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Abstract: The COVID-19 pandemic is an acute and rapidly evolving global health crisis. To better
understand this disease’s molecular basis and design therapeutic strategies, we built upon the recently
proposed concept of an integrated cell, iCell, fusing three omics, tissue-specific human molecular
interaction networks. We applied this methodology to construct infected and control iCells using
gene expression data from patient samples and three cell lines. We found large differences between
patient-based and cell line-based iCells (both infected and control), suggesting that cell lines are ill-
suited to studying this disease. We compared patient-based infected and control iCells and uncovered
genes whose functioning (wiring patterns in iCells) is altered by the disease. We validated in the
literature that 18 out of the top 20 of the most rewired genes are indeed COVID-19-related. Since
only three of these genes are targets of approved drugs, we applied another data fusion step to
predict drugs for re-purposing. We confirmed with molecular docking that the predicted drugs can
bind to their predicted targets. Our most interesting prediction is artenimol, an antimalarial agent
targeting ZFP62, one of our newly identified COVID-19-related genes. This drug is a derivative of
artemisinin drugs that are already under clinical investigation for their potential role in the treatment
of COVID-19. Our results demonstrate further applicability of the iCell framework for integrative
comparative studies of human diseases.

Keywords: data integration; network medicine; network biology; drug re-purposing; matrix

factorization

1. Introduction
1.1. The COVID-19 Pandemic

The ongoing COVID-19 pandemic caused by a new severe acute respiratory syndrome-
related coronavirus (SARS-CoV-2) is an acute and rapidly developing global health crisis
that has ravaged many countries worldwide. This virus is highly infectious due to asymp-
tomatic carrier transmission [1,2], and as a result, to date, 620 million people have been
infected, and more than six million lives have been lost [3]. Apart from exposing the short-
comings of healthcare systems, this pandemic devastated the economy, and as a result, we
are on the verge of a new economic crisis [4,5]. To ease these hazardous consequences, the
rapid development of an effective cure that can be applied immediately to reduce mortality
or morbidity is needed.

De novo drug discovery, which may last a decade or longer, is not feasible due to
the compressed timescale needed for easing the pandemic. Re-purposing the existing
drugs is a rapid and effective alternative to provide treatments by re-using drugs that
have well-established pharmacological profiles [6]. Hence, from the beginning of the
pandemic, the scientific community’s efforts were either to redirect the approved drugs

Int. . Mol. Sci. 2023, 24, 1431. https:/ /doi.org/10.3390/ijms24021431

https:/ /www.mdpi.com/journal/ijms


https://doi.org/10.3390/ijms24021431
https://doi.org/10.3390/ijms24021431
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-6242-8916
https://orcid.org/0000-0002-1290-853X
https://doi.org/10.3390/ijms24021431
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24021431?type=check_update&version=1

Int. . Mol. Sci. 2023, 24, 1431

20f22

targeting related viruses and assess their efficacy [7] or to develop efficient vaccines. As a
result of the global efforts, several vaccines using various technologies have been licensed,
and others are under development or clinical trials [8]. At this point, vaccinations have
started in the vast majority of the countries, but we are far from the coverage needed to
immunize most of the population (i.e., achieve herd immunity). Even if we achieve herd
immunity, it is possible that SARS-CoV-2 will become less severe, but more established
as a common infection [9]. In addition, the uncertainty about the efficacy of the existing
vaccines against the new variants of the SARS-CoV-2 [10,11] makes treatment options a key
factor for patients” health benefits.

SARS-CoV-2 is a (+)RNA virus that depends on the host cells to replicate/propagate
by reprogramming the cell to enforce its reproduction [12]. In particular, it reproduces in
the upper respiratory tract and it binds to a cellular receptor to enter a host cell, the exopep-
tidase angiotensin converting enzyme 2 (ACE2) [13]. Upon ACE2 binding, transmembrane
protease serine 2 (TMPRSS2) is required to prime the viral spike protein and allow the
virus to hijack the host cell via endocytosis [14,15]. The viral proteins interact with 332 host
protein targets [16] and so can perform viral functions by modulating cellular processes,
such as the regulation of the gene expression and ubiquitination [16]. An inflammatory
response to the SARS-CoV-2 infection is evidenced by 1910 differentially expressed host
genes (DEGs) in infected lung tissue [17].

1.2. Network-Medicine Drug Re-Purposing Methods

From the start of the pandemic, numerous network-based drug re-purposing methods
have been proposed (e.g., Zhou et al. [18], Sadegh et al. [19] and Gysi et al. [20] are some of
the most cited). In particular, Zhou et al. [18] created an interactome containing drug-target
interactions and protein—protein interactions. Since it was a study before the viral-host
interactors were published [16], they defined as proteins relevant for COVID-19 those
that are direct targets of previous human coronaviruses (HCoV) or are involved in crucial
pathways of HCoV infection. Then, they predicted drugs using a proximity measure based
on the shortest distance between the drug and the HCoV-host interactions. The approach
of Sadegh et al. [19] is based on a group of seed nodes, which can be viral proteins or human
genes. It creates a subnetwork containing the seeds and ranks the drugs targeting the seeds
using a centrality measure (degree, closeness, betweenness, or TrustRank). Finally, Gysi et
al. [20] used the human interactome and prioritized drugs by aggregating the predictions
of three different network-based methods: proximity, diffusion and an Al network. These
methods have two main limitations: they only predict drugs for genes already known to
be related to COVID-19 (or to HCoV in the case of Zhou et al. [18]), and they only use the
PPI network as the host molecular network. In a recently published work [21], we used an
NMTF-based data-integration framework to bridge the gap between SARS-COV-2 infection
mechanisms (the viral-host interactions) and the genes whose expression levels are altered
during SARS-CoV-2 infection in humans (the differentially expressed genes in disease,
DEGs). To this end, we fused viral-host interactions (for human host), human PPIs, drug-
target interactions and drug chemical similarities to identify new drug targets. A limitation
of that study was that only data coming from cell lines were fused (viral-host interactions)
and that the patient DEGs were only used in the downstream analysis to identify the set of
drug targets, rather than in a comparative study of diseased and control tissues.

1.3. Comparative Data Integration with iCell

A detailed understanding of the biology of SARS-CoV-2 is required to understand
the molecular basis of this disease and to design therapeutic strategies. To understand
this basis, we go beyond traditional biological network analysis, and we build upon the
recently proposed concept of an integrated cell, iCell [22]. It is based on Non-negative
Matrix Tri-Factorization (NMTF) [23] to fuse tissue-specific molecular interaction networks
of protein—protein interactions (PPI), gene co-expressions (COEX) and genetic interactions
(Gl) into an integrated model of a cell. The iCell framework was first applied to construct
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and compare case (cancer) and control (healthy) tissues for breast, prostate, lung and
colorectal tissues to uncover new cancer-related mechanisms or genes.

This comparison revealed genes that were expressed in both cancer and control cells,
but whose wirings (i.e., how their patterns of interactions with other genes change) in cancer
iCells were altered, whereas they were not necessarily altered in any of the constituent
tissue-specific networks. These rewired genes were statistically significantly enriched in
cancer drivers. Hence, these wiring alterations in cancer iCells were used to prioritize
and predict novel cancer-related genes; among them are genes that could not have been
identified using the traditional differential gene expression analysis. The role of these genes
in cancer was biologically validated by knockdown experiments followed by cell viability
assays. In addition, their role in cancer was also validated in the literature and also through
Kaplan-Meier survival curves of thousands of patients.

1.4. Contributions

To perform an integrative comparison of patient and cell line responses during COVID-
19 infection, we collected the host transcriptional response data to SARS-CoV-2 [17] consist-
ing of expressions in lung samples from COVID-19 positive patients and healthy individ-
uals, and in case and control human cell lines (A549, NHBE and CALU). We applied the
aforementioned iCell framework to these data, as illustrated in Figure 1, to create disease
and control iCells. The fusion of PPI, COEX and GI networks into an integrated model of a
cell differentiates us from the previous studies that used as the host molecular network only
the PPI network [18-20] and from our previous study [21], in which we created the host
molecular network by simply merging (rather than fusing with NMTF) these three different
omics data networks. We examined the robustness of our method by analyzing the cell
lines and the patient data. We found in patient iCells’ larger discrepancies between control
and infected networks than the cell-line-based infected and control iCells, suggesting that
the cell lines are not suitable to study the disease and that we should use the data from the
human samples instead. Hence, this is what we did in this study and what differentiates us
from the already published NMTF-based study [21], also impacting the results.

COVID-19 Control

Gene
co-expressions

Protein-protein
interactions

Genetic
Interactions

Figure 1. An illustration of the iCell method.

We demonstrate that iCells, which emerged from the NMTF-based fusion of the
molecular networks, better capture the functional organization of infected and control cells
than the constituent molecular networks. Comparison between the enriched functions, as
captured by Gene Ontology Biological Process (GO-BP) and Reactome Pathway (RP) terms,
between the infected patient and control iCells, reveals terms related to the human immune
response, such as the cellular defense response and cellular response to interleukin-1, which
are only enriched in the infected iCell. Thus, COVID-19 alters the functioning of the iCell
by activating its immune response. In addition, it is only the iCell networks, rather than
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the constituent data networks (PPI, GI and COEX), that are strongly rewired; less than
40% of edges are in common for control and infected networks. The DEGs are statistically
significantly more rewired in infected and control iCells than the background genes (the
“background genes” are those that are not differentially expressed in COVID-19 infection).
Hence, we hypothesize that other intensively rewired genes may also be disease-related,
and we prioritized genes according to their rewiring. We validated 18 out of the 20 most
rewired genes in patient iCells in “The COVID-19 Drug and Gene Set Library” [24], a
database consisting of drug and gene sets related to COVID-19 research. The two newly
predicted COVID-related genes, ZFP62 and ZNF286A, both ZINC finger (ZNF) proteins,
are likely to be relevant for the disease, since 6 out of the 18 validated genes are also ZNF
proteins. In recent studies, it has been shown that the expression of ZNF proteins restricts
SARS-CoV-2 infection [? ] and that ZNF proteins, as transcription factors, can also activate
their target genes to participate in anti-SARS-CoV-2 infection [26]. Interestingly, among
the 20 most rewired genes regarding infected iCells, only one gene ( H2ZAC20) could have
been identified using differential gene expression analysis. In addition, these genes are not
highly interconnected in the interactome (PPI network) and thus could not be identified
with traditional network-medicine approaches. This demonstrates that our data-integration
approach is the only one thus far that could uncover these genes, since it boosts the signal of
each of the constituent omics networks. Hence, the main advantage of our method emerges
from the data integration (fusion), which provides a more complete view of COVID-19
infection data.

Then, to predict potential candidate drugs to re-purpose for the top 20 newly identified
COVID-19-related genes in patients, we go beyond classical drug re-purposing, which is
based on using drugs targeting the genes. As demonstrated by Gysi Morelli et al. [20],
network-based methodologies are necessary to identify effective drugs that work by per-
turbing the gene’s subcellular network. Therefore, we applied Graph Regularized NMTF
(GNMTF) to fuse the infected-patient iCell with the known drug-target interactions (DTIs)
and drug chemical similarities (DCS) to predict potential drugs for re-purposing. We used
molecular docking to confirm the ability of the predicted drugs to bind to the predicted
targets. Two of the predicted drugs, NADH and fostamatinib, which target our newly
identified COVID-19-related genes more often than the other drugs (7 and 5 times, respec-
tively), are already under clinical investigations for their potential roles in the treatment of
COVID-19 (as per https://clinicaltrials.gov/ (accessed on 1 July 2022)). For the two newly
identified genes, our framework predicts two drugs: artenimol, an anti-malarian drug, a
derivative of artemisinin drugs, to potentially target ZFP62, and NADH, to potentially
target ZNF286A. Artenimol is an interesting prediction for targeting ZFP62, since this pro-
tein is involved in the positive regulation of transcription by RNA polymerase II, which is
known to act as an RNA-dependent RNA polymerase (RARP), and inhibiting RARP activity
is the known mode of action of other widely used COVID-19 drugs, such as remdesivir [27].
Finally, considering the evidence for the predicted drug—protein interaction, ZFP62 and
artenimol, and that NADH is already in a clinical trial, we conjecture that our second
prediction, ZNF286A targeted by NADH, may also be relevant.

2. Results

We created eight condition specific iCells capturing two COVID-19 conditions (infected
and control) for one tissue (lung tissue from patients) and three cell lines (A549, NHBE and
CALU). To do this, we collected the corresponding gene expression datasets from Blanco-
Melo et al. [17], which we used to create condition specific protein—protein interaction
(PPI) [28], gene co-expression (COEX) [29] and genetic interaction (GI) [28,30] networks.
(see “Creating cell-line and tissue-specific molecular interaction networks” in Materials and
Methods). Then, for each condition, we applied the iCell data-integration framework [22]
to fuse the corresponding condition-specific molecular networks, yielding eight iCells in
total. Note that we excluded from our study the A549-ACE2 cell line, since it is engineered
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to express the ACE2 receptor and our focus in on the real patient data. The sizes of all the
networks are presented in Table 1.

Table 1. Sizes of the networks. For each network, the table shows its numbers of nodes (column #Node)

and edges (column #Edge).
PPI COEX GI iCell

#Node  #Edge  #Node  #Edge  #Node  #Edge #Node  #Edge
hiﬁgd 9623 178,828 9286 593,544 6968 22,418 9623 837,077
ng‘g’l 9592 177,728 9253 591,607 6970 22,903 9592 829,609
Infected o201 q7ag00 o074 se5177 6933 22,027 9391 788,520
NHBE
Control
Nipe | 9531 177648 9204 585361 7095 22,863 9531 822,374
Infected o100 175830 9301 599549 6957 20,505 9434 805,284
CALU
Control 4149 169200 9021 564297 6536 18,391 9149 745,167
CALU
Infected 7o) ¢ 90,631 5845 241213 3743 8978 5916 319,549
Patient
Control  goch 168284 9420 609304 6739 20,143 9552 806,876
Patient

In the following sections, we show that control and infected iCells capture more
functional information than the constituent molecular networks (PPI, GI and COEX data),
which emerges from the NMTF-based fusion of the networks (detailed in section “COVID-
19 and control iCells are biologically coherent” below). Additionally, we show that iCells
better capture the rewiring differences between case and control than the constituent data
networks (detailed in section “Only iCells are intensely rewired in COVID-19” below).
We build upon this observation to prioritize genes according to their rewiring patterns,
regarding control and infected iCells, and thus to identify new potentially disease-related
genes (detailed in section “Uncovering new COVID-19-related genes with iCells” below).
For the 20 most rewired genes in the patient iCells, we predicted drugs for re-purposing by
applying the second step of data fusion based on Graph Regularized NMTF (detailed in
section “Predicting potential drugs for re-purposing” below).

2.1. COVID-19 and Control iCells Are Biologically Coherent

We assessed how well our iCells capture the functional organization of infected and
control cells, as described by Gene Ontology Biological Process (GO-BP) [31] and Reactome
Pathway (RP) [32] annotations. To do this, for each iCell, we exploited the co-clustering
interpretation of NMTF to cluster genes according to the similarity of their wiring patterns
in the data (using hard clustering procedure on matrix factor G; see details in Materials and
Methods, section “Clustering and enrichment analysis”). For comparison purposes, we also
applied the same clustering methodology, but when using the iCell framework separately
on each constituent data network in isolation from the others; i.e., we obtained clusters of
genes that are based on the constituent PPI network, COEX network, GI network or the
data fusion of them all (iCell network). In all the cases, the number of clusters, k, was set by
using the heuristic rule of thumb, k = , /4, where # is the number of genes [33]. Then, we
measured the enrichments of the obtained clusters of genes in biological annotations (see
section “Clustering and Enrichment Analysis”).

As presented in Figure 2A,B, all networks, except for genetic interaction (GI) networks,
have similar percentages of enriched clusters. More than 70% of clusters are enriched in
GO-BP annotations, and more than 80% of clusters are enriched in RP annotations. The
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observed discrepancy between the enrichments obtained when using the GI networks and
the ones obtained when using the PPI, and the COEX networks, can be attributed to the
smaller number of interactions or sparsity of the GI networks (i.e., the smaller numbers
of edges; see Table 1), which makes them less informative compared to PPI and COEX
networks. Importantly, iCells are more biologically coherent than any individual molecular
network alone, having larger numbers of genes with annotations enriched in their clusters:
as illustrated in Figure 2C,D, both infected and control iCells have at least 18% of their
genes enriched in GO-BP terms and 35% enriched in RP—more genes than are enriched in
the clusters of PPI, GI and COEX networks.

Enrichment in RP
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Figure 2. Clusters in iCells have more enriched genes. In panel (A), for each tissue and for each
network type (x axis) the bar plot shows the percentages of the clusters that have at least one
Gene Ontology Biological Process (GO-BP) annotation enriched. Panel (B) shows the same, but for
Reactome Pathway (RP) annotations. In panel (C), for each tissue and for each network type (x-axis),
the bar plot shows the percentages of annotated genes in the clusters that have at least one GO-BP
annotation enriched in their clusters. Panel (D) shows the same, but for RP annotations.

These results confirm the previously observed property in cancer: that iCells capture
additional functional information that emerges from the NMTF-based fusion of the molec-
ular networks [22]. However, unlike in the original iCell study, in which cancer networks
were less biologically coherent than the control ones in terms of clusters of functionally sim-
ilar genes [22], the COVID-19 infected networks are not less biologically coherent than the
control ones. Importantly, the difference is that although the numbers of enriched GO-BP
and RP terms in the infected and control iCells are comparable, the enriched functions are
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very different. In particular, the Jaccard similarity (a measure of overlap between two word
sets) between the enriched GO-BP terms is at most 0.31 and between the RP terms is at most
0.65, for infected and control iCells (see Table 2). In addition, as reported in Supplementary
Table S1 in the Supplementary File S1, the enriched functions in the constituent PPI, COEX
and GI control and infected data networks are also very different (i.e., the Jaccard similarity
between the enriched functions is also small). This demonstrates that COVID-19 alters the
functioning of the iCells and their constituent PPI, GI and COEX networks with respect to
the control. However, since we have already demonstrated that iCells are more informative
and biologically coherent than their constituent networks, we will analyze them further to
uncover which functions are altered during COVID-19 infection. The uniquely enriched
GO-BP and RP terms for the infected iCells in three cell lines and the patient data are
reported in the Supplementary File S2.

As presented in Supplementary Table S2, the number of uniquely enriched GO-BP
terms in infected iCells compared to the controls is at least double that of uniquely enriched
RP terms in the iCells of cell lines and almost five times larger in the patient iCell. Hence,
we focus our analysis on the set of uniquely enriched GO-BP terms to uncover the altered
functions in the infected iCells. In particular, we used REVIGO [34] to summarize the list
of uniquely enriched GO-BP terms. We observe that terms related to immune response
are over-represented in the infected-patient iCell (approximately 25% of the uniquely ex-
pressed GO-BP terms). These GO-BP terms include well-known host responses against
viral infection, such as positive regulation of natural killer (NK) T cell activation, positive
regulation of interleukin-6 production and positive regulation of interferon-alpha produc-
tion. The over-representation of the immune response processes is in line with the so-called
“cytokine storm” produced during the SARS-CoV-2 infection [35]. The hyperactive immune
response is characterized by the release of interferons, interleukins, tumor necrosis factors,
chemokines and several other mediators [35]. Importantly, the inflammation response
produced by the patient is associated with adverse outcomes [36]. Hence, our iCell-based
methodology is biologically coherent, and the functional comparison between control and
infected iCells confirmed the known mechanisms of COVID-19 infection. In the following
sections, we identify which genes drive these functional changes, and we prioritize them
as potentially COVID-19-related genes. As a final step, we propose drugs for repurposing
targeting their gene products.

Table 2. Enriched functions in infected and control iCells are different. For each cell line/patient
(column 1), we computed the number of enriched functions (GO-BP and RP, column 2) in the control
(column 3) and the infected (column 4) cells, and the Jaccard similarity (column 5) between the
enriched functions in the control and the infected iCells.

Cell Line Annotation #Enriched in #Enriched in Jaccard
Type Control Infected Similarity

GO-BP 1193 1520 0.31

A549 RP 832 872 0.65
GO-BP 1201 1046 0.28

NHBE RP 752 852 0.57
GO-BP 1028 929 0.24

CALU RP 743 723 0.65
GO-BP 1145 828 0.21

Patient RP 862 618 0.53

2.2. Only iCells Are Intensely Rewired in COVID-19

Since the iCells are biologically coherent and capture more information than the
constituent data networks, we investigated how their functioning/wiring has been altered
in the disease with respect to the control. We demonstrate that only the iCells are intensely
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rewired in COVID-19 by also investigating the rewiring of each of the constituent PPI,
COEX and GI data networks (detailed below).

As the first step, we measured the overlap between the networks of control and
infected tissues in terms of the overlap between the nodes and edges. As reported in
Supplementary Tables S3 and S4 in Supplementary file S1, while the PPI, COEX and
GI networks of cell lines are very similar in control and infected conditions (with more
than 95% common nodes and 83% common edges), iCells, as presented in Figure 3, are
the only networks that are strongly rewired, having less than 40% common edges for
control and infected conditions. Thus, cell-line-based iCells better capture the differences
between cases and controls than the constituent molecular networks analyzed individually.
The patient networks exhibit much larger discrepancies between control and infected
networks in terms of common nodes and edges than the networks of cell lines. As shown in
Supplementary Table S4 in Supplementary file S1, the percentage of common nodes (genes
that are expressed in both infected and control) in the constituent molecular networks and
the iCells of patient data is between 51.5% and 57.63%. Interestingly, while the percentage of
common edges in the constituent patient data networks varies between 39.9% and 51.77%,
it drops to 13.61% in iCells (see Supplementary Table S3 in Supplementary file S1). This
suggests that for the patient data, iCells also better capture the differences between cases
and controls than any constituent molecular network.

pr—— I ‘
- 80 H mmm COEX ]
2\_ = Gl
n 70} iCell |
()]
5
S 60}
©
£ 50/
3
= 40+
[Tie
o
O 30}
o))
©
]
€ 20+
()]
o]
g 10}
[« 8

0 "
A549 NHBE CALU Patient

Figure 3. Only iCells are intensely rewired in COVID-19. For each cell line and the patient data
(x-axis) and for each type of network (color coded), the percentage of rewired edges (y-axis) between
the infected and the control networks is given.

Our results not only show that the functioning of cells is altered by COVID-19 infection,
but also indicate that the cell lines may not be suitable to study the disease, because of
the large discrepancy between the results for patient and cell-line data. This discrepancy
potentially explains why drug re-purposing based on cell lines tends to fail when tested in
patients. For example, early in the pandemic, chloroquine and hydroxychloroquine had
been used as potential drugs for treatment and prevention of COVID-19 due to adequate
results in cell line experiments. However, recent reports [37] from larger trials in patients
have shown that hydroxychloroquine did not reduce deaths from COVID-19 and probably
does not reduce the number of people needing mechanical ventilation.
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2.3. Uncovering New COVID-19-Related Genes with iCells

As shown above, the wiring patterns of iCells are different from those of the constituent
PPI, COEX and GI networks and are the only ones that are intensely rewired in COVID-19.
To assess if the most rewired genes are related to COVID-19, we used graphlets, the most
sensitive measure of network topology to date [38], to quantify the rewiring around genes
in networks. In particular, we computed the dissimilarity between the corresponding
graphlet degree vectors (GDVs) in COVID-19 and control iCells using graphlet degree
vector distance (GDVD; see Materials and Methods, section “Capturing the wiring patterns
of biological networks”). We examined if the genes whose protein products bind to the
SARS-Cov-2 proteins [16] (termed viral-host interactors (VHIs)), and the differentially
expressed genes (DEGs) in COVID-19 [17] are significantly more rewired than the other
genes (termed “background genes”) between infected and control iCells. To do so, we
compared the distribution of the GDVDs of the VHIs and of the DEGs with the distribution
of the GDVDs of the background genes. These distributions are statistically significantly
different if the p-value of the non-parametric Mann-Whitney test is smaller than or equal
to 0.05.

As presented in Table 3, in iCells of all examined cell lines and patient data, the VHIs
were less rewired than the background genes (with p-value < 3.96 x 10~3) in all iCells
except for CALU-cell-line iCell (p-value ~ 0.15). This shows that VHI genes do not directly
alter the functioning of the cell. On the other hand, DEGs were significantly more rewired
than the background genes (with p-value < 4.03 x 10~3), which suggests that not only was
the expression of these genes altered during the infection, but also their functioning, since
their interacting partners changed. We built upon this observation by hypothesizing that
other intensely rewired genes in iCells may also be COVID-19-related, so we prioritized
genes according to the extent of their rewiring.

Table 3. Only DEGs were significantly rewired between control and infected iCells. For each cell
line and the patient data (column 1), we computed the average rewiring of VHIs (column 2), DEGs
(column 3) and background genes (column 4). We compare the rewiring of the VHIs and the DEGs
with the background genes, and the entries are statistically significant are in bold (the corresponding
p-value of the Mann-Whitney test is in parentheses).

Cell Line Rewirement of VHIs Rewli)r]e;gesznt of BaI:li;vri;i?;Ig:rfes
A549 0.037 0.064 (p value < 0.01) 0.044
NHBE 0.038 0.063 (p value < 0.01) 0.043
CALU 0.053 0.072 (p value < 0.01) 0.057
Patient 0.073 0.088 (p value < 0.01) 0.085

For each cell line and the patient data, we prioritized the 100 most rewired genes in
the iCells of control versus infected cells. Then, we computed the pairwise overlap between
the 100 most rewired genes among all the studied samples. As shown in Supplementary
Table S5 in Supplementary S1, the overlap between the 100 most rewired genes in iCells of
the cell lines is, on average, 18.3 genes. However, the overlap between the rewired genes
in patient data and cell lines is at most 11 genes. This overlap is statistically significantly
smaller than the aforementioned overlap in the cell lines (p-value = 0.032; we used the
two-sample Kolmogorov-Smirnov test to compare the distributions of the overlapping
genes). This discrepancy further confirms that the cell lines are unsuitable for studying the
disease. Thus, we focus only on the most rewired genes in the patient data.

In the previous iCell-based study [22], the most rewired genes were not differentially
expressed—i.e., their role in the disease was not connected to changes in the transcription.
To assess whether our 100 newly prioritized genes are differentially expressed, we first
found how many of them are DEGs based on the data from the lung samples of COVID-19-
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infected patients [17]. Among the 100 most rewired genes, only five (ANXA3, HIST2H2AC,
IRF2, LBH and TNNC1) were DEGs. To further examine this, we also collected transcrip-
tomic data (RNA-Seq) from blood samples of COVID-19 infected patients and healthy
individuals from the study of McClain et al. [39] (GEO accession number, GSE161731).
From the bulk RNA-Seq data, we computed the DEGs using the limma package [40] (for
details, see “Differentially expressed genes from RNA-Seq data” in Materials and Methods)
and identified five other genes (LIPT1, PFDN5, RBAK, TFDP1 and ZNF302) as DEGs.
Thus, only 10 of our 100 newly prioritized genes were differentially expressed. Hence,
our iCell-based analysis was complementary to the differential expression analysis and
identified genes whose transcriptional patterns have not changed due to COVID-19 but
that are important for the disease.

Having verified that our method identifies genes that are not differentially expressed
but are related to the COVID-19 infection, we explored if these genes could have been
identified with traditional network medicine approaches. These approaches are based on
the assumption that the cellular components associated with a disease aggregate in the same
neighborhood of the PPI network (i.e., in the human interactome), forming disease modules
(clusters) [41]. However, in the control and the infected PPI networks, the 100 most rewired
genes are not inter-connected; only six of them are direct neighbors. Moreover, their average
distance is 3.96 in the control PPI network and 4.12 in the infected PPI network. These
distances are higher than the average shortest path distance in both PPI networks, which
is 2.84. Finally, these genes are not central in the PPI network: their average betweenness
centrality is 4.78 x 105, which is smaller than the average betweenness centrality in
the network (1.93 x 10~%). Hence, these newly identified genes are scattered in the PPI
networks, not forming modules (clusters), and hence could not have been identified with
traditional network-based approaches that rely on clustering (modularity) in a single type
of omic network.

Then, we performed literature curation for the 20 most rewired genes in patient iCells.
We validated 18 of these genes in “The COVID-19 Drug and Gene Set Library” [24], a
collection of drug and gene sets related to COVID-19 research (see Table 4, column External
Validation). The high validation rates confirm that our methodology is able to uncover
COVID-19-related genes from patient-tissue-based experiments. Importantly, 6 out of
the 18 validated genes code for zinc finger (ZFN) proteins (e.g., ZEN35, ZFN41, ZNF189
and ZNF597). ZEN proteins are involved in a wide range of molecular functions, such as
transcriptional regulation, ubiquitin-mediated protein degradation, signal transduction,
DNA repair, cell migration and the immune response [42]. Thus, SARS-CoV-2 infection
may activate the response of the human cells by these proteins. This indicates that the two
new genes (also ZNF proteins) that have never been associated with COVID-19, ZFP62 (a
zinc finger protein involved in nucleic acid binding) and ZNF286A (another zinc finger
protein that has DNA-binding transcription factor activity), are likely to be relevant for the
disease. In addition, recent studies have shown that expression of ZNF proteins restricts
SARS-CoV-2 infection [? ] and that ZNF proteins, as transcription factorsm can also activate
their target genes to participate in the host response against SARS-CoV-2 infection [26].

Furthermore, the majority of the ZNF proteins reported in Table 4 participate in the
herpes simplex virus (HSV-1) infection pathway. This observation could indicate that
either the human cell responds similarly to both viruses, or that HSV-1 is reactivated in
SARS-CoV-2 patients. The detection of pulmonary HSV-1 in the later phase of SARS-CoV-2
infection has been widely reported. It occurs in parallel with increases in CD38+, HLADR+
and CD8 T-cells and decreased expression of interferon-stimulated genes [43]; in other
words, with dysregulation of the patient’s immune response produced by the primary
infection. Although whether this reactivation has an impact on disease severity remains an
open question, recent studies hypothesized that without the help of HSV-1, the SARS-CoV-2
virus may not be able to cause serious illness or death in humans [44]. Thus, prophylactic
treatment to contain HSV-1 [44], or the control of the ZNF proteins [? ], could be vital in the
fight against SARS-CoV-2.
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Table 4. Twenty most rewired genes in patient iCells. For each of the 20 most rewired genes in patient
iCells of infected versus control (column 1), we report the number of other studies that have reported
it as a COVID-19-related gene (column 2) and if it is a differentially expressed gene (column 3). In
addition, we report if it is already targeted by an FDA-approved drug (column 4) and the potential
drug for re-purposing based on our framework (column 5). Finally, for each predicted DTI, we report
its binding free energy (column 6) computed using AutoDock Vina v1.2 [45]. Note that we could not
find a experimentally validated or predicted protein structure for RPSAP58, so we could not perform
the docking for it. Additionally, we excluded from the drugs the small chemical compounds (zinc
chloride, n-formylmethionine and acetylsalicylic acid).

Gene External Validation Diff. Exp. Existing Drug Potential Drug Binding Free
(#Studies) (Drugbank) for Re-Purposing  Energy (kcal/mol)
ZNF35 No NADH —9.8
RPSAP58 3 No NADH -
ZNF562 1 No NADH —94
OLFM2 5 No FOSTAMATINIB -9.6
CYB561 8 No ZINC CHLORIDE -
ZNF41 4 No FOSTAMATINIB —8.5
LCMT2 5 No LEUCINE Nfgfg}é}ﬁ?la -
CSTF2T 3 No NADH —10.8
NUP85 11 No CLADRIBINE —7.2
REEP4 9 No FOSTAMATINIB —9.3
ASRGL1 6 No ASPARTIC ACID NADH 9.7
ASPARTACIAL
ZFP62 - No ARTENIMOL —7.6
CBX5 10 No COPPER ACET\;?S%LICYLIC -
KLHL9 7 No ARTENIMOL -10.6
ZNF189 6 No FOSTAMATINIB -9.9
ZNF597 4 No NADH -10.8
H2AC20 7 Yes ARTENIMOL —8.2
CSTF1 1 No FOSTAMATINIB -13
ZNF507 9 No NADH —8.6
ZNF286A - No NADH -10.7

Apart from the ZNF genes, we also found other interesting therapeutic targets among
our most rewired genes. We found that the pathways affected by the dysregulation of
the 20 most rewired genes in patient iCells correlate with the majority of the confirmed
COVID-19 clinical symptoms, such as anosmia [46] (OLFM2 and REEP4), myopathy [47]
(KLHLD9), renal deficiency [48] (NUP85) and changes in the immune response [35] (CBX5
and CSTF2T). Other genes are related to symptoms that are still under investigation, such as
neurological sequels [49] (CYB561 and LCMT2) and infertility [50] (RPSAP58 and ASRGL1).

Our results demonstrate that the changes in the wiring patterns of the molecular
networks during COVID-19 infection, as captured by graphlets in iCells, can uncover new
disease-related genes. These genes are mainly related to the host’s immune response to
infection. Importantly, these newly identified genes could not have been identified with
either network-medicine- or differential-expression-based approaches that rely on a single
type of omic data. This demonstrate the power of our data fusion approach and its ability
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to identify disease-related genes. A key remaining question is the potential usage of these
genes as drug targets for the treatment of COVID-19, which we investigated next.

2.4. Predicting Potential Drugs for Re-Purposing

To predict potential candidate drugs to re-purpose for our 20 prioritized genes (COVID-
19-related), we applied the second step of data fusion based on Graph-regularized Non-
negative Matrix Tri-Factorization (GNMTF). It is inspired by a similar framework that was
successfully utilized for ovarian cancer to stratify patients, predict novel cancer-related
genes and propose drugs for re-purposing [51]; and more recently also for COVID-19, to
understand SARS-CoV-2 infection mechanisms and to propose drugs for re-purposing [21].
However, in that study, we only fused data from cell lines with drug—target interactions.
In addition, the patient DEGs were only used to identify the set of the common neighbor
genes rather than to create disease and control tissues. In the approach presented in this
papet, to overcome these limitations, we first generated disease and control iCells. Then, we
used graph-regularized NMTF to fuse patient iCells with the data on known drug-target
interactions (DTIs) and drug chemical similarities (DCS). We used this framework to predict
drugs for re-purposing that target the most rewired genes between the patient control and
disease iCells. The COVID-19 patient iCell and the DTI network are represented by their
adjacency matrices, Gj,r and Ry, respectively; the DCS network is represented by its
Laplacian matrix, L. The DTI matrix is decomposed into low-dimensional matrix factors
Rip = GiyrHin G2T , Where G; is the drug matrix factor (for details, see Equation (1)). The
network structure (topology) information from the DCS network was incorporated into
the data fusion by using the regularization term, tr(G, LGy) (see Section “Predicting New
Drug-Target Interactions”).

Before using our framework to predict novel DTIs for COVID-19, first we validated that
it captures the relationships between the drugs, i.e., that the drug cluster indicator matrix,
G,, groups together drugs having similar DrugBank “Drug Category” (DC) annotations.
We did this by following the approach of Zambrana et al. [21]; we clustered the drugs
by applying the hard clustering procedure to the drug cluster indicator matrix, G,, and
then we measured the enrichments of the produced clusters in DC annotations (for more
details, see Materials and Methods, section “Clustering and enrichment analysis”). As
illustrated in Supplementary Figure S1 in Supplementary File S1, more than 75% the
drug clusters are enriched in drug categories, for both the cell lines and the patient data,
indicating that our approach produces functionally coherent results. To assess if the
observed enrichment is greater than or equal to an enrichment that may be obtained by
chance, we performed a permutation test (detailed in Materials and Methods, section
“Clustering and enrichment analysis”). The enrichments of the drug clusters are statistically
significantly larger compared to those in the randomly generated clusters (100 permutations,
p-value < 0.01), confirming that our clustering of drugs is meaningful. Thus, we exploited
the drug clusters to predict novel drug—target relations.

In particular, we used this framework to predict drugs for re-purposing, targeting the
20 most rewired genes in patient iCells. To predict new, previously unobserved drug-target
interactions, we used the matrix-completion property of the reconstructed drug-target rela-
tion matrix, EE ~ GingHiz GzT . Each entry of the reconstructed matrix (i.e., a drug-target
pair) contains an association score, s, which can be interpreted as a relative measure of confi-
dence for each drug-target association. We consider a new entry (that is, not in the original
DTI matrix) as a predicted DTT if its association score is higher than the mean of the scores
of the already existing DTIs. Based on that criterion, the predictions for the top 20 rewired
genes are shown in Table 4 (column, Potential drug for re-purposing). The most frequent
drugs in the list are NADH, a nutraceutical targeting eight genes, and fostamatinib, a drug
initially used to treat chronic immune thrombocytopenia, targeting five genes. NADH is
the reduced form of NAD+, and both are the forms of the coenzyme nicotinamide adenine
dinucleotide (NAD), which is involved in numerous energy metabolism pathways, such
as glycolisis [52]. NAD+ levels decline with aging, which might be a major contributor
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to the age-dependent severity of COVID-19 symptoms [53]. In a recent study [54], it was
suggested that a deficiency of NAD+ may be a primary factor related to the SARS-CoV-2
disease spectrum that increases the risk for mortality. NAD+ deficiency impairs SIRT1
function, modulating cytokine production; the uncontrolled production of cytokine, the
so-called cytokine storm, has been related to severe symptoms of COVID-19 [55]. Thus,
nutritional support with NAD+ and SIRT1 activators could minimize disease severity if ad-
ministered prophylactically or therapeutically [54,56]. The other most frequently predicted
drug, fostamatinib, is already under clinical trials for its potential role as a treatment against
COVID-19 (in 3 studies at https://clinicaltrials.gov/ (accessed on 1 July 2022)).Thus, our
most frequently predicted drugs are already being investigated in clinical trials or in other
studies for their roles against COVID-19.

For the two newly predicted COVID-19-related genes, ZFP62 and ZNF286A, there do
not exist any drugs targeting their gene products. Hence, we applied our data integration
framework and predicted artenimol, an anti-malarian drug, as potentially targeting ZFP62,
and NADH as potentially targeting ZNF286A. The interesting one is artenimol, a derivative
of artemisinin [57] drugs. This family of drugs is already under clinical investigation
for their potential role in the treatment of COVID-19. Artenimol targets ZFP62, a zinc
finger protein involved in the positive regulation of transcription by RNA polymerase 1I,
which is known to act as an RNA-dependent RNA polymerase (RARP) [58]. Importantly,
inhibiting RARP activity is the known mode of action of other COVID-19 tested drugs, such
as remdesivir [59], and of other drugs recently proposed for repurposing for COVID-19,
such as suramin [60]. Thus, there is evidence that both the drug (artenimol) and the target
(ZFP62) are relevant to the disease, further indicating the relevance of our predicted drug-
target interaction of artenimol with ZPF62. Finally, the relevance of ZFP62-artenimol and
the ongoing research on NADH’s role in treating severe COVID-19 symptoms implies that
the other predicted drug-target interaction, ZNF286A targeted by NADH, may also be
relevant for COVID-19.

We further validated our 20 highest-scoring drug repurposing predictions using
molecular docking (we used the state-of-the-art docking method AutoDock Vina v1.2 [45]
with its default parameters, as detailed in Materials and Methods, section “Predicting new
drug-target interactions”). Note that we could not find a experimentally validated, or
predicted protein structure for the RPSAP58 gene, so we could not perform the docking for
it. Additionally, we excluded from the drugs the small chemical compounds (zinc chloride,
n-formylmethionine and acetylsalicylic acid). As presented in Table 4 (column, Binding free
energy), the binding free energy values for all the predicted DTIs are all strongly negative,
ranging from —7.7 to —13 kcal/mol. To interpret these results, we converted the free energy
to the dissociation constant, K;, which relates to the drug concentration. The lower the
K4 value (lower concentration), the higher the binding affinity of the drug. As illustrated
in Supplementary Table S6 (column, Dissociation constant), all our proposed DTIs have
favorable binding activities, including fourteen drug repurposing predictions with strong
binding affinities in the nanomolar range (10~7 < K; < 10~?) and two predictions with
moderate binding affinities in the micromolar range (1074 < K; < 107°). All of our
predicted DTIs have a very small dissociation constant, K;, which confirms that the drugs
can bind to the predicted targets. These favorable docking results further confirm the ability
of predicted drugs to bind to the predicted targets.

For the completeness of the study, we provide in Supplementary File S3 the list of
the drugs for repurposing targeting the gene products of the 100 most rewired genes. The
most frequently recommended drugs for repurposing are fostamatinib, targeting 22 gene
products; NADH, targeting 20; zinc, targeting 16; and rtrenimol, targeting 15. Apart from
the already discussed drugs (fostamatinib, NADH and artenimol), zinc is a supplement
that can reduce mortality in patients with severe pneumonia [61] and has been already
under clinical trials for its potential role as a treatment against COVID-19 (in 77 studies at
https:/ /clinicaltrials.gov/ (accessed on 1 July 2022)). Among this extended list of predicted
DTIs, we distinguish HISTIH1C, a histone-related gene, targeted by artenimol, since this
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gene is related to the transcriptomic immune profile of COVID-19 patients [62]. In addition,
we found that the gene products of 73 out of the 100 most rewired genes are targeted by
drugs already under investigation for a role in the treatment of COVID-19. These high
literature validation rates indicate that the remaining DTIs for the 100 most rewired genes
in COVID-19 (in Supplementary File S3) are also disease-related, which we provide for
future validations to the scientific community.

In conclusion, our methodology can uncover new potential disease genes and also
predict potential drugs targeting their protein products, opening the way to new treatments.

3. Discussion

We show that the iCell methodology is not only applicable to studying cancer [22]
but also to studying COVID-19, uncovering new disease-related genes that could not have
been identified by traditional differential expression analysis. In particular, among the top
100 prioritized genes, only ten could have been identified using differential gene expression
analysis (we used blood and lung samples). This verifies that our approach is complemen-
tary to the traditional differential gene expression analysis in the context of human diseases.
When we analyzed the protein—protein interactions of the top 100 prioritized genes, we
observed that the newly identified disease-related genes are not highly interconnected and
do not form a disease module in the PPI network (basic assumptions of network medicine).
Hence, these genes could not be identified when each data type is considered in isolation,
further demonstrating the power of data fusion.

Our data-integration framework is versatile and can be extended to include more types
of omics data. For instance, if there were available time-series data for the disease, we could
have created time-resolved control and infected iCells. By comparing these time-resolved
iCells, we could uncover the altered genes at each stage of the infection and identify the
disease’s potential drivers. By comparing different time-resolved iCells, it would be easier
to separate disease-induced from disease-causing genes, which are not always separated
when comparing the transcriptome of diseased and healthy subjects [63].

Furthermore, we extended the iCell methodology to predict, for the newly identified
disease genes, potential drugs for re-purposing to target their protein products. Interest-
ingly, none of our top 20 prioritized genes and none of the seven drugs that we predicted
to target them were identified in our previous integrative study of COVID-19 [21]. This
highlights the complementarity of the two approaches; despite the fact that they both use
NMTF to integrate biological data, they are two different heuristics that gain new and
different insights into COVID-19.

We believe that our findings pave the way for new treatments that may be necessary
due to the unknown efficacy of the existing vaccines against the new variants of the
disease [10,11]. However, a limitation of this study is that the newly proposed COVID-19-
related genes and the predicted drugs for re-purposing need to further be validated by
wet-lab experiments. Finally, our extended iCell methodology is universal and could be
used to analyze any disease that has molecular data available that are similar to the data
used in this study.

4. Materials and Methods
4.1. Creating Cell-Line and Tissue-Specific Molecular Interaction Networks

We collected three human molecular interaction datasets: experimentally validated
protein—protein interactions (PPIs) from BioGRID version 3.5.182 [28], genetic interactions
(GIs) from BioGRID version 3.5.182 [28] and SynLethDB [30], and gene co-expressions
(COEXs) from COXPRESdb version 7.3 (file name: Hsa-m.c7-0, the one containing the
higher number of samples). We also collected diseased and control tissue-specific gene
expression data from Blanco Melo et al. [17]. In that study, we only considered genes
whose expression value was measured and that have at least one reported protein—protein
interaction in BioGRID (as PPIs are the most direct evidence that genes interact).



Int. . Mol. Sci. 2023, 24, 1431

15 of 22

For each cell line and for each molecular interaction dataset, we generated a tissue-
specific molecular interaction network in which nodes represent genes (or their protein
products) that are expressed in the cell line, and in which nodes are connected by edges
if the corresponding genes interact in the corresponding molecular interaction dataset.
Note that we considered a gene to be expressed in a given cell line if its expression value,
logo(TPM + 1), is greater than or equal to 1 in 50% or more samples. In this way, we
obtained three (PPI, GI and COEX) cell-line-specific molecular interaction networks for
each tissue.

We used the same procedure to create tissue-specific networks of lung samples from
COVID-19 positive patients and for SARS-CoV-2 infected cell lines: A549, NHBE and
CALU. We also created the corresponding control networks (not infected) in the same way.
The sizes of the generated networks are presented in Table 1.

4.2. Gene Annotations

From the Reactome database [32], we collected the Reactome Pathway (RP) annotations
of the human genes. We also collected from Gene Ontology [31] the Biological Process (GO-
BP) annotations of the genes. All annotations were collected in March 2020. In addition,
from BioGRID database [28], we collected the list of 332 proteins that are the interactors
of SARS-CoV-2 proteins [16]. Finally, we collected the list of 1910 differentially expressed
genes (DEGs) in the lungs of COVID-19 infected patients [17].

4.3. Differentially Expressed Genes from RNA-Seq Data

We collected expression data (RNA-Seq) from blood samples of COVID-19 infected pa-
tients and healthy subjects from the study of McClain et al. [39] (GEO omnibus: GSE161731).
We used the limma package [40] to compute the differentially expressed genes. To pre-
process the RNA-Seq data, we used the raw read counts in counts per million (CPM) and
filtered out the little-expressed samples and genes. Using log-CPM, we computed the Q1
median of all samples and used it as a threshold to remove those samples with their Q3
lower than or equal to this threshold. After filtering, we normalized the RNA-Seq data
using the methods suggested by Ritchie et al. [40]: trimmed mean of M-values [64] and
variance modeling at the observational level [65]. Then, to compute the DEGs, we used
the procedure of limma, a gene-wise linear model, meaning that each gene was tested
independently to check whether the expression data of the infected samples was up or
down-regulated with respect to the healthy samples.

4.4. Drug Data

We collected the drug-related data from the DrugBank database (version 5.1.3) [66].
We obtained 3895 drug-target interactions (DTIs) between the 11 = 5916 gene products
(proteins) in our infected-patient iCell and the n, = 8279 drugs (FDA-approved and
experimental). These interactions were captured by the DTI relation matrix R}}*"2. We
also collected the Simplified Molecular-Input Line-Entry System (SMILES) information of
these 1, drugs to create the drug chemical similarity (DCS) network. Namely, we used the
Tanimoto similarity coefficient [67] to compute the pairwise chemical similarity between
the SMILE representations of the drugs. Then, we created the DCS network by retaining
only the top 5% the most similar drug pairs, which resulted in 1,727,436 links.

4.5. Creating Cell-Line and Tissue-Specific iCells

All molecular interaction networks, i (PP1, GI and COEX), are represented by their
adjacency matrices, A;, symmetric matrices in which entry A;[u][v] equals one if genes
u and v interact in network 7 and equals zero otherwise. Following iCell’s data-fusion
framework [22], all adjacency matrices, A;, were simultaneously decomposed into products
of three matrix factors, G, S; and GT, as: A; ~ G- S; - GT, where G is interpreted as the
cluster indicator matrix of genes (grouping n genes into k clusters) that is shared across
all decompositions and hence allows learning from all data, and S; was interpreted as the
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compressed representation of network i (that indicates how the k clusters of genes relate to
each other in network 7). In this study, we set the number of clusters, k, using the rule of
thumb k = /(n/2), where n is the number of genes [33].

This decomposition was performed by minimizing the following Multiple Symmetric
Non-negative Matrix Tri-Factorization (MSNMTF) objective function:

: T2
Jmin le 14i = G- S;-G'|IE,
where || - || denotes the Frobenius norm.

This minimization problem is computationally intractable (as a polynomial of order 6),
and thus we heuristically solved it with a fixed point method that, starting from an initial
solution, iteratively uses multiplicative update rules to converge towards a locally optimal
solution [22].

After minimization, following iCell’s methodology solution [22], we used the obtained
matrix factors to create an integrated network that encompasses all input networks. This
integrated network was obtained by thresholding the matrix G - GT by using row- and
column-centric rules to preserve only the strongest 1% of relationships in each row and
column. In the co-clustering interpretation of NMTE, each row of G corresponds to a gene,
each column of G corresponds to a cluster and the value G[u][i] (in row u, column i) is the
closeness of gene u to cluster i. We extracted clusters of genes from G by using the hard
clustering procedure [68], in which gene u is assigned to the cluster C(u) to which it is
closest in G, i.e., C(u) = argmaxt_, G[u][i].

4.5.1. Clustering and Enrichment Analysis

In the co-clustering interpretation of NMTF, each row of matrix factor G corresponds
to a gene, each column of G corresponds to a cluster and the value G[u][i] (in row u, column
i) is the closeness of gene u to cluster i. We extracted clusters of genes from G by using the
hard clustering procedure [68], in which gene u is assigned to the cluster C(u), to which it is
closest in G—i.e., C(u) = argmax*_, G[u][i].

We assessed the biological relevance of the clusters of genes produced by the iCell
framework by using the following enrichment analysis. For a given iCell, we extracted the
clusters of genes from matrix factor G by using the hard clustering procedure described
above, and we measured the percentages of these clusters that are enriched in Gene
Ontology Biological Process (GO-BP) or Reactome Pathway (RP) annotations.

The probability that an annotation is enriched in a cluster is:

- E ()

where N is the size of the cluster (only annotated genes from the cluster are taken into
account), X is the number of genes in the cluster that are annotated with the annotation
in question, M is the number of annotated genes in the network and K is the number
of genes in the network that are annotated with the annotation in question. A cluster is
significantly enriched if the enrichment p-value, after Benjamini-Hochberg correction for
multiple hypothesis testing, is lower than or equal to 0.05. We also measured the quality of
the clustering by computing the percentage of genes having at least one of their annotations
enriched in their clusters of all annotated genes.

To assess if an observed enrichment is greater than or equal to enrichment by chance,
we randomly shuffled (permutated) the values in the gene matrix factors. Then, we
computed the times, 7, that a permutation (i.e., a random enrichment) has enrichment
greater than or equal to the observed one. We repeated thils process for n = 100 times and

rt

we computed the p-value of the permutation test as p = ;7. We considered an enrichment

to be statistically significant if the corresponding p-value was lower than or equal to 0.05.
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In the Results section, “Predicting potential drugs for re-purposing,” we followed
the same procedure to obtain clusters of drugs from matrix factor G, and to measure the
percentages of the produced clusters that are enriched in Drug Categories (DC) (collected
from DrugBank [66]).

4.5.2. Capturing the Wiring Patterns of Biological Networks

As graphlets are the most sensitive measure of network topology to date [38], we used
them to capture the local wiring patterns around nodes in networks. Graphlets are small,
non-isomorphic, induced sub-graphs of a large network that appear at any frequency [69].
Within a graphlet, symmetrical groups of nodes, called automorphism orbits, are used
to characterize different topological positions that a node can participate in. These orbits
are used to generalize the notion of node degree: the graphlet degrees of a node are the
numbers of times a node is found at orbit positions [70]. Following the methodology of
Yaveroglu et al. (2014) [71], we used the 11 non-redundant orbits of 2- to 4-node graphlets,
which have been shown to perform better than when including higher order graphlets.
Thus, each node in a network was characterized by an 11-dimensional vector called the
graphlet degree vector (GDV), which captures the 11 non-redundant 2- to 4-node graphlet
degrees of the node.

Within a network, we quantified the similarity between the wiring patterns of two
nodes by using the graphlet degree vector distance (GDVD) [72] between their GDVs,
which we computed as follows. Given two GDV vectors, 1 and v, the distance between
their ith coordinates is defined as:

|log(u; +1) —log(v; +1)]

Dilu,0) = wi X =20 fmax i, 0, + 2)

7

where w; is the weight of orbit i that accounts for dependencies between orbits [72]. Then,
GDVD is defined as: "
Y= D; (u, U)

lei1 wi
GDVD is a distance in [0,1), such that a distance equal to 0 means that the two GDVs
are identical.

GDVD(u,v) =

4.5.3. Predicting New Drug-Target Interactions

To predict potential drugs for re-purposing, for the most rewired genes in the patient
iCell, we used a data fusion framework that is based on Graph-regularized Non-negative
Matrix Tri-Factorization (GNMTF) method [51]. By using this method, we fused the matrix
factor Gj,s corresponding to the COVID-19 infected case with drug-target interactions
(DTIs) and Drug Chemichal Similarity (DCS) data obtained from DrugBank. The DCS
network is represented by its Laplacian matrix, L"2*"2, computed as: L = D — A, where A
is the adjacency matrix and D is the diagonal degree matrix of the infected iCell matrix,
Ginf. Namely, we decomposed the DTI relational matrix, Ry, into a product of three non-
negative low-dimensional matrices, G;;, fr Hj; and G, where G is the drug matrix factor
and Hj; is a compressed representation of the network Ri,. During the decomposition, we
took into account the known structure of the DCS network by adding a regularization term,
tr(G, LG,), so that G favors grouping together drugs that are chemically similar.

These low-dimensional matrices can be obtained by solving the following optimiza-
tion problem:

min ] = min (||Ri2 ~ Gy HiaG3 |[} +1r(GI LG2) ), M
where || - || denotes the Frobenius norm and fr denotes the trace of a matrix. To minimize
the objective function, J, we used a fixed point method that initializes the matrix factors G;, r
Hjs and G, with the singular value decomposition (SVD) based strategy [73] and iteratively
uses the multiplicative update rules to converge towards a locally optimal solution.
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To predict new drug-target interactions, we exploited the matrix completion property
of the GNMTF framework. Namely, after obtaining the low-dimensional matrices, the
reconstructed drug-target interaction matrix, Rip = Gy, fHuG;r , is more complete than

the initial matrix Rjy. Each entry in the reconstructed DTI matrix, @, can be interpreted
as an association score, s, for each drug-gene pair—the higher the score, the stronger the
association. We consider a new entry (i.e., an entry that is not in the original DTI matrix,
R1p) as a predicted DTI if its association score is higher than the mean of the scores of
the already existing DTIs. For the genes that do not have a predicted DTI based on this
selection strategy, we report the drug with the highest association score.

To assess if the predicted drugs can bind to the protein targets, we performed molec-
ular docking using AutoDock Vina [45]. For each drug, we collected its 2D chemical
structure from the PubChem database [74], and for each protein (gene product), we col-
lected its experimentally-determined 3D structure from RCSB Protein Data Bank (RCSB
PDB) [75]. For the proteins that did not have experimentally validated structures, we col-
lected their predicted ones from the AlphaFold Protein Structure Database [76]. Following
the AutoDock Vina documentation, we removed the water molecules from the experimen-
tal protein structures from PDB and added the hydrogen bonds. Then we imported both
the drug and the protein into the AutoDock Vina and performed the docking using the
default parameters.

5. Conclusions

To sum up, we applied a versatile data integration framework to the host transcrip-
tional response data to SARS-CoV-2 [17], from patient and cell lines data, to construct the
COVID-19-infected iCells and their corresponding controls. We observe that patient iCells
exhibit larger discrepancies between control and infected networks than the cell-line-based
infected and control iCells, suggesting that patient iCells are more suitable for studying the
disease. We demonstrate that iCells not only capture the functional organization of infected
and control cases, as measured by clustering and enrichment analysis, but also capture
additional functional information that emerges from the NMTF-based fusion of several
different types of molecular data. In addition, we show that iCells are the only intensely
rewired networks with less than 40% common edges between control and infected iCell
networks; i.e., iCells better highlight the differences between cases and controls than their
constituent omics data networks in isolation. By comparing the enriched Gene Ontology
Biological Process (GO-BP) terms in the infected and control patient iCells, we confirmed
that COVID-19 alters the functioning of the infected iCell with respect to the control by
activating the immune response.

We built upon these observations and compared the infected and control iCells to
identify the most rewired genes in COVID-19. We demonstrated that the DEGs are the most
intensely rewired genes, and hence, we prioritized genes to be COVID-19-related according
to their extent of rewiring between these iCells. We validated 18 out of the top 20 the most
rewired genes in patient iCells in “The COVID-19 Drug and Gene Set Library.” We applied
the second step of data fusion to predict drugs for re-purposing for our newly identified
COVID-19-related genes, which we validated with molecular docking. The most frequently
predicted drugs were NADH, targeting eight genes, and fostamatinib, targeting five genes;
both are already investigated for their roles against COVID-19. An interesting predicted
DTTis artenimol, an antimalarial agent targeting ZFP62, one of our newly identified COVID-
19-related genes. This drug is an interesting prediction resulting from our analysis, since it
is a derivative of artemisinin drugs that are already under clinical investigation for their
potential roles in the treatment of COVID-19, hence validating our approach.
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