2.29.2 [56].

4.5. Genome-Wide Association Study (GWAS)

Genome-wide association analysis was performed with the R package GAPIT (http:
//zzla.net/GAPIT, accessed on 19 June 2022) [57] using a mixed linear model (MLM)
accounting for population structure (Q) through a principal component (PC) analysis and
for relationships between individuals through a kinship (K) matrix. Stringent selection
of marker-trait associations (MTAs) was performed using the Bonferroni correction (with
p-value cut-off at 0.05) to avoid false positives. The R package ‘qqman’ [58] was used to
create the Manhattan plot representing all the MTAs. The genotypic variance explained by
each quantitative trait locus (QTL) was calculated using a linear model fitting the significant
MTAs ordered based on the strength of their association. The explained genotypic variance

(pG) was calculated as: pG = R2adj
H2 [59,60], where, R2adj is the adjusted R2 from the linear

model, and H2 is the heritability of the trait. Only the most significantly associated markers
were declared as putative QTLs and reported in the manuscript.

Box-and-whisker plots and barplots were generated using the R package ‘ggplot2’ [61]
to examine the effect and the allele frequencies of QTL, respectively. We tested for significant
differences between the groups of alleles using the t-test with ‘stats’ R package [49]. For the
candidate gene search, the latest wheat reference genome (IWGSC RefSeq v2.1) and gene
functional annotation information were downloaded from the URGI database [52]. High
confidence (HC) genes located within the identified chromosomal regions of the significant
QTLs were extracted. The genes with the functional annotation similar to the different
domains of gluten and allergens were selected as potential candidate genes.

4.6. Verification of Two Major QTLs

Electrophoretic analysis was performed to identify HMW-GS composition of the
experimental wheat cultivars. Crushed seeds of each cultivar were used to run the elec-
trophoresis. HMW-GS were separated by sodium-dodecyl-sulfate polyacrylamide gel
electrophoresis (SDS-PAGE), which was carried out according to the protein extraction
process of Singh et al. [62]. The HMW-GS were identified using the previously proposed
nomenclature by Payne and Lawrence [63].

For marker-assisted selection for disease, a marker linked to the rust resistance gene
Sr38-Yr1 was used. From the Illumina 25 K Infinium SNP array (SGS Institut Fresenius,
TraitGenetics Section, Gatersleben, Germany), a codominant marker IAAV8501 linked with
Sr38-Yr17-Lr37 locus (Paul Gruner pers. comm.) located on chromosome 2A (12,327,389 bp)
was tested on more than 50% of the cultivars.

Supplementary Materials: The following supporting information can be downloaded at: https:
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