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Abstract: In addition to inhibiting renal glucose reabsorption and allowing for glucose excretion,
the sodium/glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin may be efficacious in treating
various comorbidities associated with type 2 diabetes mellitus (T2DM). The molecular mechanisms by
which dapagliflozin exerts its beneficial effects are largely unknown. We hypothesized dapagliflozin
treatment in the diabetic kidney alters plasma membrane lipid composition, suppresses extracellular
vesicle (EV) release from kidney cells, and disrupts lipid rafts in proximal tubule cells. In order to
test this hypothesis, we treated diabetic db/db mice with dapagliflozin (N = 8) or vehicle (N = 8)
and performed mass spectrometry-based lipidomics to investigate changes in the concentrations
of membrane lipids in the kidney cortex. In addition, we isolated urinary EVs (uEVs) from urine
samples collected during the active phase and the inactive phase of the mice and then probed
for changes in membrane proteins enriched in the EVs. Multiple triacylglycerols (TAGs) were
enriched in the kidney cortex membrane fractions of vehicle-treated diabetic db/db mice, while
the levels of multiple phosphatidylethanolamines were significantly higher in similar mice treated
with dapagliflozin. EV concentration and size were lesser in the urine samples collected during the
inactive phase of dapagliflozin-treated diabetic mice. In cultured mouse proximal tubule cells treated
with dapagliflozin, the lipid raft protein caveolin-1 shifted from less dense fractions to more dense
sucrose density gradient fractions. Taken together, these results suggest dapagliflozin may regulate
lipid-mediated signal transduction in the diabetic kidney.

Keywords: diabetes; kidney; lipidomics; lipid rafts; dapagliflozin

1. Introduction

Sodium–glucose co-transporters (SGLTs) are members of the solute carrier 5 family of
glucose active transporters [1]. SGLT1 and SGLT2 subtypes are primarily responsible for
the physiological transport of glucose in the kidney [1]. Almost 97% of the filtered glucose
that is reabsorbed is carried out by the high-carrying capacity, low-affinity SGLT2 trans-
porter, which is almost exclusively expressed in renal proximal tubular epithelial cells [2].
Mechanistically, SGLT2 inhibitors including dapagliflozin can reduce the maximum car-
rying capacity of tubular glucose absorption, which raises urine glucose excretion and
lowers plasma glucose levels. In addition to their hypoglycemic actions, SGLT2 inhibitors
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have been demonstrated to offer blood pressure lower effects [3–5], weight-loss [6,7], and
cardioprotective benefits [6,8,9] and to enhance glucose metabolism in epicardial fat [10].
Furthermore, dapagliflozin may improve lipoprotein profile and atherosclerosis devel-
opment [11], in contrast to empagliflozin that raises low-density lipoprotein cholesterol
levels [12]. The SGLT2 inhibitor empagliflozin has been shown to reduce levels of in-
flammatory factors including IL-1, IL-6, and IL-8 in models of diabetics [13] and decrease
mitochondrial calcium overload and reactive oxygen species production in human endothe-
lial cells, which are caused by high glucose levels [14]. A study by Chen et al. showed
that dapagliflozin alleviated hyponatremia, hypokalemia, and hypochloremia in diabetic
rats and came to the conclusion that this drug did not cause an electrolyte imbalance or
significant volume depletion [15]. However, the exact mechanism for dapagliflozin is
still largely unknown in terms of blood pressure regulation. Therefore, filling this critical
knowledge gap could give us a better understanding of the mechanisms through which
dapagliflozin regulates blood pressure, involving renal transporters.

The risk of cardiovascular disease, renal failure, and cerebrovascular events is in-
creased by uncontrolled blood pressure, otherwise known as hypertension. Hypertension
is a major public health concern [16]. Uncontrolled hypertension contributes to organ
failure including renal failure [17]. It has been demonstrated that effective blood pressure
management lowers the risk of stroke, heart attack, and heart failure [18]. Diuretics are
one of the early treatment options for hypertension, but they can have considerable side
effects that cause volume depletion and electrolyte imbalance, including hyponatremia and
hypokalemia [19].

Several physiological and behavioral traits follow the 24 h cycle and are synchronized
with the day/night cycle. In particular, the physiological processes that are related to the
kidneys, including renal blood flow, glomerular filtration rate (GFR), blood pressure, renal
cortico-medullary osmotic gradient, and tubular water and electrolyte transport, exhibit
circadian rhythms and are thought to be regulated over a 24 h cycle, at least in part, by the
intrinsic kidney clocks [20].

Extracellular vesicles (EVs), including exosomes, are specialized membranous vesicles
that are released by all cells and found in bodily fluids including blood and urine [21]. They
are more than just waste-exporting vesicles, as they enable the transfer of mRNAs, microR-
NAs, DNA, and proteins across cells [22]. EVs have been shown to allow for intercellular
communication within the nephron [23] and play a role in signal transduction [24–27]. EVs
are a rich source of biomarkers, and recent research has shown that they may play a role in
the pathophysiology of hypertension [21].

The purpose of this study was to test our hypothesis that dapagliflozin treatment
alters kidney cortex membrane lipids and the release of EVs into the urine of hypertensive
diabetic db/db mice in a time-of-day-dependent manner. Additionally, we provide a
discussion of potential beneficial effects of dapagliflozin to mitigate outcomes of salt-
induced hypertension in the diabetic kidney at the level of changes in membrane lipids
and EV release from renal epithelial cells.

2. Results
2.1. Dapagliflozin Treatment Alters Membrane Lipid Composition in the Kidneys of Salt-Loaded
Hypertensive Diabetic db/db Mice

Diabetic db/db mice are known to develop hypertension upon salt loading [28]. Here,
we salt-loaded male diabetic db/db mice for 10 days to induce hypertension and then
treated the mice with either a vehicle or dapagliflozin for 14 days. The membrane lipids
were extracted from the kidney cortex, and relative lipid concentrations were analyzed
between the two groups. A total of 431 lipids were detected. A volcano plot shows several
lipids are significantly downregulated, while other lipids are significantly upregulated in
diabetic db/db mice treated with dapagliflozin compared to vehicle (Figure 1A). A heatmap
shows the clustering of the top 50 lipids based on the relative lipid concentrations between
the two treatment groups (Figure 1B). Triacylglycerols (TAGs), phosphatidylethanolamine



Int. J. Mol. Sci. 2023, 24, 1408 3 of 14

(PEs), phosphatidylglycerols (PGs), phosphatidylserines (PSs), phosphatidylinositols (PIs),
lysophosphatidylethanolamines (LPEs), and lysophosphatidylcholine (LPCs) are the main
classes of lipids that were found to be differentially enriched in the membranes between
dapagliflozin-treated and vehicle-treated diabetic db/db mice.

2.2. Decrease in TAGs in Kidney Cortex Membrane Fractions of db/db Mice Treated with
Dapagliflozin

A published study reported that the triacylglycerol (TAG) lipid architecture plays
an important role in the progression of diabetic kidney disease [29]. Thus, one of the
objectives of this study was to investigate whether the concentrations of TAGs are altered
by dapagliflozin treatment. Our lipidomics data show several forms of TAGs are decreased
in kidney cortex membrane fractions from diabetic db/db mice treated with dapagliflozin
compared to the vehicle (Figure 2A). Similarly, there were lower amounts of various
PEs, PGs, PS, and PIs in the membranes of dapagliflozin-treated diabetic db/db mice
compared to vehicle-treated mice (Figure 2B–E). While there were multiple forms of several
different lipid classes that were found to be reduced in concentration in the membranes of
dapagliflozin treated mice, there were multiple forms of other lipid classes that were found
to be increased in the membranes of the dapagliflozin group compared to the control group.
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Figure 1. Analysis of lipids in the kidneys of dapagliflozin- or vehicle-treated salt-loaded hypertensive
diabetic db/db mice. (A) Volcano plot showing 34 lipids that are significantly down-regulated and
19 lipids that are significantly upregulated in the kidneys of diabetic db/db mice treated with
dapagliflozin compared to vehicle. A 2.0-fold change threshold and a p-value threshold of 0.05
were applied. Data were normalized by the mean and then to the median in MetaboAnalyst with
Pareto scaling. The points representing specific lipids on the left (value < 0) are expressed at a lower
level, and those on the right (value > 0) are expressed at a higher level, in the dapagliflozin group
compared to the vehicle group. (B) Heatmap with Euclidean distance measure, Ward clustering
method showing the top 50 lipids, with each colored cell on the map corresponding to a concentration
value in the data table.
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cantly different between the two groups. The concentration of each lipid is given in µmol/g. The 
concentration of each lipid was normalized to the median. The black (left bar) represents the 
dapagliflozin group, and the white (right bar) represents the vehicle group. 
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The accumulation of LPC 16:0 and 18:0 in the kidney and urine is associated with kid-
ney function decline in patients with diabetic kidney disease [30]. Other studies have shown 

Figure 2. Lipids significantly downregulated in the kidneys of the dapagliflozin-treated salt-loaded
hypertensive diabetic db/db mice compared to the vehicle-treated db/db mice. (A) Plots of triacyl-
glycerols (TAGs), (B) plots of phosphatidylethanolamines (PEs), (C) plots of phosphatidylglycerols
(PGs), (D) plots of phosphatidylserines (PSs), and (E) plots of phosphatidylinositols (PIs) significantly
different between the two groups. The concentration of each lipid is given in µmol/g. The concen-
tration of each lipid was normalized to the median. The black (left bar) represents the dapagliflozin
group, and the white (right bar) represents the vehicle group.

2.3. Increase in LPCs in Kidney Cortex Membrane Fractions of db/db Mice Treated
with Dapagliflozin

The accumulation of LPC 16:0 and 18:0 in the kidney and urine is associated with
kidney function decline in patients with diabetic kidney disease [30]. Other studies have
shown that PEs are important metabolites that promote the early onset of diabetic kidney
disease [31]. These studies motivated us to investigate whether dapagliflozin treatment
alters the concentration of various PCs and PEs in the kidneys of diabetic db/db mice.
First, we show that LPC (22:6), LPC (22:4), LPC (20:0), and LPC (20:4) levels are higher in
the kidney cortex membrane fractions of diabetic db/db mice treated with dapagliflozin
compared to the vehicle (Figure 3). Other forms of LPCs including LPC 16:0 and 18:0
did not show a change between the two groups or were not detectable in each sample.
While our data show various forms of PE are elevated in the membranes of kidneys from
diabetic db/db mice treated with the vehicle (Figure 2B), there were several modified
forms of PEs, in the form of PEPs and PEOs, that were elevated in dapagliflozin-treated
mice compared to vehicle-treated mice (Figure 3A). Similar to these PEPs and PEOs, the
concentrations of several forms of LPEs, LPCs, PI(16:0/18:0), and PC(16:0/18:0) were greater
in the membranes of dapagliflozin-treated hypertensive diabetic db/db mice compared to
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the vehicle-treated mice (Figure 3B–E). Here, were show the concentrations of membrane
lipids in the diabetic kidney are altered in response to dapagliflozin treatment. In addition
to serving as a selectively permeable barrier that express transmembrane proteins that are
sensitive to drug treatment, the plasma membrane is the site where extracellular vesicles
(EVs) are released and taken up.
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Figure 3. Lipids significantly upregulated in the kidneys of dapagliflozin-treated salt-loaded hyper-
tensive diabetic db/db mice compared to the vehicle-treated db/db mice. (A) Plots of PEPs, PEOs,
and PEs, (B) plots of lysophosphatidylethanolamines (LPEs), (C) plots of lysophosphatidylcholines
(LPCs), (D) plots of phosphatidylinositols (PIs), and (E) plots of phosphatidylcholines (PCs). The
concentration of each lipid is given in µmol/g. The concentration of each lipid was normalized to the
median. The black (left bar) represents the dapagliflozin group, and the white (right bar) represents
the vehicle group.

2.4. Dapagliflozin Treatment Decreases EV Release and Excretion into the Urine of db/db Mice
during the Inactive Phase

Urinary extracellular vesicles (uEVs) are a rich source of biomarkers that originate
mainly from kidney cell types from each segment of the nephron. In addition, these EVs
resemble the cell types that they originate from in the kidney. In order to investigate whether
dapagliflozin treatment alters EV size and release in a time-of-day-dependent manner, we
isolated EVs from the urine collected during the inactive phase or active phase of vehicle- or
dapagliflozin-treated diabetic db/db mice. As shown in Figure 4, the size and concentration
of uEVs isolated from urine collected during the inactive phase of diabetic db/db mice
treated with dapagliflozin was less compared to diabetic db/db mice treated with the
vehicle. The EVs were also characterized by Western blotting for multiple EV markers.
HSP70, annexin A2, GAPDH, and syntenin were all found to be enriched in the uEVs from
both the vehicle and dapagliflozin groups from both the animals’ inactive and active phases
(Figure 4D). Densitometric analysis was performed after normalizing the Western blots
to urinary albumin levels. There was no change in any of the four EV markers between
the dapagliflozin- and vehicle-treated groups or between the inactive and active cycles
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(Figure 4E). The decrease in size and concentration of uEVs after dapagliflozin treatment
compared to vehicle treatment led us to investigate whether dapagliflozin treatment could
also disrupt the organization of lipid rafts within the plasma membrane of cultured renal
epithelial cells.
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Figure 4. Characterization of uEVs isolated from the inactive and active phases of salt-loaded
hypertensive diabetic db/db mice. (A) Representative nanoparticle tracking analysis plots of uEVs
isolated from diabetic db/db mice treated with vehicle or dapagliflozin during the inactive or active
phases. (B) Summary plots showing the comparison of uEV size between the two groups and
two phases. ** represent a p-value of <0.01 (C) Summary plots showing the comparison of uEV
concentration between the two groups and two phases. *** represent a p-value of <0.005 (D) Western
blots of established uEV markers in each uEV sample from the two groups and phases. n = 4 uEV
preparations from inactive-phase urine collections and the same number of uEV preparations from
active-phase urine collections of n = 4 vehicle-treated db/db mice and n = 4 dapagliflozin-treated
db/db mice. (E) Densitometric analysis of the immunoreactive bands in Panel D normalized to
urinary albumin levels (uAlbumin).

2.5. Dapagliflozin Treatment Disrupts Lipid Rafts in Mouse Proximal Tubule Cells

Lipid rafts are signaling platforms enriched in cholesterol and sphingolipids that
are involved in diverse cellular processes. In addition to investigating altered plasma
membrane lipid composition in diabetic db/db mice, we investigated whether dapagliflozin
treatment could disrupt lipid rafts in cultured normal mouse proximal tubule cells. As
shown in Figure 5, dapagliflozin treatment in mouse proximal tubule cells resulted in
the distribution of the lipid-raft-associated protein caveolin 1 to non-lipid-raft fractions
containing the clathrin adaptor protein µ-2 which is primarily localized to high-density
sucrose gradient fractions. Also, the amount of sodium hydrogen exchanger (NHE3)
protein, which is exclusively expressed at the apical plasma membrane of proximal tubule
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cells, was reduced in light-density sucrose gradient fractions in dapagliflozin-treated cells
compared to cells treated with the vehicle (Figure 5).
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Figure 5. Sucrose density gradient assays from mouse proximal tubule cells treated with dapagliflozin
or vehicle. (A) Western blot analysis of lipid-raft- and non-lipid-raft-associated fractions from sucrose
density gradient fractions of mouse proximal tubule cells treated with vehicle. (B) Western blot
analysis of lipid-raft- and non-lipid-raft-associated fractions from sucrose density gradient fractions
of mouse proximal tubule cells treated with dapagliflozin.

3. Discussion

Our study demonstrates for the first time that dapagliflozin treatment alters the con-
centrations of multiple classes of lipids in the membranes of kidneys from hypertensive
diabetic db/db mice. In addition to identifying specific lipids that are affected by da-
pagliflozin treatment, cellular studies showed dapagliflozin treatment disrupts lipid raft
organization in mouse proximal tubule cells. While the efficacy of using dapagliflozin
to treat renal and cardiovascular complications in patients with type 2 diabetes has been
studied [2], the mechanisms of action are still unknown.

In an attempt to address this knowledge gap, we designed a study to investigate
changes in the concentration of membrane lipids from hypertensive diabetic db/db mice
treated with either dapagliflozin or vehicle. Our lipidomics data identify several bioac-
tive lipids including plasmenyl phosphatidylethanolamines (PEPs) and plasmanyl phos-
phatidylethanolamines (PE-O) that were increased in the kidney membranes of dapagliflozin-
treated mice. The lipidomic data from this study may be relevant to the beneficial effects
of dapagliflozin, including reductions in blood glucose and blood pressure. For example,
various PEs may play an important role in physiology and pathophysiology. Plasmalo-
gens are phosphatidylcholine or phosphatidylethanolamine glycerophospholipids that
have a vinyl ether moiety in the sn-1 position and an esterified fatty acid in the sn-2
position [32]. Sindelar et al. showed plasmalogens effectively protect polyunsaturated
fatty acids from oxidative damage [33]. Some of the functions that have been proposed
for plasmalogens include modulation of membrane fluidity, mediation of inflammatory
responses [34], and anti-oxidative properties [32]. Thus, the increase in plasmalogen phos-
phatidylethanolamines in the membranes of diabetic db/db kidneys after dapagliflozin
treatment (Figure 6) may help to mitigate poor outcomes associated with diabetic kid-
ney disease.
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Figure 6. Schematic showing the effects of dapagliflozin treatment on membrane lipids in the kidneys
of diabetic db/db mice. An increase in plasmalogen phosphatidylethanolamines in the form of PEPs
and PEOs in the membranes of diabetic db/db kidneys after dapagliflozin treatment may alleviate
the progression of diabetic kidney disease. ? represents putative effects of dapagliflozin treatment.

There are numerous strengths of this study. First, we used an established mouse model
of type 2 diabetes that develop hypertension after salt loading. Importantly, these db/db
mice manifest several characteristics that are often seen in diabetic patients, including
obesity and risk of diabetic nephropathy. The diabetic db/db mice used in our study were
randomized to a vehicle control group and a dapagliflozin treatment group before being
salt-loaded to induce hypertension. In order to minimize bias, we performed a blinded
lipidomic study that included using a validated protocol and internal standards.

One limitation of this study is that we did not perform lipidomics using urinary
EVs and correlate changes in EV lipids with changes in the lipids in the membranes of
kidneys from dapagliflozin-compared to vehicle-treated hypertensive diabetic db/db mice.
In general, the lipid compositions of EVs resemble the lipid compositions of the plasma
membranes of the parent cells they were released from, and this data may be helpful in
identifying the origin of uEVs released in response to dapagliflozin treatment. A second
limitation of our study is that we analyzed changes in membrane lipids only from the renal
cortex, and we did not investigate regional differences in membrane lipids between the
kidney cortex and inner/outer medulla after dapagliflozin treatment. Another limitation
of this study is that we were unable to determine whether the decrease in urinary EV
concentration observed during the inactive phase of the dapagliflozin-treated diabetic
db/db mice compared to the vehicle-treated mice is due to a decreased rate of EV release
from different cell types within the nephron or greater uptake of the EVs by recipient cells,
thus reducing the amount of EVs excreted into the urine.

Although our study focused on investigating the effects of dapagliflozin in regulat-
ing the association between the sodium–hydrogen exchanger (NHE3) and lipid rafts in
proximal tubule cells, we realize dapagliflozin may have effects in other segments of the
nephron where other membrane transporters and ion channels play a role in diabetic
kidney disease and are regulated by lipid rafts. For example, the bumetanide-sensitive
sodium–potassium–chloride cotransporter (NKCC2) [35,36] and the amiloride-sensitive
epithelial sodium channel (ENaC) [37–39] have been found to be associated with lipid rafts.
Lipid rafts can mediate endocytosis of membrane proteins, or they can allow for exocytic
trafficking of membrane proteins to the cell surface. Further studies are needed to better
understand the mechanism by which anti-diabetic drugs such as dapagliflozin regulate
epithelial transport mechanisms in the native kidney.
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4. Materials and Methods
4.1. Animals

A total of 16 twelve-week-old, male C57BL/6 db/db mice (BKS.Cg-Dock7m +/+
Leprdb 116 /J; Stock No: 000642) were purchased from the Jackson Laboratory (Bar Harbor,
ME, USA). All animal studies were performed under an approved University of Florida
Institutional Animal Care and Use Committees protocol and were in compliance with the
National Institutes of Health “Guide for the Care and Use of Laboratory Animals”.

4.2. Animal Diet

Mice were fed a 4% high-salt diet (HSD) prepared by using type 1 water, agar, NaCl,
and powdered chow (Tekland TD.94045.PWD; Envigo; Indianapolis, IN, USA). The diet
was dispensed into small food cups and stored at 4 ◦C for up to 3 days.

4.3. Metabolic Cage Studies and Administration of Vehicle or Dapagliflozin

Twelve-week-old male db/db mice were weighted and then placed in individual
metabolic cages. These mice were maintained for 10 days on a 4% HSD to induce hyperten-
sion. On day 10, the animals’ blood pressure was measured to confirm the development of
hypertension (systolic blood pressure greater than 140 mmHg), and the animals were ran-
domly separated into a control group that received a vehicle (saline) and an experimental
group that received 1 mg/kg/day dapagliflozin (MedChemExpress, Junction, NJ, USA) for
14 days at 6 p.m. by oral gavage. Urine samples were collected daily between 9 a.m. and
11 a.m. (reflecting urine produced during the night-time active phase) and between 9 p.m.
and 11 p.m. (reflecting urine produced during the day-time inactive phase).

4.4. Tissue Lysate Preparation

Fifty milligrams of kidney cortex tissue specimens was washed in 1× of PBS (prepared
from the 10× solution (1.37 M NaCl, 27 mM KCl, 100 mM Na2HPO4, 18 mM KH2PO4, PH
to 7.4) and then homogenized in 500 µL of tissue protein extraction reagent (TPER; Thermo
Fisher Scientific) containing protease and phosphatase inhibitors (Thermo Fisher Scientific,
Waltham, MA, USA) using an Omni TH homogenizer (Warrenton, VA, USA). The tissue
lysates were centrifuged at 13,000 rpm for 10 min at room temperature before 450 µL of the
supernatant was subjected to ultracentrifuging at 34,000 rpm for 30 min at 4 ◦C. The pellets
were resuspended in 200 µL TPER and then sonicated twice for 3 s intervals while on ice.
Protein concentrations were determined using a bicinchoninic acid protein assay (BCA)
(Thermo Fisher Scientific).

4.5. Lipid Extraction from Kidney Cortex Membrane Fractions

Lipids were extracted using the Bligh and Dyer method [40]. Each sample was adjusted
to 1 mL in reagent-grade water and incubated for 10 min on ice. Next, 2 mL of methanol and
0.9 mL methylene chloride were added before being vortexed for 30 s. The EquiSPLASH
Lipidomix (Avanti Polar Lipids, Inc., Alabaster, AL, USA) mixture was used as an internal
standard, which consists of a mix of 13 deuterated lipids, each at a 100 µg/mL concentration.
The deuterated lipids were 15:0–18:1(d7) diacylglycerol (DAG); 18:1(d7) monoacylglycerol
(MAG); d18:1–18:1(d9) sphingomyelin (SM); C15 ceramide (CER)-d7; 15:0–18:1(d7)–15:0 tri-
acylglycerol (TAG); 18:1(d7) cholesteryl ester (CE); 15:0–18:1(d7) phosphatidylcholine (PC);
18:1(d7) lysophosphatidylcholine (LPC); 15:0–18:1(d7) phosphatidylglycerol (PG); 15:0–
18:1(d7) phosphatidylinositol (PI); 15:0–18:1(d7) phosphatidylethanolamine (PE); 18:1(d7)
lysophosphatidylethanolamine (LPE); and 15:0–18:1(d7) phosphatidylserine (PS). The in-
ternal standards were diluted 1:5, and 50 µL (20 µg/mL for each standard) was incubated
with each sample for 30 min at room temperature. Next, 0.9 mL of methylene chloride and
1 mL of reagent grade water were mixed by inversion 10 times and then centrifuged at
100× g for 10 min. The organic phase was collected before a second round of extraction
was performed using 2 mL methylene chloride. The pooled organic phases were dried
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using N2, reconstituted in 50 µL 96% ethanol, and then subjected to liquid chromatography
tandem mass spectrometry.

4.6. Liquid Chromatography Tandem Mass Spectrometry

Liquid chromatography–electrospray ionization tandem mass spectrometry was per-
formed using an ultra-high-performance liquid chromatography instrument (Shimadzu
Co., Kyoto, Japan) and a QTRAP 6500 mass spectrometer (AB SCIEX, Redwood Shores, CA,
USA). Lipids were processed and analyzed as previously described by our group [41].

4.7. Urinary Extracellular Vesicle Isolation

Urinary extracellular vesicles were isolated from 10 mL of 12 h urine collections
from 8 diabetic db/db mice treated with dapagliflozin or 8 diabetic db/db mice treated
with the vehicle. Briefly, the crude urine sample was centrifuged at 1000× g at 4 ◦C for
15 min. Next, 0.22 µm rapid-flow Nalgene filters (Thermo Fisher Scientific) were used to
filter the urine samples. The filtered urine samples were subjected to ultracentrifugation
at 52,000 rpm at 4 ◦C for 90 min. The EV pellet was resuspended in 200 µL ultra-pure
1× phosphate-buffered saline (PBS) (Thermo Fisher) and stored at −80 ◦C.

4.8. Nanoparticle Tracking Analysis

The size and concentration of uEVs were measured using a NanoSight machine as
previously described by our group [42].

4.9. Urinary Albumin Measurements

Urine albumin was measured using an albumin assay kit (Catalog #: K551; BioVi-
sion/abcam) (Waltham, MA, USA) according to the manufacturer’s instructions.

4.10. Western Blot Analysis

Twenty micrograms of total protein were resolved on 4–20% Tris HCl polyacrylamide
gels using a Criterion electrophoresis system (BioRad; Hercules, CA, USA) at 200 V for
50 min at room temperature. The separated proteins were subjected to transfer onto
nitrocellulose membranes (Thermo Fisher Scientific) by using a Criterion transfer system
(Bio-Rad). The membranes were blocked in 5% nonfat dry milk 1× Tris-buffered saline
(TBS) (Bio-Rad) (w/v) for 1 h at room temperature before being incubated in a 1:1000
dilution of primary antibody (anti-HSP70 (ab181606; Abcam, Waltham, MA, USA, annexin
A2 (8235; Cell Signaling Tech, Danvers, MA, USA), GAPDH (649203; Biolegend, San Diego,
CA, USA), syntenin (ab19903; Abcam) while rocking overnight at 4 ◦C. Thereafter, the
membranes were washed three times with 1× TBS for 5 min intervals and then incubated
with horseradish peroxidase-conjugated goat anti-rabbit secondary antibody at a dilution
of 1:3000 prepared in blocking solution while on a rocker for 1 h at room temperature. The
membranes were then washed four times with 1× TBS for 4 min intervals, incubated with
ECL reagent (BioRad) for 7 min at room temperature, and then developed (Bio-Rad imager).

4.11. Culture of Mouse Proximal Tubule Cells and Lipid Raft Isolation

Mouse proximal tubule (TKPTS) cells (CRL-3361; ATCC; Manassas, VA, USA) were
cultured in DMEM/F12 (50/50) medium with L-glutamine, 7.55 fetal bovine serum,
1× penicillin, and 1× streptomycin and maintained in a humidified incubator with 5%
CO2 at 37 ◦C. The medium was changed every 3 days, and the cells were grown to 70%
confluence before being treated with the vehicle (medium) or dapagliflozin (5 µM) for 12 h
at 37 ◦C. The cells were scraped in ice-cold 1% Triton X-100/TNEV buffer (10 mM Tris HCl,
pH 7.5, 5 mM EDTA, 150 mM NaCl, 2 mM sodium vanadate). The lysates were passed
15 times through a 25-gauge needle and a 1 mL syringe before being incubated on ice for
30 min. The lysates were then subject to centrifugation at 10,000 rpm for 5 min at 4 ◦C.
Next, 500 µL of the supernatants was mixed with 500 µL of 80% sucrose solution in TNE
buffer (without Triton X-100). Next, 1800 µL of 35% sucrose in the same buffer was carefully
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layered on top of the previous layer. Finally, 500 µL of 5% sucrose in the same buffer
was carefully layered on top of the 35% layer. The sucrose gradient was then subjected to
ultracentrifugation using an SW 50.1 rotor (Beckman) at 34,000 rpm (110,000× g) for 22 h
at 4 ◦C. Thereafter, eleven 300 µL fractions were carefully taken from the top to the bottom
of the gradient and aliquoted into separate tubes for Western blot analysis.

4.12. Statistical Analysis

A Student t-test was used to determine statistical significance between two groups,
while a one-way ANOVA was used to determine statistical significance for more than two
groups. The SigmaPlot software (Systat Software, San Jose, CA, USA) was used for all
statistical analyses. The values presented are expressed as mean ± SE, and a p-value of less
than 0.05 was considered statistically significant.

5. Conclusions

Taken together, these results suggest specific membrane lipids in the diabetic kidney
and lipid raft organization in proximal tubule cells are sensitive to dapagliflozin treatment.
Accordingly, the bioactive lipids in diabetic kidney membranes that were attenuated or
augmented after dapagliflozin treatment may have the potential to be used as biomarkers
and help to elucidate key mechanisms associated with the beneficial effects of dapagliflozin
in diabetic kidney disease.
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