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Abstract: Plant basic helix-loop-helix (bHLH) transcription factors are involved in many physiological
processes, and they play important roles in the abiotic stress responses. The literature related to
genome sequences has increased, with genome-wide studies on the bHLH transcription factors in
plants. Researchers have detailed the functionally characterized bHLH transcription factors from
different aspects in the model plant Arabidopsis thaliana, such as iron homeostasis and abiotic stresses;
however, other important economic crops, such as rice, have not been summarized and highlighted.
The bHLH members in the same subfamily have similar functions; therefore, unraveling their
regulatory mechanisms will help us to identify and understand the roles of some of the unknown
bHLH transcription factors in the same subfamily. In this review, we summarize the available
knowledge on functionally characterized bHLH transcription factors according to four categories:
plant growth and development; metabolism synthesis; plant signaling, and abiotic stress responses.
We also highlight the roles of the bHLH transcription factors in some economic crops, especially in
rice, and discuss future research directions for possible genetic applications in crop breeding.

Keywords: bHLH transcription factor; plant growth and development; plant metabolism synthesis;
plant signaling; plant abiotic stress response; crop breeding

1. Introduction

In all eukaryotic organisms, transcription factors regulate many biological processes
by controlling the expressions of downstream target genes. Transcription factors can be
grouped into different subfamilies according to their DNA-binding domains [1]. Basic helix-
loop-helix (bHLH) transcription factors are among the superfamilies that are commonly
found in plants and animals [2]. The conserved bHLH domain contains approximately
60 amino acids (aa), including a basic DNA binding region and two amphipathic α-helices
that are separated by a loop region with a variable length [3]. The basic region consists
of the first 15 amino acids. Most bHLH proteins have a glutamic acid residue at position
9 (E9), which can interact with the CA nucleotides in the DNA sequence [4,5]. Around
15 base-pair α-helices region in the C-terminus contain several hydrophobic amino acids,
such as isoleucine (I), leucine (L), and valine (V), which promote the formation of dimeric
complexes [5]. In addition, the variable loop region found in the middle of two α-helices is
involved in the formation of the homodimers or heterodimers between bHLH proteins [5].

Metazoans are classified into six distinct phylogenetic groups (A–F) based on ex-
pression patterns, dimerization selectivity, and DNA-binding specificities of the bHLH
domains [6]. Group A proteins bind the CAGCTG E-box configuration to form homod-
imers or heterodimers, such as E12, E47, and Daughterless (Da). Group B proteins bind the
CACGTG E-box configuration to play important role in various developmental and cellular
processes. Group C proteins contain the PAS domain that bind the ACGTG or GCGTG
core sequences, which control the development of neurogenesis and the midline, as well
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as the formation of the tracheal and salivary ducts. Group D proteins are unable to bind
DNA due to the absence of the basic domain that neutralizes the DNA-binding activities
through heterodimerization. Group E proteins recognize typical sequences in the N box
(CACGCG or CACGAG) that contain another two characteristic domains (‘Orange’ domain
and WRPW peptide) in their C-terminus. Group F proteins contain a highly conserved
COE domain that is involved in dimerization and DNA binding [7,8].

In plants, scientists have classified the bHLH transcription factors based on their char-
acteristics. Pires and Dolan [4] studied the evolution of the bHLH transcription factors from
land plants to algae, and they classified 544 bHLH transcription factors into 26 subfamilies.
A total of 20 subfamilies shares the same ancestors as extant moss and vascular plants,
while 6 subfamilies exist in vascular plants. In addition, Carretero-Paulet [9] present an
updated and comprehensive classification of the bHLH transcription factors that extend
the subgroup to 32 in plants using 638 bHLH genes. The plant bHLH transcription fac-
tors regulate many growth and development processes, such as embryo growth (Retarded
Growth of Embryo1, RGE1), development of the reproductive organs including gynoecium
(HECATEs, HECs) and anthers (Dysfunctional Tapetum1, DYT1), fruit dehiscence (INDEHIS-
CENT, IND), and seed dispersal (ALCATRAZ, ALC) [10–14]. Furthermore, bHLH proteins
also function in metabolism biosynthesis and signal transduction, such as in anthocyanin
synthesis (Transparent Testa8, TT8), light signaling (Phytochrome Interacting Factors, PIFs),
and brassinosteroid signaling (BEEs) [15–17]. Moreover, some bHLH subfamily members
play important roles in plant biotic and abiotic stress responses, such as pathogen Xan-
thomonas albilineans (SsbHLH15/17), cold (Inducer of CBF Expression1/2, ICE1/2), and salt
stress (SlbHLH) [18–21].

Due to the progressive evolution of sequencing technologies, many genome databases
are available for many important plants. Recently, many researchers have performed
genome-wide studies on bHLH transcription factors in various crops, and they have
widely studied the functions of bHLH transcription factors in the model plant Arabidopsis
thaliana; however, we lack extensive studies on the functions of the bHLH transcription
factors in other plants. In this review, we first classify the information on the functionally
characterized bHLH transcription factors according to four categories: (i) plant growth
and development; (ii) metabolism synthesis; (iii) plant signaling, and (iv) abiotic stress
response, and we explore their roles in various crops, and especially in rice. We also discuss
the research gap and perspectives for future research for the genetic applications of bHLH
transcription factors in crop breeding.

2. The bHLH Transcription Factor Family in Plants

Researchers first identified genome-wide bHLH genes in plants from Arabidopsis (147)
and rice (167), and it has become one of the largest transcription factor families in their
host plants [22,23]. Nowadays, researchers have widely identified bHLH gene families
in various species, and they have grouped them into different numbers of subfamilies,
which we present in Figure 1 (Figure 1). The bHLH protein evolutionary relationship
between different species suggest that most of these subfamilies are derived from the same
ancestors, and may play a fundamental role during the plant development and evolution.
The functional losses of some subfamily proteins during plant evolution may have led to
decreases in their evolutionary branches. In this review, we divide the bHLH transcription
factors into 16 subfamilies, which we present in Table 1. Researchers have extensively
studied bHLH subfamily III, which includes III(a+c), III(b), III(d+e), and IIIf; however, the
bHLH genes in subfamilies V, VIIIb, and XI have rarely been identified, which indicates the
tendency towards the bHLH transcription factors in plants.
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Figure 1. Phylogenetic analysis of the species based on genome-wide association study of the basic
helix-loop-helix (bHLH) family. The total number of bHLH transcription factors identified from the
genome of each species are indicated [5,22–64].
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2.1. bHLH Transcription Factors Are Responsible for Plant Growth and Development

bHLH transcription factors regulate plant growth and development. Researchers
have demonstrated bHLH gene functions in Arabidopsis, as summarized by Hao et al. [65].
However, few bHLH genes have been characterized in other crop plants. Here, we focus
on the functionally characterized bHLH genes in different plants, and mainly in crops
(Figure 2).
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The members of the same subfamily always have similar functions. In flowering
plants, the anther is a reproductive organ that is composed of meiocytes and four cell layers:
the epidermis, endothecium, middle layer, and tapetum [66]. The rice bHLH transcription
factor in subfamily II, TDR Interacting Protein 2 (TIP2), plays an important role in the
formation of the middle layer and tapetum during early anther development through the
regulation of Tapetum Degeneration Retardation (TDR) and Eternal Tapetum 1 (EAT1).
TDR and EAT1 are the key regulators in rice tapetal programmed cell death [67]. EAT1,
which is a conserved bHLH transcription factor in land plants, is involved in this complex
process via the direct activation of the transcriptions of two aspartic protease encoding
genes (AP25 and AP37) [68]. In addition, EAT1 also regulate meiotic phasiRNA biogenesis
in anther tapetum, and Undeveloped Tapetum 1(UDT1) is a potential interacting partner
of both EAT1 and TIP2 during the early meiosis process in rice [69,70]. Furthermore, rice
TIP2 and EAT1 belong to subfamily II, which indicate that the bHLH genes in subfamily
II may act as the key transcriptional regulators in anther development (Table 1). The
overexpression of OsbHLH35 endows plants with small and curved anthers, which result in
a reduction in the seed production (Figure 2) [71]. In this process, three Growth Regulating
Factor (GRF) family members, including OsGRF3, OsGRF4, and OsGRF11, act as the
transcriptional regulators of OsbHLH35, and OsGRF11 acts as a negative regulator of
OsbHLH35 in rice. In other plants, LoUDT1 from the oriental lily hybrid Siberia (Lilium
spp.), which is the homologous gene of OsUDT1, is also related to anther development [72].
Citrullus lanatus Abnormal Tapetum 1 (ClATM1), which is the first male sterility gene in
watermelon, encodes a bHLH protein, and plays important role in the regulation of anther
development, which researchers verified via CRISPR/Cas9-mediated mutagenesis [73].
In tomato, Solyc01g081100, which is a homolog of OsEAT1, is the candidate gene for the
dysfunctional pollen and tapetum development in the male sterile 32 (ms32) mutant, and the
CRISPR/Cas9-mediated modification of the bHLH protein encoded gene Solyc02g079810
causes male sterility in tomato plants [74,75].

The antagonist of the PGL1 (APG) of rice in subfamily VII(a+b), called OsPIL16,
controls the grain length and weight [76]. OsPIL16 interacts with two atypical bHLH
transcription factors, Regulator of Grain Length 1 (PGL1) and PGL2, to antagonistically
regulate the development of the rice grain length [76,77]. The overexpression of PGL1 in
lemma/palea increased the grain length and weight in transgenic rice [77]. In addition,
OsPIL15 shares a close genetic relationship with OsPIL16, which also influences cell division
by affecting the transport of cytokinin (CTK), which results in decreased cell numbers in rice
grains [78]. Yang et al. [79] demonstrated that OsbHLH107, which is in the same subfamily
as the OsPIL genes, also participates in the regulation of grain size. In another important
crop plant, maize, transcription factor ZmbHLH121 in subfamily VIIIb positively regulates
the kernel size and weight of maize [80].

Root hairs are long tubular projections of trichoblasts, which are the hair-forming cells
on the epidermis of the plant root. They increase the plant surface area to improve absorp-
tion of nutrients from soil [81,82]. The rhizoid root hairs are essential for ion exchange,
anchorage functions, and microbial interactions in the soil of land plants [81]. Various
bHLH transcription factors participate in this critical root development process [83]. During
root hair cell differentiation, the hair and non-hair cells are differentiated from morpho-
logically identical epidermal cells [84]. The root hair cells produce an outside long tubule
from the hair-forming cells on the epidermis of the plant root, and they function in the
absorption of nutrients and water, and in interaction with microbes [82,83]. In

Arabidopsis root hair defective 6 (Atrhd6) and root hair defective six-like1 (Atrsl1) double mu-
tants that lack the RSL class I gene function, transformation with 35S: OsRSL1, 35S:OsRSL2
or 35S:OsRSL3 restored the expressions of the RSL class II genes, which indicates the
functional conservation of the RSL genes between rice and Arabidopsis in root hair develop-
ment [85]. In Brachypodium distachyon, the RSL class I genes, including BdRSL1, BdRSL2, and
BdRSL3 also promote root hair development [86]. In sweet sorghum, researchers identified
a new atypical bHLH transcription factor, SbbHLH85, in subfamily VIIIc(2), as a key gene
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for root development via increase in the numbers and lengths of the root hair via ABA and
auxin signaling pathways [87].

2.2. bHLH Transcription Factors Play Important Roles in Plant Metabolism Synthesis

Anthocyanins are the major pigments of flavonoid compounds, and they endow plants
with colors, such as blue, purple, and red, in many flowers, fruits, and vegetables [88,89].
In plants, anthocyanins attract pollinators or seed dispersers, and they protect against UV
radiation, pathogen attacks, and abiotic stresses [90,91]. Furthermore, anthocyanins are
compounds with potential health-benefits for lowering the risk of cardiovascular diseases,
certain cancers, and diabetes in humans due to high levels of antioxidant activity [92–94].
The MBW complex (R2R3-MYB, bHLH, and WDR) mediates the anthocyanin biosynthetic
pathway, which is one of the most conserved and well-studied secondary metabolism
pathways in plants [95,96].

The functionally regulated bHLH genes in anthocyanin biosynthesis are primarily
classified as subfamily IIIf. Petroni and Tonelli [90] and Jaakola [97] reviewed the bHLH
genes that are involved in anthocyanin biosynthesis in various horticultural species, such
as petunia, antirrhinum, and grape (Table 1). In rice, Sun et al. [98] explored the minimal
MBW members required for anthocyanin biosynthesis, including S1 (bHLH), C1 (MYB),
and WA1 (WD40). Under chromium stress, the rice MBW complex is regulated by the
jasmonate (JA) signal and represses anthocyanin accumulation in tissues (Figure 2) [99].
Additionally, low temperature induced SlAH in subfamily IVd regulates anthocyanin
biosynthesis in tomatoes to protect young seedlings from cold stress, which indicates
the bHLH transcription factor functional connections between anthocyanin biosynthesis
and abiotic stress [100]. In Freesia hybrida, subfamily IIIf, the bHLH transcription factors
FhTT8L and FhGL3L interact with FhMYB5 in proanthocyanidin biosynthesis during flower
pigmentation [101]. Peach PpbHLH3 regulated the anthocyanin biosynthesis with MYB10.1
and MYB10.3 in fruit development during ripening (at the transition from the S3 to S4
stage) [102]. In sweet cherry, PabHLH3 enhances anthocyanin synthesis with PaMYB10.1-3
in fruits. This process is inhibited by PabHLH33, which is another bHLH transcription
factor in subfamily IIIf [103]. The bHLH transcription factor AcB2 from onion is associated
with anthocyanin accumulation via the interaction with AcMYB1, which acts as an activator
in the flavonoid biosynthetic pathway in the epithelial cells of onion bulbs.

In addition, the rice bHLH transcription factor Diterpenoid Phytoalexin Factor (DPF)
in subfamily IVd positively regulates the expressions of the diterpenoid phytoalexin (DP)
biosynthesis genes in the process of DP accumulation. DPF was the first bHLH transcription
factor to be characterized in DP biosynthesis through the N-box (5′-CACGAG-3′) [104].
In an orphan group from tomato, the bHLH transcription factor SlAR plays an important
role in the carotenoid biosynthesis in the fruits, which may particularly affect lycopene
accumulation [105].

2.3. bHLH Transcription Factors Are Involved in Plant Signaling

Green plants obtain most of their energy from light through photosynthesis, and light
is an important environmental factor that determines plant growth and development. Plants
can sense the red, far-infrared, and blue light spectra through photoreceptor systems, in-
cluding phytochromes (PHYs), cryptochromes (CRYs), and phototropins (PHOTs), and they
can then mediate the transcriptional networks in the light-regulated processes [106–110]. In
Arabidopsis, members of the phytochrome-interacting factors (PIFs) in subfamily VII(a+b),
such as PIF1/ PIF-like (PIL5), PIF3, PIF4, PIF5/PIL6, PIF6/PIL2, and PIF7, can interact with
PHYs and play central roles in light signaling regulation [65].

Rice has six PILs (OsPIL11 to OsPIL16) in subfamily VII(a+b), and some of the members
are involved in the light signaling pathways [109–112]. OsPIL15 was negatively regulated
by light with the onset of light exposure in etiolated seedlings [113]. The overexpression
of OsPIL15 produced exhibited shorter above-ground parts, an undeveloped root system,
smaller tiller angles, and enhanced shoot gravitropism, which were related to the skotomor-
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phogenesis development, which was likely regulated by the auxin [114,115]. In addition, Li
et al. [116] demonstrated that the fusion of the SRDX transcriptional repressor motif in the
C-terminal of OsPIL11 and OsPIL16 caused constitutively photomorphogenic phenotypes
with short coleoptiles and open leaf blades in darkness. Nevertheless, OsPIL16 was able to
bind to the N-box region of the OsDREB1B promoter, and it was substantially induced by
cold stress in a phyB mutant [117]. In peach, PpPIF8 can interact with PpDELLA2 through
an unknown motif, and the overexpression of PpPIF8 in Arabidopsis promoted increases in
the plant height and branch numbers [118]. Taken together, cross talk may exist among the
grain development, light signaling and abiotic stress response that are meditated by PIL or
PIF genes. These processes that connect the signal transfer to the molecular gene expression
indicate the biochemical mechanisms of photomorphogenesis in plants (Figure 2).

Phytohormones, such as JA and abscisic acid (ABA), regulate plant growth, devel-
opment, and defense processes. JA triggers the degradation of the protein jasmonate
ZIM-domain (JAZ) by 26S protease, which induces the activation of multiple downstream
JA-mediated responsive genes [119–122]. Some bHLH transcription factors are involved
in the hormone signaling pathways in plants. RERJ1, which is a rice JA-responsive gene
in subfamily III(a+c), was up-regulated via exposure to wounding or drought stress [123].
Interestingly, RERJ1 also interacted with OsMYC2 to mediate the defense processes against
herbivory and bacterial infection through JA signaling [124]. The DPF in rice was also
induced by JA, and as well as response to blast fungus infection, copper chloride, and
UV light [104]. Additionally, JA-regulated OsMYC2 induced the expressions of insect
defense-related genes, and it simultaneously activated some of the biosynthetic pathways
for the defense-related metabolites in rice, which was proven in a knockdown osmyc2RNAi
plant (Figure 2) [124]. In Artemisia annua, AaMYC2-Like, the methyl jasmonate (MeJA)
responsive transcription factor, played a prominent role in regulating the artemisinin
biosynthetic pathway, as researchers confirmed through the transient overexpression of
AaMYC2-Like in the leaves [125]. Furthermore, two MYC-type bHLH transcription factors
from A. annua, AabHLH2 and AabHLH3 act as transcription repressors and functional
redundantly to regulate artemisinin biosynthesis [126]. ABA plays a central role in a variety
of physiological processes, and it is also a key abiotic stress-related hormone that responds
to various environmental stresses in plants, such as cold, drought, and salt. Several bHLH
transcription factors in subfamily IIIb are involved in abiotic stresses via the ABA signaling
pathway. A group of PebHLH genes in moso bamboo (Phyllostachys edulis) possess various
cis-elements for ABA and JA in their promoters, which are up-regulated by biotic and
abiotic stresses, ABA and MeJA stimuli [31].

Under specific conditions, multiple phytohormones and environmental factors are
constantly cross talking to affect plant growth and development. Based on previous studies,
light usually promotes cell expansion in plant growth, while ABA and JA are normally
involved in the biotic and abiotic stress responses. Some bHLH transcription factors play
important roles in signal transduction networks that are mediated by plant hormones.
Phytohormones and environment-responsive bHLH transcription factors participate in
various plant developmental processes by interacting with each other either cooperatively
or antagonistically to modulate plant growth.

2.4. bHLH Transcription Factors Are Related to Plant Abiotic Stress and Iron Homeostasis

Plants have evolved to adapt to the stressful conditions that are unfavorable for their
growth and development [127–130]. However, these adverse environmental conditions
substantially affect the yields of crops such as rice [131–133]. Cold stress impacts plant
productivity, especially during the flowering stage, which substantially lowers the prob-
ability of reproductive success. Cold stress signals can be perceived by putative sensors
and induce the expressions of stress-responsive genes to modulate the cellular activities
through the cytosolic Ca2+ levels [133]. bHLH genes that are related to plant abiotic stresses
are mainly in subfamily IIIb, including OsICE1 and OsICE2, which researchers have widely
identified in recent years (Table 1).
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In rice, OsbHLH148 responds to the initial JA signal and regulates drought responsive
genes, including OsDREBs and OsJAZs, endowing the rice with drought tolerance [134].
BEAR1, which is a bHLH gene, regulates the salt response, which was demonstrated by the
salt-sensitive phenotypes of its knockdown or knockout transgenic rice [135]. The osbhlh024
mutant (A91), with a nucleotide base deletion generated by the CRISPR/Cas9 strategy,
increased the shoot weight, and produced high antioxidant activities under salt stress,
which indicates that OsbHLH024 might play a negative role in the salt stress response of
rice [136]. In addition, OsWIH2, which is a drought induced WIH gene, was activated
by OsbHLH130, and the overexpression of OsbHLH130 resulted in substantially higher
drought tolerance via its participation in cuticular wax biosynthesis, with reductions in the
water loss rate and ROS accumulation (Figure 2) [137]. OsbHLH057 targeted the AATCA
cis-element, in the promoter of Os2H16, a gene responding to fungal attack in rice, and
overexpression of OsbHLH057 enhanced rice disease resistance to fungus Rhizoctonia solani
and drought tolerance [138]. In sorghum, a typical bHLH gene, SbbHLH85, plays a key role
in the root development, and its overexpression increased Na+ absorption, which indicates
that SbbHLH85 might play a negative regulatory role in salt tolerance [87].

The ectopic expression of CabHLH035 in pepper (Capsicum annuum L.) enhanced
the salt tolerance in transgenic Arabidopsis [139]. The overexpression of MxbHLH18 in
apple increased iron and high-salinity stress tolerances in Arabidopsis [140]. Zuo et al. [34]
reported the genome-wide identification of the bHLH family genes in Zoysia japonica. The
expressions of ZjbHLH62/ZjICE2, ZjbHLH67, ZjbHLH76/ZjICE1, ZjbHLH88, ZjbHLH97, and
ZjbHLH120 in subfamily IIIb were affected by cold, salt, dehydration, and/or ABA [34].
Furthermore, the overexpression of ZjICE1 and ZjICE2 endowed transgenic Arabidopsis and
Z. japonica plants with abiotic stress tolerance via the activation of the DREB/CBF regulon,
and they also enhanced ROS scavenging [141,142]. The overexpression of MfbHLH38, which
is a bHLH gene of Myrothamnus flabellifolia, increased the tolerance to drought and salt
stresses in transgenic Arabidopsis [143]. HbICE2, which is a novel ICE-like gene in the rubber
tree (Hevea brasiliensis), is involved in JA-mediated cold tolerance and its overexpression
enhanced the cold resistance in transgenic Arabidopsis [144]. The ThbHLH1 (subfamily
XI) plays an important role in stress signaling pathways and induces the expressions of
stress-related genes [145]. The bHLH transcription factors regulate a wide range of plant
growth and stress response signaling pathways, and some of them share homeopathic
pathways for plant survival under unfavorable or stressful conditions.

Metal deficiency (iron) substantially affects many physiological processes of plants,
such as photosynthesis and respiration. Both low and high concentrations of iron greatly
affect the growth of plants. Plants have developed regulatory systems to control their iron
uptake and maintain their Fe homeostasis, and bHLH transcription factors play important
roles in this process [146]. In rice, the Iron-related transcription factor 3 (OsIRO3) in subfamily
IVb is upregulated by environmental stress, and OsIRO3 is characterized as a negative
regulator. The overexpression of OsIRO3 reduced the gene expression in the process
of Fe chelator biosynthesis that included OsIRO2 [147]. Wang et al. [148] demonstrated
that OsIRO3 formed both homodimers and heterodimers with the subgroup IVb bHLH
transcription factor OsbHLH06 that is involved in the transcriptional repression processes
in complex networks. Furthermore, researchers have also identified upstream positive
bHLH regulators of OsIRO3 in iron homeostasis, such as Photochemical Reflectance Index
1 (OsPRI1), OsPRI2/OsbHLH58 and OsPRI3/OsbHLH59, which are in subfamily IVc
(Figure 2) [149,150]. OsbHLH133, in the subfamily VIIIc(2), plays an important role in the
Fe-deficiency signaling network under Fe-deficient conditions in rice [151]. We present the
results for other species, such as soybean, and apple, in Table 1. Manganese (Mn) is also
an essential micro-nutrient that acts as a cofactor in the redox reactions in photosynthesis.
ZmbHLH105 confers improved Mn tolerance on the transgenic tobacco by repressing the
expressions of the Mn/Fe-regulated transporter genes to reduce the Mn acclamation [152].

In summary, plant growth is strictly controlled by intricate regulation mechanisms,
and the bHLH family genes always function with many other proteins to allow plants to
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perform specific developmental processes at suitable times, and to increase their chances of
survival under unfavorable environments. Various research studies have demonstrated
that bHLH transcription factors play important roles in a broad range of plant growth and
developmental processes via crosstalk. For example, RERJ1 mediates the defense processes
against herbivory and bacterial infection through JA signaling [124], OsPIL11 and OsPIL16
are involved in photomorphogenic developmental processes that are affected by light [116],
and OsbHLH148 regulates drought stress in rice, which also responds to JA treatment [134].
The establishment of this mechanism is complicated, and systematic investigations into the
bHLH genes in plants will facilitate their use for crop improvement programs.

Table 1. Functional characterization of basic helix-loop-helix (bHLH) proteins.

Subfamily Gene Name Gene Accession Contribution Reference

II
ClATM1 Cla010576 Anther development [73]
OsEAT1 Os04g0599300 Anther development [68]
OsTIP2 Os01g0293100 Anther development [67]
SlMS10 Solyc02g079810 Pollen and tapetum development [75]
SlMS32 Solyc01g081100 Pollen and tapetum development [74]

III(a+c)
CabHLH035 LOC107866727 Salt [139]

OsRERJ Os04t0301500 JA signaling [123]
PebHLH35 AIG53906 Drought [153]

IIIb
BjICE53 HQ857208 Chilling (4 ◦C) [154]
HbICE2 AOO76749 Freezing (−8 ◦C) [144]
OsICE1 Os11g0523700 Drought [155]
OsICE2 Os01g0928000 Freezing (−6 ◦C) [156]
ZjICE1 QBQ01909 Freezing (−6 ◦C), drought, salt [141]
ZjICE2 QFQ50795 Cold, drought, salt [142]

III(d+e)
FtbHLH2 KT737455 Chilling (4 ◦C) [157]
OsMYC2 Os10g0575000 Insect defense [158]

IIIf
DvIVS BAJ33515 Anthocyanin biosynthesis [159]
OsS1 Os04t0557500 Anthocyanin biosynthesis; JA signaling [98]

PabHLH3 KP126521 Phenylpropanoid metabolism biosynthesis [103]
PabHLH33 KP126523 Anthocyanin biosynthesis [103]
PpbHLH3 ppa002884m Anthocyanin biosynthesis [102]
StbHLH1 JX848660 Phenylpropanoid biosynthesis [160]

IVb
OsbHLH062 Os07g0628500 Iron homeostasis [147]

OsIRO3 Os03g0379300 Iron homeostasis [147]
IVc

OsPRI1 Os08g0138500 Iron homeostasis [149]
OsPRI2 Os05g0455400 Iron homeostasis [150]
OsPRI3 Os02g0116600 Iron homeostasis [150]

OsbHLH057 Os07g0543000 Disease resistance, drought [138]
ZmbHLH105 AIB05526 Mn homeostasis [152]

IVd
OsDPF XM_015775745 Diterpenoid phytoalexin biosynthetic [104]

OsbHLH024 Os01g0575200 Salt [136]
OsbHLH148 NM_123731 Drought; JA signaling [134]

SlAH KR076778 Anthocyanin biosynthesis [100]
Va

MfbHLH38 QNN83755 Salt [143]
Vb

OsbHLH035 Os01g0159800 Anther development [71]
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Table 1. Cont.

Subfamily Gene Name Gene Accession Contribution Reference

VII(a+b)
OsbHLH107 Os02g0805250 Grain development [79]

OsPIL11 Os12g0610200 light signaling [116]
OsPIL15 Os01g0286100 Grain development; light signaling [78]
OsPIL16 Os05g0139100 Grain development; light signaling [77]

VIIIb
ZmbHLH121 GRMZM5G868618 Kernel development [80]

VIIIc(1)
BdRSL1 XM-003565193 Root hair development [86]
BdRSL2 KQK00978 Root hair development [86]
BdRSL3 XP-010229851 Root hair development [86]
OsRSL1 NP-001047894 Root hair development [85]
OsRSL2 BAF03719 Root hair development [85]
OsRSL3 BAD46515 Root hair development [85]

VIIIc(2)
OsbHLH133 Os12g0508500 Iron distribution [151]
SbbHLH85 SORBI_3008G147800 Root hair development [87]

X
AaMYC2-Like MH820174 JA signaling and Artemisinin biosynthesis [125]
OsbHLH130 Os09g0487900 Drought [137]

XI
ThbHLH1 KM101094 Salt, osmotic stress [145]

Orphans
SlAR Solyc12g098620 Carotenoid biosynthesis [105]

LoUDT1 MW357612 Anther development [72]
OsUDT1 Os07g0549600 Anther development [69]

Note: JA indicates Jasmonate. The abbreviations of the gene name from different species are showed as below: Aa
refers to Artemisia annua L.; Bd refers to Brachypodium distachyon; Bj refers to Brassica juncea; Ca refers to Capsicum
annuum L.; Cl refers to Citrullus lanatus L.; Dv refers to Dahlia variabilis; Ft refers to Fagopyrum tataricum; Hb refers
to Hevea brasiliensis; Lo refers to Lilium oriental; Mf refers to Myrothamnus flabellifolia; Os refers to Oryza sativa; Pa
refers to Prunus avium L.; Pe refers to Populus euphratica; Pp refers to Prunus persica; Sb refers to Sorghum bicolor; Sl
refers to Solanum lycopersicum L.; St refers to Solanum tuberosum; Th refers to Tamarix hispida; Zm refers to Zea mays;
Zj refers to Zoysia japonica.

3. Conclusions and Perspectives

Genetically modified organisms (GMO) have been widely developed using genetic
engineering techniques to alter their original characteristics, such as flower color and
shape, or tolerance for biotic and abiotic stresses. Transcription factors regulate different
routes by modulating the respective downstream target genes, which can involve multiple
plant physiological processes. Therefore, transcription factors are likely better targets for
genetic engineering due to their broader regulatory capacities compared with other proteins.
The identification of the bHLH transcription factors in different pathways contributes to
our comprehensive understanding of the various aspects of plant morphogenesis and
adaptation to extreme environments. In Arabidopsis, excellent reviews have covered the
roles of bHLH transcription factors from different aspects, which include how bHLH
transcription factors mediate Arabidopsis growth and development, such as flowering time
control, seed dormancy and germination, and cell fate determination, how they function in
environmental responses, such as iron homeostasis regulation, and abiotic stress responses,
and how they respond to light and phytohormones [65]. Some bHLH transcription factors
play crucial roles in many aspects in the crosstalk pathway, such as BEEs responding to
brassinosteroids to regulate normal gynoecium development [17]. In this review, based
on the functions of bHLH transcription factors, we classify the bHLH family that from
important economic crops into four major categories (plant growth and development;
metabolism biosynthesis; plant signaling, and plant abiotic stress), and we demonstrate
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that the bHLH family transcription factors play vital roles in plant growth, development,
and adaptation to environmental stresses.

bHLH transcription factors regulate several pathways, and bHLH transcription fac-
tors in the same subfamily can make different contributions within plants. For example,
subfamily VIIIc is mainly involved in root hair development, and OsbHLH133 in subfamily
VIIIc(2) plays an important role in the Fe-deficiency signaling network, which raises the
question as to whether there is a relationship between root hair development and the
Fe-deficiency signaling pathways. Whether OsbHLH133 has any potential functions in
root hair development is still unknown and poorly understood. Thus, bHLH members
in the same subfamily may perform similar functions, but not necessarily. Our current
knowledge of the bHLH transcription factors from different species mainly includes gene
identification, and researchers have performed most of the functional characterizations in
model plants (Arabidopsis or rice). Thus, the knowledge of the mechanisms that underlies
these differences is still limited. The bHLH transcription factors from many economically
important crops are not well characterized. In this review, we summarize the current
research on the bHLH function in rice and other economical plants through an evolutionary
classification, not only providing a relatively complete overview of the bHLH transcription
factor family, but also indicating the potential functions of the bHLH transcription factors
in different subfamilies. This review enriches our understanding of the bHLH family in
rice, and it provides new insights into the bHLH transcription factor regulation in various
biological processes.

Using genetic engineering tools to improve agronomic traits of crops is an efficient
and rapid way for plant molecular breeding. Some bHLH transcription factors have been
engineered in transgenic plants to increase plant tolerance, such as drought [134]. In ad-
dition, the regulatory capacity of transcription factor genes makes them better targets for
genetic engineering, and they have high potential to produce broader responses compared
with other proteins. In future studies, researchers should elucidate the mechanism of
bHLH protein-regulated plant growth and development via the coordination of multiple
pathways, such as phytohormones and environmental factors. In addition, the creation
of genetically modified mutants and genetic manipulations of bHLH genes to identify
additional regulation pathways in this complex process are also needed. Notably, most
bHLH transcription factors that have been functionally investigated so far are evolutionary
conserved, whereas the species-specific or tissue-specific bHLH transcription factors have
been studied rarely. Thus, much more work is required to decipher the regulatory mecha-
nisms of non-conserved bHLH transcription factors in plant growth, development, and
response to biotic or abiotic stresses stimuli. Furthermore, new biotechnological tools will
accelerate these complex processes, such as RNAi, virus-induced gene silencing (VIGS),
the CRISPR/Cas9 gene editing system, single cell RNA sequencing, and omics analysis.
Thus, the future seems bright with respect to the development of crops with improved
agronomic traits that use bHLH transcription factors with a greater efficiency than ever
before. Therefore, characterization of the bHLH transcription factors in various crops will
enrich our understanding of their roles and evolution in plants, and provide new strategies
for their genetic applications for plant engineering.
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