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Abstract: There is growing concern about the consumption of synthetic cannabinoids (SCs), one of the
largest groups of new psychoactive substances, its consequence on human health (general population
and workers), and the continuous placing of new SCs on the market. Although drug-induced
alterations in neuronal function remain an essential component for theories of drug addiction,
accumulating evidence indicates the important role of activated astrocytes, whose essential and
pleiotropic role in brain physiology and pathology is well recognized. The study aims to clarify the
mechanisms of neurotoxicity induced by one of the most potent SCs, named MAM-2201 (a naphthoyl-
indole derivative), by applying a novel three-dimensional (3D) cell culture model, mimicking the
physiological and biochemical properties of brain tissues better than traditional two-dimensional
in vitro systems. Specifically, human astrocyte spheroids, generated from the D384 astrocyte cell
line, were treated with different MAM-2201 concentrations (1–30 µM) and exposure times (24–48 h).
MAM-2201 affected, in a concentration- and time-dependent manner, the cell growth and viability,
size and morphological structure, E-cadherin and extracellular matrix, CB1-receptors, glial fibrillary
acidic protein, and caspase-3/7 activity. The findings demonstrate MAM-2201-induced cytotoxicity
to astrocyte spheroids, and support the use of this human 3D cell-based model as species-specific
in vitro tool suitable for the evaluation of neurotoxicity induced by other SCs.

Keywords: CNS toxicity; in vitro 3D models; human astrocytes; preclinical studies; novel psychoactive
substances; public health

1. Introduction

New psychoactive substances (NPSs) are continuously emerging onto the illicit drug
market. Among the most abused NPSs, the synthetic cannabinoids (SCs) are the largest
group, with 190 compounds reported to the European Monitoring Centre for Drugs and
Drug Addiction [1,2] by the end of 2018.

These “Spice”, “K2”, and “herbal blend” drugs comprise different compounds that
bind to the cannabinoid receptors CB1 and CB2 [3–7] and cause psychotropic effects similar
to those of ∆9-tetrahydrocannabinol (THC) and its structural analogs [8,9]. Some of the SCs
marketed so far are full agonists of the CB1 and CB2 receptors, and show a much higher
affinity and potency than the natural cannabis ingredient THC, enabling stronger in vivo
pharmacodynamic effects at lower doses [10–14].

A recent in vivo study demonstrated that the acute administration of some SCs (such
as JWH-018-Cl, JWH-018-Br, and the fluorinate analog AM-2201) alters visual, acoustic,
and tactile sensorimotor responses in mice [15].
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The pharmacological effects of certain “Spice” drugs have been investigated by several
groups, but information and publications on their cytotoxic and long-term toxic properties
are still scarce.

Despite the marked differences in their chemical structure, all SCs are lipid soluble,
are non-polar, and typically consist of 20–26 carbon atoms [10]. SCs can easily cross the
blood–brain barrier and exert their actions on the central nervous system (CNS), causing
adverse effects [16]. The main components of the “Spice” and “K2” drugs are naphthoyl-
indole derivatives, which are the first-generation of SCs and elicit excitation behaviors by
themselves, as reported in intoxicated patients with MAM-2201 [17,18], one of the potent
cannabinoid CB1 receptor full agonists (Ki: 2.07 ± 0.82 nM) [19–21]. MAM-2201 has also
shown a high affinity (Ki) and activation potential for human CB2 receptors, as indicated
by the Ki, i.e., 0.582 ± 0.123 nM (full agonist) [19]. In humans, severe effects have been
associated with MAM-2201, including death [22,23]. Yet, there is limited toxicological and
mechanistic information available regarding the brain effects induced by SCs. Currently,
toxicity data on SCs and in particular on MAM-2201, which has been frequently identified
in herbal blends or in powder products, are mainly obtained from studies performed on
in vitro rodent cells and in vivo animal models [24–26]. The limited experimental evidence
on neuronal cultures (rodent) indicate that MAM-2201 exposure can cause impairments of
neuronal function and activity, as well as the inhibition of neurotransmitter release, which
are effects likely mediated by the CB1 receptor [25,27–29]. Moreover, abnormal behaviors
have been observed in animal models [30].

Globally, there is at present no obvious universal mechanism whereby plant-derived,
synthetic, and endogenous cannabinoids affect cell viability and proliferation, particu-
larly in human brain cells. Our recent investigation evidenced a higher susceptibility
(e.g., increases in cell mortality and apoptosis) on human primary neuronal cells and the
astrocyte line compared to rodent cultures when treated with MAM-2201. In human neu-
rons, cytotoxic effects and the loss of neuronal markers were detected at low concentrations,
i.e., 1–5 µM, early (after 3 h) as well as after 48 h. Human astrocytes were also targeted by
MAM-2201. The different altered endpoints were reversed, attenuated, or not antagonized
by AM251, a selective CB1 receptor antagonist, indicating that the CB1 receptors may in
part mediate MAM-2201-induced cytotoxicity in human astrocytes [31].

Although drug-induced alterations in neuronal function remain an essential com-
ponent for theories of drug addiction [32], the accumulating evidence suggests that they
are not the only cells impacted by drugs of abuse. Glial cells, including microglia and
astrocytes, are also influenced by exposure to abused drugs (e.g., cocaine, amphetamines,
morphine, and MDMA), and their responses likely contribute to the behavioral outcomes
associated with substance abuse [33,34]. Astrocytes are the most abundant cell type in
the CNS and have traditionally been characterized as supportive cells in the brain for
their roles in maintaining neuron homeostasis and survival. They are well positioned to
integrate signals from a great number of synapses at once, which may have implications for
higher-order information processing [35]. Astrocyte activity has been shown to be involved
in acute injury and neurodegeneration; to affect neuroplasticity, learning, and memory; and
to accompany neuropsychiatric disorders, drug addictions, and drug dependence [36,37].

The role of activated astrocytes in drug addiction has recently been well recog-
nized [38], and due to the essential and pleiotropic role of astrocytes in brain physiology
and pathology, they have gained enormous interest in recent decades as a potential target
for neurotherapies [39,40].

Cannabinoid compounds are known to induce psychotropic effects by activating the
CB1 receptors expressed by neurons [41], but also by modifying essential central and
peripheral physiological processes by activating the CB1 and CB2 receptors expressed
by glial cells and peripheral cells [42]. The cannabinoid system and its ligands have
been shown to interact with and affect the activities of astrocytes [39]. Neurons express
mostly CB1 cannabinoid receptors, while microglia express CB2. Both types of cannabinoid
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receptors have been found to be present on astrocytes [39,42]. The data in this area, however,
are in their infancy and are confined to the major constituents of cannabis [39,43].

Furthermore, it is recognized that astroglial type-1 cannabinoid (CB1) receptors are
involved in synaptic transmissions, plasticity, and behavior by interfering with the so-called
tripartite synapse formed by pre- and post-synaptic neuronal elements and surrounding
astrocyte processes [44–52]. CBs have also been reported to participate in a variety of
physiological processes, such as learning, memory, and pain sensations.

An increasing number of reports have indicated that chronic and acute stressors alter
astrocyte morphology and the expression of astrocyte-specific proteins in brain areas that
are known to play a critical role in emotional processing, such as the prefrontal cortex,
hippocampus, and amygdala [53–55].

In this context, with the aim of clarifying the mechanisms of neurotoxicity induced by
SCs/MAM-2201 in astrocytes, we applied a novel cellular model, namely three-dimensional
(3D) human spheroids that mimic the physiological and biochemical properties of human
brain tissues better than the traditional two-dimensional in vitro systems [56,57]. Three-
dimensional cultures promote the establishment of complex cell–cell interactions, resem-
bling the in vivo cell–cell and cell–extracellular matrix (ECM) interactions and allowing
more innovative in vitro and in silico approaches for studying drug effects [58].

An increasing number of studies have used 3D CNS cultures to investigate the mode
and/or mechanism of action of chemicals, even related to events occurring on neurotoxic
processes, and to screen chemicals of unknown toxicity [59–66]. Moreover, the use of 3D
CNS models derived from human cells provides more human-relevant data compared to
animal models, due to inter-species differences.

We aimed to evaluate the impact of different MAM-2201 concentrations on a 3D
astrocyte spheroid model in terms of cell stress, growth, apoptosis, death, markers of a
reactive state (i.e., glial fibrillary acidic protein, GFAP), cell morphology and density, weight,
and diameter. Furthermore, since cell adhesion and the extracellular matrix (ECM) are
fundamental to the normal structure and function of three-dimensional tissue spheroids,
the effect of MAM-2201 on the integrity of cell–cell interactions was assessed through
E-cadherin (E-Cad), a transmembrane glycoprotein adhesion molecule that is necessary to
form spheroids [67], and fibrous collagen, one of the major structural components of the
ECM. We also evaluated the effect of MAM-2201 on the expression of the CB1 and CB2
cannabinoid receptors.

2. Results
2.1. Effects of MAM-2201 Exposure on Astrocyte Spheroid Morphology
2.1.1. Spheroid Characterization by Phase-Contrast Microscopy Imaging and Physical Cytometry

In this study, we used ultra-low-attachment (ULA) plates to generate 3D spheroids
from astrocytes (D384 cell line). D384 cells spontaneously formed 3D spheroids in each well
5 days after plating (200 cells/well). In particular, 2–6 h after seeding into non-adhesion
96-well round-bottomed plates, the D384 cells were aggregated into loose clusters and
allowed to settle down to the plate’s bottom (Figure 1).

The D384 spheroid formation typically occurred by the 2nd day (at this point, the
cells were aggregated) and the spheroids became tight, compact, and rounder by the 5th
day (Figure 1). The spherical shape was maintained throughout the culture process until
day 10 [68].

Day 5 (after seeding), when the diameter of the spheroids measured 352.11 ± 2.42 µm,
was selected for starting the treatments with the drug at different concentrations (1–30 µM)
and then evaluating the effects after 24 and 48 h of treatment (i.e., at day 6 and 7).

The MAM-2201 treatments did not cause morphological alterations to the structure of
spheroids, as observed during evaluation by phase-contrast microscopy (Figure 2(A1,A2)).
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Figure 1. Morphology analysis by phase-contrast microscopy of the D384 spheroid formation over 
a 5-day period in 96-well spheroid microplate. At 2–6 h after seeding, D384 cells appeared without 
total compactness. On day 5, complete D384 spheroid formation was observed and this time point 
was chosen as the starting point for drug treatments. Scale bar: 100 µm. 
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Figure 1. Morphology analysis by phase-contrast microscopy of the D384 spheroid formation over a
5-day period in 96-well spheroid microplate. At 2–6 h after seeding, D384 cells appeared without
total compactness. On day 5, complete D384 spheroid formation was observed and this time point
was chosen as the starting point for drug treatments. Scale bar: 100 µm.
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Figure 2. (a) Morphology analysis by phase-contrast microscopy of the D384 spheroids after MAM-
2201 exposure: MAM-2201 treatments did not cause morphological alterations to the spheroidal
structure of spheroids, but induced an increase in the spheroid size at the highest concentration
tested (30 µM) for both the 24 h (A1,B1) and 48 h (A2,B2) time points considered. Scale bar: 100 µm.
(b) Biophysical characterization of D384 spheroids after 24 h (C) and 48 h (D) of MAM-2201 exposure
in terms of (left panels) size, (central panels) weight, and (right panels) mass density. Box-and-whisker
plots are indicative of the population distribution. * p < 0.05, ** p < 0.01, *** p < 0.001.

With regards to the biophysical characterization, the lowest MAM-2201 concentration
tested (i.e., 20 µM) did not alter the size or weight of spheroids compared to the control
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samples, both at 24 and 48 h (Figure 2C,D, left and central panels). On the contrary, the
mass density significantly increased at both time points tested (Figure 2C,D, right panel).
A different behavior occurred at the highest MAM-2201 concentration tested (i.e., 30 µM),
as the size and, consequently, the weight of the D384 spheroids were already significantly
enhanced compared to the control after 24 h of treatment (Figure 2C, left and central panels),
remaining stable after 48 h (Figure 2D, left and central panels). The effect of 30 µM of
MAM-2201 on the mass density reached a maximum at 24 h (Figure 2D, right panel) with a
significant decrease compared to the control, while at 48 h, no significant difference was
observed (Figure 2D, right panel). Overall, the effects of MAM-2201 on the biophysical
parameters were time- and concentration-dependent.

2.1.2. Basic Tissue Structure of the Astrocyte Spheroids by H&E Light Microscopy, ECM,
and E-Cadherin Stains

H&E light microscopy: Spheroid sections were stained with H&E, revealing the distri-
bution of mass inside the spheroids (Figure 3, Supplementary Figure S1).
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In control-matching samples, namely spheroids on day 6 (i.e., 24 h) and 7 (i.e., 48 h), 
the layers of cells were arranged close together and appeared densely packed with an 
overall condensed spherical shape (Figure 3, Supplementary Figure S1). The cells were 
evenly distributed from the inside to the outside of the spheroids and a non-necrotic core 
was evidenced. 

Figure 3. Spheroid histology. The cells were arranged close together and appeared densely packed
at a starting density of 200 cells/well in the control spheroid samples at both 24 and 48 h. No
necrotic core presence was observed in either the control or treated spheroids. In MAM-2201-treated
spheroids, a loose cell packing and poor internal cohesion of cell-to-cell contacts were observed with
an evident presence of interstitial spaces between individual cells. Scale bar: 100 µm.

In control-matching samples, namely spheroids on day 6 (i.e., 24 h) and 7 (i.e., 48 h),
the layers of cells were arranged close together and appeared densely packed with an
overall condensed spherical shape (Figure 3, Supplementary Figure S1). The cells were
evenly distributed from the inside to the outside of the spheroids and a non-necrotic core
was evidenced.

When the spheroids were treated with MAM-2201 at different concentrations and
exposure times, loose cell packing and poor internal cohesion in cell-to-cell contacts with
the evident presence of interstitial spaces between individual cells were observed start-
ing from 20 µM after 24 h. Similar features were also observed after 48 h of exposure,
although the MAM-2201 effect on the D384 cells started at a lower concentration, i.e., from
the 10 µM concentration, and became markedly evident at the highest concentrations
tested (20–30 µM). No necrotic core or hypoxia was present after the MAM-2201 exposure
(Figure 3, Supplementary Figure S1).

An apparent reduction in the cells (spheroids) was observed and the spheroids gener-
ally became less spherical, as indicated by the increased diameter (Figure 2b). On the other
hand, no necrotic core or hypoxia was present, even after the MAM-2201 treatment.
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ECM and E-cadherin evaluation: Masson’s trichrome staining showed a well-structured
organization of the ECM in the control spheroid section on days 6 (i.e., 24 h) and 7 (i.e., 48 h)
(Figure 4, Supplementary Figure S2).
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Figure 4. Masson’s trichrome staining. Representative images of trichrome staining in D384 spheroid
section treated with or without MAM-2201 after 24 h (a) and 48 h (b). The rectangle indicates the
magnification (10×), black arrows indicate the ECM, and the arrow head indicates the empty spaces
(reduction in the amount of collagen fibers). Scale bar: 100 µm.

A progressive ECM disassemble started at ≥20 µM of MAM-2201 after 24 h: the ECM
appeared less compact with more empty spaces compared to the control, as visualized by a
reduction in the amount of blue stain (collagen fibers) throughout the section of spheroids
(Figure 4a, Supplementary Figure S2a). The effects were exacerbated after 48 h of treatment:
a progressive ECM staining decrease was observed starting at ≥10 µM of MAM-2201
(Figure 4b, Supplementary Figure S2b). These results were consistent with those showed
by H&E staining (Figure 3, Supplementary Figure S1).
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Decreased levels (about 30%) of E-Cad at 20 and 30 µM after 48 h were also ob-
served (Table 1). These results, together with those showed by the H&E and ECM stains
(Figures 3 and 4, respectively), indicated that the treated D384 spheroids were composed
of some cells without any obvious close cell–cell adhesion, showing a looser aggregation
phenotype compared with the control spheroids.

Table 1. E-cadherin evaluation in D384 spheroids after 24 and 48 h of exposure to MAM-2201.

E-Cadherin (% of Control) in Cell Lysate

24 h 48 h
MAM-2201 (µM)

0 100.00 ± 2.72 100.00 ± 5.26
10 94.63 ± 8.82 100.70 ± 10.57
20 105.46 ± 2.16 72.47 ± 6.30 *
30 102.64 ± 2.94 68.99 ± 5.53 *

Data are expressed as percentages (%) of control (in 106 cells ~1 ng/mL E-Cad) and showed as means ± S.D. of
the data obtained from three independent experiments, each performed in duplicate. * p < 0.05, statistical analysis
by one-way ANOVA followed by Tukey’s multiple comparisons test.

2.2. Cell Viability Evaluation

A cell viability evaluation by TB indicated a decrease in viable cells (~20%) at the
higher MAM-2201 concentrations tested (20–30 µM) after 24 h. The effects on cell mortality
were more evident after 48 h of treatment: the cell decrease (~10–15%) appeared at the
lower concentrations (from 1 to 10 µM) with a further cell survival reduction (25–35%) at
higher concentrations (20–30 µM) (Figure 5).
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48 h of exposure to increasing concentrations of MAM-2201 (1–30 µM). Data are normalized to the
mean value obtained under control conditions, expressed as percentages (% of control), and plotted
as the means ± S.E. * p < 0.05, statistical analysis by one-way ANOVA followed by Tukey’s multiple
comparisons test.

Since the viability analysis, evaluated by a TB test, changed over time (the test sample
should be counted in bright fields within 5 min after mixing with trypan blue) and the
viability of a cell population may be underestimated [69], an additional sensitive cell
viability measurement over time in a live-cell format was performed by using a nonlytic,
bioluminescent method. This test allowed cell viability to be measured in real time by
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analyzing the metabolically active cells after MAM-2201 exposure over time, i.e., from 1 up
to 48 h.

A significant concentration-dependent inhibition of cell proliferation was observed
from 5 to 30 µM and over time in astrocytes. The effect was already significant after 4 h of
exposure to MAM-2201 at ≥10 µM, and at ≥5 µM after 24 h (Figure 6).
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Figure 6. Cell viability over time. Time- and concentration-dependent MAM-2201 effects: the effect
started at ≥10 µM of MAM-2201 after 4 h and at ≥5 µM after 24 h of exposure. Results are provided
as means ± S.E. of two independent experiments performed in eight replicates. * p < 0.05, statistical
analysis by one-way ANOVA followed by Tukey’s multiple comparisons test.

2.3. Evaluation of Caspase-3/7 Activity in Astrocyte Spheroids after MAM-2201 Exposure

The caspase-3/7 activity was assessed to determine if apoptosis was involved in the
mechanism of cytotoxicity induced by MAM-2201 in astrocyte spheroids, and it was evalu-
ated after 24 and 48 h of exposure to increasing concentrations of MAM-2201 (1–30 µM).
An increase in the caspase-3/7 activity was detected (4–7-fold from 5 to 30 µM) after 24
and 48 h of exposure (Figure 7a). However, no morphological hallmarks of apoptosis in the
treated cells were observed with immunofluorescence (Figure 7b).
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points considered (24–48 h). Apoptotic cells detected using Hoechst 33,258 staining were not visible
after 48 h of exposure to MAM-2201 at the highest concentration tested (30 µM). The data obtained
are provided as the means of the luminescence values (RLU) ± S.E. * p < 0.05, statistical analysis
by one-way ANOVA followed by Tukey’s multiple comparisons test. Representative images in
fluorescence microscope were taken using a magnification of 40×; scale bar: 50 µm.

2.4. Evaluation of CB1 and CB2 Receptors

The three-dimensional astrocyte cultures, evaluated by flow cytometry, expressed CB1
receptors, while a weak signal was detected for CB2 receptors (Figure 8a).
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Figure 8. (a) Flow cytometric and (b) immunofluorescence analyses of the cannabinoid receptor
expression in D384 spheroid sections. A higher expression of CB1 receptors was observed compared
to CB2 expression, as demonstrated by both flow cytometry and immunofluorescence staining.
The flow cytometry data are expressed as median fluorescence intensities (MFIs) and represent
the means ± S.D. The images show representative fluorescence-merged microphotographs with
CB1-positive (green fluorescence) and CB2-positive (red fluorescence) areas in D384 spheroid sections.
Nuclei were stained with Hoechst 33258. Scale bar: 100 µm.

The evaluation of CB1 and CB2 receptors by immunofluorescence confirmed, as evi-
denced by the flow cytometry, the abundant expression of CB1 receptors (green-labelled) in
astrocytes as well as very weak immunoreactivity for CB2 receptors (red signal) (Figure 8b).

When the spheroids were treated with MAM-2201, the CB1 receptor expression was
reduced by about 25% at the lower MAM-2201 concentration tested (10 µM) after 24 h of
exposure, with exacerbation at the highest concentration (30 µM) (about 35% reduction).
The effect of MAM-2201 on the CB1 receptor expression persisted for up to 48 h (Figure 9).

The evaluation of the receptors by immunofluorescence also showed a reduction in
the CB1 receptor green fluorescent signal in a concentration-dependent manner, starting
from 20 µM after 24 h and from 10 µM after 48 h (Figure 10a). The weak red signal of CB2
(evidenced in the control) completely disappeared after exposure to the low MAM-2201
concentration (Figure 10b).
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followed by Tukey’s multiple comparisons test.
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Figure 10. Immunofluorescence analysis of the cannabinoid receptor expression in astrocyte spheroid
section after (a) 24 and (b) 48 h of exposure to MAM-2201. A loss of the fluorescence signal of CB1
(green fluorescence) was observed in D384 spheroid sections, starting at 20 µM after 24 h and starting
at 10 µM after 48 h. CB2 showed very low levels of the fluorescence intensity (red) in both the D384
spheroid control and treated spheroids after 24 h, which disappeared after 48 h in treated D384
spheroids. Nuclei were stained with Hoechst 33258. Scale bar: 100 µm.
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2.5. Effects on GFAP

The astrocyte cultures abundantly expressed the GFAP (green color) (Figure 11),
and when the spheroids were treated with MAM-2201, the expression diminished in a
concentration-dependent manner after 48 h. A loss of the fluorescence intensity of the GFAP
was observed in the D384 spheroids, starting at 20 µM after 24 h (Figure 11a). The effect was
exacerbated and also worsened (starting at 10 µM) following 48 h of exposure (Figure 11b).
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Figure 11. Immunofluorescence analysis of GFAP in astrocyte spheroid sections after (a) 24 and
(b) 48 h of exposure to MAM-2201 (10, 20, and 30 µM). A loss of the GFAP fluorescence signal (green)
was observed in D384 spheroids, starting at 20 µM after 24 h, and was exacerbated and worsened
(starting at 10 µM) after 48 h of exposure. Nuclei were stained with propidium iodide. Scale bar:
100 µm.

3. Discussion

The present in vitro findings demonstrate the cytotoxicity of MAM-2201 on human
astrocyte spheroids (D384), and support the use of these human 3D cell-based models
as species-specific in vitro tools suitable for the evaluation of neurotoxicity induced by
other SCs.

Considering the consequences on human health due to the use of these new psychoac-
tive substances and their spreading on the market, the application of a cellular model
for neurotoxicology research (applying human-derived CNS cells in three-dimensional
cultures) may provide a means for understanding the neurotoxicity of these substances.
We utilized a human 3D astrocyte in vitro culture generated from the D384 cell line (D384)
cultured using an ultra-low-attachment (ULA) surface enabling 3D spheroid formation in
96-well round-bottomed plates. A ULA-3D culture is more widely used, since it is compat-
ible with many cell lines, initiates by self-assembly, and generates a complex, tissue-like
ECM in addition to its simplicity and inexpensive nature [70,71].

Our investigation demonstrated that the D384 cells form compact spheroids: once the
astrocytes were seeded in the ULA plate, the cells aggregated and formed a spherical shape
within few days. The layers of astrocytes in spheroids were arranged close together and
appeared densely packed with an overall condensed spherical shape. The cells were evenly
distributed from the inside to the outside of the spheroids without evidence of necrotic
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core. The value of circularity increased over a few days (~7 days), indicating that the cells
in the ULA plate easily self-organized and formed a circular spheroid.

The cell lines that formed compact spheroids typically possessed high levels of extra-
cellular content (ECM) and E-cadherin, which play an important role in cell adhesion [72]:
these features were observed in the present astrocyte spheroids (control, not treated), with
the spheroids showing abundant ECM content and E-cadherin. Typically, the initial aggre-
gation of cells is initiated by the integrin-mediated attachment to ECM molecules, and the
cells are aggregated compactly by E-cadherin mediation [73]. E-cadherin’s adhesive func-
tion at the cell surface allows the cells to hold together, facilitates other cell–cell interactions,
and physically blocks the movement of cells [74].

In the formed astrocyte spheroids, we also demonstrated the expression of CB1 recep-
tors and the gold standard marker of the astrocyte GFAP, an intermediate filament protein
present in the astrocyte cytoskeleton.

The MAM-2201 treatment had a clear cytotoxic effect on the present 3D astrocytes, as
evidenced by the significant decrease in cell proliferation over time and the increase in dead
cells. The inhibition of cell proliferation due to MAM-2201 exposure was concentration-
and time-dependent. Cell mortality (~20%) was detected at the higher concentrations
tested (20–30 µM) after 24 h, but it was more evident after 48 h of treatment in that the cell
decrease (~10–15%) occurred at the lower concentrations (from 1 to 10 µM) with mortality
exacerbation (25–35%) at higher concentrations (20–30 µM).

Moreover, by using a three-dimensional model that allowed us to analyze some aspects
of cell behavior (e.g., growth, cell adhesion, etc.) in a more physiological setting than a
2D cell culture, it was possible to highlight modifications to the spheroid size after the
MAM-2201 treatment as well as changes to the basic tissue spheroid structure. The astrocyte
spheroid size was apparently enhanced. This may have been due to the dispersion of the
remaining live cells in association with a decreased amount of ECM and E-cadherin. It
might have been that as the MAM-2201 treatment progressed, the cell-to-cell and cell-to-
matrix interactions were disrupted, thus leading to cell disaggregation. As the cells at the
edges fell apart, the shape of the sphere collapsed.

Furthermore, in these 3D astrocytes, we observed a decrease in CB1 receptors after the
MAM-2201 treatment (at ≥10 µM for 24 and 48 h), which was associated with a decrease in
the E-cadherin and GFAP, and an increase in caspase-3/7 activity.

It is important to consider the role that astrocyte-induced plasticity may be playing
in the behavioral sequelae of insults, such as stressors or neurotransmitters (endogenous
or exogenous—e.g., synthetic drugs), which, through their receptors located in astrocytes,
directly induce intracellular cascades. The latter ultimately introduces changes in the mor-
phology/physiology of astrocytes that alters the normal functioning of tripartite synapses
in a pathophysiological direction that is known to drive behavioral sequelae [53,55].

Recently, it has been hypothesized that there is an interaction between the CB path-
way and the IGF-1R/AKT pathway, which are known to regulate several physiologi-
cal cellular processes, including cell proliferation, survival, growth, differentiation, and
metabolism [75]. The same authors also suggest a relation between CB1, CB2, and E-
cadherin expression through IGF-1R/AKT/GSK-3β axis regulation. Indeed, a change
in the E-cadherin levels is one of the hallmarks of an epithelial–mesenchymal transition,
which is a crucial program in the regulation of cell motility and invasion. E-cadherin loss
promotes a reduction in cell–substrate adhesion and causes a significant disruption to the
normal organization of the microtubule and actin cytoskeletons [76].

The increase in caspase-3/7 activity started from 5 µM after 24 h of treatment and
persisted up to 48 h without the association of the morphological hallmarks of apoptosis.
Indeed, while the mechanisms controlling the activation of caspases and their targets are
well established in the context of apoptosis and inflammation, accumulating recent evidence
also supports a non-apoptotic and non-inflammatory function of caspases [77–79]. The non-
proteolytic functions of caspases have, in particular, been evidenced in the regulation of
cell survival, proliferation, and differentiation [80–82]. Besides, over the last decade, evi-
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dence has been gathered detailing non-apoptotic roles for caspases in astrocytes, neurons,
oligodendrocytes, and microglia [83–88]. In particular, in the CNS, caspase-3 participates
in cytoskeletal remodeling in neurons and astrocytes [83,89], and in the differentiation of
astrocyte subpopulations [90]. Notably, a caspase-3-cleaved GFAP in cortical astrocytes was
detected following excitotoxic injury [83]. Recent evidence suggests that caspase activation
in astrocytes may be required for the full expression of the reactive phenotype [91]. It
might be that high levels of caspase activation lead to caspase-dependent apoptosis, while
limited caspase activation may reveal mainly the nonapoptotic functions (proliferation,
differentiation, intercellular communication through cytokine release, and NF-kB acti-
vation) [78]. Moderate activation could be the situation observed in MAM-2201-treated
astrocyte spheroids, where a mild increase in caspase-3/7 without apoptosis and a decrease
in the GFAP occurred. Recent studies have demonstrated that THC exposure for 72 h
causes significant modifications to astrocyte morphology, possibly reflecting functional
alterations, as evidenced by the decrease in GFAP expression and the morphological al-
terations of astrocyte branches [43]. In both the CA1 stratum pyramidalis and stratum
radiatum of THC-treated hippocampal slice cultures, the astrocytes showed marked signs
of clasmatodendrosis, an irreversible astrocytic degeneration characterized by the dissolu-
tion of their branches [92]. It is therefore plausible that astrocyte clasmatodendrosis caused
by continuous exposure to THC, which leads to the spatial disorientation of astrocytes,
and the disruption of the astrocytic syncytium may decrease the maintenance of healthy
synapses and synaptic connectivity, and this, in an in vivo situation, may also play a role in
decreasing neuronal homeostasis.

The common paradigm for identifying THC-like effects, the cannabinoid tetrad, sug-
gests that many synthetic cannabinoid effects are mediated primarily by the CB1 receptor.
This receptor undergoes downregulation and desensitization through repeated stimuli, but
can be recovered within days to weeks of cessation [93]. Markedly, synthetic cannabinoids
are more potent full CB1 agonists compared to THC, which is a partial CB1 receptor agonist.

Notably, we observed a decrease in CB1 receptors in the MAM-2201-treated astro-
cytes. The involvement of astrocytes in THC-dependent memory deficits has been recently
demonstrated [94]. Moreover, Cong et al. [95] found that astroglial CB1 receptors mediate
aversive effects of the synthetic CB CP 55,940 (a member of the cyclohexyl phenols and a
synthetic analog of ∆9-THC, the major psychoactive component of marijuana).

In astrocytes, the activation of CB1Rs can modulate the astroglial metabolism [96],
mediate neuron–astrocyte communication [47], and cause synaptic and memory impair-
ments [97].

Indeed, although neurons highly express CBR1, the role of CBR1 in astrocytes is being
increasingly appreciated and recognized for its contribution to the detrimental behavioral
effects associated with cannabis [42,98–101]. In particular, recent studies have shown
that the detrimental effects of ∆9-THC on learning and memory in mice are mediated
by the astrocyte CBR1 [45,94,97,102,103], the activation of NF-κB signaling, and the up-
regulation of cyclooxygenase-2 (COX-2), which might lead to excessive glutamate release
by astrocytes. The latter is responsible for glutamate excitotoxicity, a mechanism known to
be involved in many types of neurodegenerative diseases. On the other hand, excitotoxic
injury may cause the cleavage of the GFAP and then clasmatodendrosis [43]. It may also be
that astrocytes, in an attempt to regulate the interstitial concentration of glutamate (and
likely, other ions) [104], can become so acidotic that they are lethally injured and undergo
clasmatodendrosis [92,105]. Changes in the GFAP probably not only reflect a structural
consequence, but also a functional consequence for the astrocyte physiology, since this
protein has been implicated in cell-to-cell communication, the anchoring of proteins, and
the reaction to brain insults [106].

Altogether, the astrocyte effects observed after the MAM-2201 treatment in our ex-
perimental study can be mediated in part by CB1 receptors, in part by the permeation of
the cell membrane due to its lipophilicity, and possibly through other types of receptors,
e.g., vanilloid receptors, as demonstrated for other SCs in C6 rat gliomas [107].
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In summary, the present in vitro findings indicate that MAM-2201 causes adverse
effects on astrocyte spheroids of human origin (D384), affecting the cell grow and viability,
size and structure, CB1 receptors, GFAP, E-cadherin and ECM, and caspase-3/7 activity.

Regarding the cytotoxic effects observed on the 3D spheroid model of astrocytes, they
appeared more marked than those observed in the same human astrocyte line cultivated in
a monolayer (2D), as we previously reported [31]. Moreover, the spheroid model allowed
for the detection of the inhibition of cell growth proliferation caused by MAM-2201, starting
at low concentrations (5–10 µM), early (after 4 h), and lasting up to 48 h, as well as the
modifications to the spheroid size and changes to the basic tissue structure.

4. Materials and Methods
4.1. Culture Reagents

Dulbecco’s modified Eagle medium (DMEM), all cell culture reagents, and fetal bovine
serum (FBS) were purchased from CliniSciences (Guidogna Montecelio, Italy). A 75 cm2 tis-
sue culture flask with vented filter caps (Corning, Schnelldorf, Bavaria, Germany) and ULA
96-well round-bottomed plates (Corning, Schnelldorf, Bavaria, Germany) were acquired
from Merck Life Science S.r.l. (Milan, Italy).

4.2. Drug and Reagents

[1-(5-fluoropentyl)-1Hindol-3-yl](4-methyl-1-naphthalenyl)-methanone (MAM-2201)
(Cayman) was purchased from LGC Standards S.r.l. (Milan, Italy) (Authorization of the
Italian Ministry of Health—General Directorate for Medical Devices and Pharmaceutical
Service for the purchase, possession and use of analytical standards of psychotropic sub-
stances “DPR 309/90 art.60, DM 15.02.1996 and DM 03.08.2001” issued to the pharmacy
unit of our ICS Maugeri Hospital—Pavia for the management of psychotropic substances
in the clinical and laboratory setting).

Harris hematoxylin, the eosin Y-solution (0.5%), the alcoholic solution, and the bio
clear solution were purchased from Bio-Optica Milan Spa (Milan, Italy). The trypan blue
solution (0.4%; Corning, Manassas, VA, USA) was obtained from VWR (Milan, Italy).
The RealTime-Glo™ MT Cell Viability and Caspase-Glo® 3/7 assays were acquired from
Promega (Milan, Italy). The GFAP antibody (mouse IgG2b kappa light chain) (Santa Cruz
Biotechnology, Dallas, TX, USA) was purchased from D.B.A. Italia S.r.l (Segrate, Italy).
Primary antibodies (mouse IgG1 kappa light chain) conjugated to Alexa-Fluor® 488 for CB1
(Santa Cruz Biotechnology, Dallas, TX, USA), primary antibodies (rabbit IgG polyclonal)
conjugated to Alexa-Fluor® 594 for CB2 (Bioss, Boston, MA, USA), and the secondary
antibody (mouse IgG2b kappa light chain) conjugated to Alexa-Fluor® 488 (Cohesion
Biosciences, London, UK) for the GFAP were acquired from D.B.A. Italia S.r.l (Segrate,
Italy) and CliniSciences (Guidogna Montecelio, Italy), respectively. The mouse IgG1 kappa
isotype control conjugated to Alexa-Fluor® 488 (Invitrogen, Waltham, MA, USA) for CB1
and the rabbit IgG isotype control conjugated to Alexa-Fluor® 594 (Bioss, Boston, MA, USA)
for CB2 were obtained from Life Technologies Italia (Monza, Italy) and CliniSciences
(Guidogna Montecelio, Italy), respectively. Hoechst 33258 (Invitrogen, Waltham, MA, USA)
was purchased from Life Technologies Italia (Monza, Italy). The trichrome stain (Masson)
kit (Sigma-Aldrich, Schnelldorf, Bavaria, Germany), and propidium iodide (Sigma-Aldrich,
Schnelldorf, Bavaria, Germany) were acquired from Merck Life Science S.r.l. (Milan, Italy).
The Human E-Cad (E-Cadherin) ELISA Kit (Elabscience, Houston, TX, USA) was acquired
from Microtech (Naples, Italy).

4.3. Astrocyte Spheroid Model

Spheroid cultures were obtained from the human astrocyte D384 clonal cell line, an
established line derived from a human astrocytoma [108], as previously described by De
Simone et al. [68]. Briefly, D384 cells were cultured in a monolayer in DMEM medium
supplemented with 10% heat-inactivated FBS, 2 mM L-glutamine, 50 IU/mL penicillin,
50 µg/mL streptomycin, and 1% sodium pyruvate. The D384 cells were trypsinized when
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about 80% confluence was reached and re-seeded, based on the D384 proliferative capacity
and their cell cycle time (about 9 h), at a cell density of 200 cells/200 µL/well in ULA
96-well round-bottomed plates to obtain spheroids with a diameter of 352.11 ± 2.42 µm
on day 5 [68]. Spheroid sizes between 100 and 500 µm have been commonly accepted to
be representative of healthy spheroid structures, owing to sufficient oxygen and nutrition
transport [109]. Specifically, small spheroids (<100 µm) might fail to display the complexity
of real tissues with low growth rates, whereas large spheroids (>500 µm) might have
pronounced necrotic cores due to the diffusion limitations for oxygen and nutrition.

4.4. Treatment with MAM-2201

The spheroids were cultured and monitored for 5 days: old medium was carefully
changed with fresh medium, taking care not to disturb the spheroids.

On day 5, the spheroids were treated (single dose) with different MAM-2201 con-
centrations (1, 5, 10, 20, or 30 µM) and evaluated after 24 and 48 h (corresponding to
spheroids on days 6 and 7 after seeding). The MAM-2201 solutions were prepared by
dissolving the powder in DMSO and then diluting in complete DMEM medium. Fresh
solutions were prepared immediately before using, and then the spheroids were incubated
under normothermic (37 ◦C) conditions in a humidified atmosphere (95% air/5% CO2).
Control samples were treated with DMSO, which was used to dissolve the MAM-2201
powder (1 mg). In particular, the control samples were treated with 0.5% DMSO, with
the concentration corresponding to the higher DMSO concentration used for the higher
MAM-2201 concentration (30 µM) tested. The final concentration of DMSO (0.5%, v/v) in
each well was demonstrated to be compatible with cell viability.

The tested MAM-2201 concentrations (1–30 µM) were selected based on literature
findings from in vitro studies carried out on brain cultures (rodent) that evidenced early cy-
totoxic effects (2–24 h, from 10 to 30 µM MAM-2201 treatment): MAM-2201 acted as a CB1R
agonist and induced acute cytotoxicity by the involvement of caspase cascade-mediated
apoptosis [24,25,27–29]. Moreover, we recently demonstrated MAM-2201 cytotoxicity in a
human astrocyte line cultured in a monolayer (2D), in which the density decrease was no-
ticeable at 30 µM after 24 h and at 10 µM after 48, and the caspase-3/7 activity impairment
was evidenced at 5–30 µM, although transitorily (i.e., after 3 h of exposure only) [31].

4.5. Cell Morphology Analysis by Phase-Contrast Microscopy

Astrocyte spheroids were observed under inverted microscopy in the bright field
mode (equipped with a 10× objective) after MAM-2201 (1–30 µM) exposure to evaluate
the healthy status of the cells, the spheroid growth/size, and the morphological changes.
Digital photographs from each well/spheroid were captured after 24 and 48 h of treatment
with a camera (Canon powershot G8) and stored on a PC. In order to analyze the spheroid
size, a calibration slide was used, and then the pictures were processed using Image J
software 1.51 (NIH, Bethesda, MD, USA). The color-captured images (n = 6), derived from
each condition, were converted to binary images and analyzed with the “measure tool”.
The data analyses were performed in Microsoft Excel.

4.6. Frozen Sections of Astrocyte Spheroids for Histochemistry and Immunofluorescence Analyses

After each exposure time point, the culture medium was carefully removed from each
well and at least 25–30 spheroids per condition were pooled in a microcentrifuge tube,
washed with phosphate-buffered saline (1 mL/tube PBS), fixed in a 4% paraformaldehyde
solution (PF; for 60 min at room temperature (r.t.)), and re-washed. Then, the spheroids
were cryoprotected. Specifically: the spheroids were submerged in 10% sucrose in PBS
solution for 30 min at r.t., then centrifuged, re-submerged in a 20% sucrose solution for
30 min at r.t., and finally, submerged in a 30% sucrose solution overnight at +4 ◦C. The
next day, the spheroids were centrifuged and embedded in an optimal cutting temperature
compound (OCT). Five µm-thick cryostatic sections were cut by using a cryostat (Leica CM
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1950, Leica Microsystems, GmbH, Wetlzar, Germany) and deposed on silane prep slides for
the subsequent staining and labelling processes or stored at −80 ◦C.

The hematoxylin and eosin stain and Masson’s trichrome stain were used to assess the
basic tissue structure of the astrocyte spheroids.

4.6.1. Hematoxylin and Eosin (H&E) Staining

The spheroid sections were processed using histology-staining instruments (Leica
ST5020, Leica Microsystems, GmbH, Wetlzar, Germany). Firstly, the spheroid sections
were allowed to air dry (2 min at r.t.), then rinsed with tap water (2 min) and stained with
Harris hematoxylin (3 min), and again rinsed with tap water (3 min). Afterwards, the
sections were covered with a 0.5% alcoholic eosin Y solution (2 min) and dehydrated in a
95% alcoholic solution (90 s), in a 100% alcoholic solution (30 s, twice), and finally in a bio
clear solution (clearing agent) (90 s, twice), and were then mounted with Neo-Mount. The
images were acquired using a light microscope (Carl Zeiss AXIOSKOP 40/40FL microscope,
Milan, Italy) equipped with an objective (20×) lens and a digital camera (AxioCam MRc5
Carl Zeiss, Milan, Italy).

4.6.2. Masson’s Trichrome Staining

The sections obtained from MAM-2201-treated spheroids were stained with Masson’s
trichrome kit by following the producers’ instructions.

The astrocyte spheroid sections were first left to equilibrate at r.t. (10 min), and were
then rehydrated in deionized water (10 min at r.t.). The sections were covered with Bouin’s
solution (pre-warmed at 56 ◦C) for 15 min, and were then cooled in tap water and washed
(three times; 5 min for each washing) to remove the yellow color from the sections. The slides
were stained (5 min) using working Weigert’s iron hematoxylin solution (Part A plus Part B),
washed again in tap water (three times; 5 min for each washing), and rinsed using deionized
water (three times; 5 min for each washing). Then, they were stained using the Biebrich
scarlet-acid fucshin (5 min), and after the washing (three times in deionized water; 5 min for
each washing), the sections were stained in a working phosphotungstic/phosphomolybdic
acid solution (5 min), then in an aniline blue solution (5 min), and then in a 1% acetic acid
solution (2 min). Finally, the sections were rinsed in deionized water (three times; 5 min for
each washing), dehydrated through an alcohol scale (80%, 90%, 100%, 100%:xylene), cleared
in xylene, and then mounted with Neo-Mount. Images were acquired in the brightfield
(20× magnification; Zeiss AXIOSKOP 40/40FL microscope).

4.7. E-Cadherin Biochemical Evaluation

E-cadherin was measured using a human E-Cad (E-cadherin) ELISA kit by the
sandwich-ELISA technique. Standards (0–10 ng/mL) and samples (control and treated
with MAM-2201) derived from cell lysates were collected by following the manufacturer’s
instructions and were then pipetted into wells to bind to the antibody specific to human
E-Cad into a micro-ELISA plate. Biotinylated detection antibodies targeting human E-Cad
and the avidin-horseradish peroxidase (HRP) conjugate were added successively into
each well. After incubation, washing for unbound components was performed. When
the substrate solution was added, only wells containing human E-Cad, the biotinylated
antibody, and the avidin-HRP complex were colored. The enzyme–substrate reaction was
terminated by the addition of a stop solution. The optical density (OD) was measured using
microspectrophotometry (BioRad, Benchmark, Segrate, Italy) at a wavelength of 450 nm.
Each sample was run in duplicate. The OD value was proportional to the human E-Cad
concentration. The concentrations of E-Cad were determined by extrapolating the values
on a standard curve (0.16–10 ng/mL) and were represented as the % of the control (about
1 ng/mL).
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4.8. Expression of CB Receptors and GFAP by Immunofluorescence Analysis

The expression of the CB1 and CB2 receptors and the astrocyte marker as the GFAP by
immunofluorescence analysis were evaluated after the MAM-2201 treatments by applying
the following protocol: after rehydration, the cryo-sections of the D384 spheroids were
permeabilized (with 0.25% Triton X-100 in PBS solution for 10 min at r.t.) and incubated
for 30 min in a blocking buffer (1% BSA in PBS). Afterward, the spheroids were incubated
with primary antibodies conjugated to Alexa-Fluor® 488 (green color) or Alexa-Fluor® 594
(red color) for CB1 and CB2, respectively, used at a dilution of 1:100 in 1% BSA solution for
60 min at r.t. in the dark. Next, the spheroid sections were washed with PBS (three times;
5 min for each washing) and the nuclei were detected using Hoechst 33258 (blue color)
(5 µM for 10 min at r.t.), and they were finally mounted with Fluoroshield.

For the GFAP immunostaining, the astrocyte spheroid sections were incubated with
primary antibody non-conjugated anti-GFAP (1:100, diluted in 1% BSA solution) overnight
at +4 ◦C. The next day, the primary antibody was removed and the sections were washed
(three times with PBS; 5 min for each washing) and stained with secondary antibody
conjugated to Alexa-Fluor® 488 (green color) (dilution 1:100) for 60 min at r.t. in the dark.
After washing with PBS (three times; 5 min for each washing), the nuclei were detected
using propidium iodide (PI) (red color) (1 µg/mL, for 10 min at r.t.), and then the slides
were mounted with Fluoroshield.

The fluorescence images were acquired using a CX41 Olympus fluorescence micro-
scope (Olympus, Segrate, Italy), with the excitation light being provided by an EPI LED
Cassette and combined with a digital camera. Digital images of the eight randomly selected
microscopic fields (for each receptor and GFAP) were captured using a 20X objective lens,
and the measurement conditions were the following: 470 nm excitation (T% = 40), 505 nm
dichroic beamsplitter, and 510 nm-long pass filter.

4.9. Detection of CB Receptor Expression by Flow Cytometry Analysis

The cannabinoid receptor expressions were analyzed in single cells within spheroids
using flow cytometry. Briefly, spheroids (n = 18 for each condition) were washed with PBS
and dissociated with a trypsin solution (200 µL/well, up to 5 min at 37 ◦C). Afterwards, an
equal volume of medium was added and the cells were resuspended and counted using
the Burker chamber to determine the cell viability by a trypan blue exclusion test. The
cells were fixed, permeabilized, and incubated with primary antibodies conjugated to
Alexa-Fluor®488 or 594 against CB1 (1 µg/tube) and CB2 (1 µg/tube) or isotype-matched
Abs (negative controls) using the BD cytofix/cytoperm kit according to the manufacturer’s
instructions. The isotype-matched Abs directed against irrelevant antigens, employed to
assess background staining and specificity, demonstrated no background staining due to
non-specific antibody binding.

Then, the cells were washed (0.5% BSA solution) and the samples were analyzed
using a two-laser flow cytometer (FACSCantoII), and managed with Diva Software (BD
Biosciences). The values were expressed as MFIs (median fluorescent intensities).

The antibodies applied to reveal the CB1 and CB2 receptors were able to detect the
amino acids 1–150 of CB1 and 251–360 of CB2 of human origin.

4.10. Real-Time-Glo MT Cell Viability Assay

To monitor the cell responses to MAM-2201, the cell viability was evaluated in astrocyte
spheroids over time (1, 4, 6, 24, and 48 h) after the MAM-2201 treatments (1–30 µM),
according to the protocol supplied by the manufacturer.

The cell viability measurement was performed in real time: the luminescence was
read from 1 to 48 h by a Fluoroskan microplate fluorometer (Thermo Scientific, Milan, Italy)
combined with PC software (Ascent Software, version 2.6).
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4.11. Cell Viability Assay by Trypan Blue Exclusion Test (TB)

At the end of the different treatments with MAM-2201, the spheroids were washed
with PBS (200 µL/well) and dissociated with a trypsin solution (200 µL/well for 5 min
at 37 ◦C); then, a single spheroid was transferred to a microcentrifuge tube. Then, the
enzymatic reaction was inactivated with the complete medium, reaching a final volume of
1 mL. The spheroid disaggregation was obtained by carefully pipetting up and down to
obtain a single cell suspension, which was then mixed with a 0.4% trypan blue solution
(in a ratio of 1:10) for counting by using the Burker chamber in order to determine cell
viability. The number of viable cells was determined by light microscopy as a percentage of
untreated control cells.

4.12. Caspase-3/7 Activity

After the MAM-2201 treatments, the caspase-3/7 activity was evaluated in astrocyte
spheroids according to the assay protocol. The luminescence signal was quantified using a
microplate fluorometer combined with PC software. The background luminescence (blank)
associated with the culture medium used for spheroids was also determined. Then, the
experimental values were obtained by subtracting the blank value.

4.13. Weight, Diameter, and Mass Density Evaluation by W8 Physical Cytometry

After each exposure time point, the culture medium was carefully removed from each
well and n = 13 single D384 spheroids for each time point and concentration were pooled in
a microcentrifuge tube. The spheroids were washed twice with PBS (1 mL/tube) and fixed
in 4% PF (500 µL/tube) overnight at +4 ◦C in the dark. The next day, the PF was removed
and the spheroids were washed twice and stored at +4 ◦C until the analysis with the W8
Physical Cytometer (CellDynamics, Bologna, Italy).

Before the measurements, the spheroids were washed twice, moved into a 15 mL cen-
trifuge tube, and resuspended in 7.0 mL of the W8 Analysis Solution (WAS, CellDynamics,
Bologna, Italy).

The samples were then analyzed in terms of their mass density (fg/µm3), size
(diameter—µm), and weight (ng) according to the method of Cristaldi et al. [110].

4.14. Data Analyses

Data on the cytotoxicity effects (cell viability, TB, and caspase-3/7 activity) were
expressed as the means ± S.E. of three separate experiments, each carried out in three or
six replicates. Statistical analyses were performed using one-way ANOVA followed by
Tukey’s post hoc test. p-values less than 0.05 were considered to be significant.

For the biophysical characterization, a Shapiro–Wilk test followed by Tukey’s method
(K > 1.5) were performed to verify the Gaussian distribution of the obtained mass density,
weight, and diameter dataset [110]. Statistical analyses were performed using a two-tailed
unpaired Student’s t-test. The cut-off for significance is indicated in the figure legend.

5. Conclusions

The relevance of these findings is related to the consumption of SCs, their consequences
on human health, and the continuous placing of new SCs on the market, as well as the
increasing evidence that modifications to astrocytes and other glial cells are involved
in CNS disorders and neurodegeneration. The use of a suitable cellular model for the
screening of neurotoxicity, by applying human-derived CNS cells in three dimensions,
can provide an additional valuable tool, mimicking the physiological and biochemical
properties of brain tissues better than the traditional two-dimensional in vitro systems,
to understand the mechanistic basis of molecular and cellular alterations in the brain.
Moreover, the 3D spheroid model allows for the detection of effects caused not only in
the short-term, but also for even longer (and repeated) treatment, more likely simulating
the different patterns of consumption (e.g., occasional vs. chronic). It may also address
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questions relating to the examination of long-lasting toxicity effects, which may be derived
from an acute intoxication.
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