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Abstract: Calmodulin (CaM) and a diversity of CaM-binding proteins (CaMBPs) are involved in the
onset and progression of Alzheimer’s disease (AD). In the amyloidogenic pathway, AβPP1, BACE1
and PSEN-1 are all calcium-dependent CaMBPs as are the risk factor proteins BIN1 and TREM2.
Ca2+/CaM-dependent protein kinase II (CaMKII) and calcineurin (CaN) are classic CaMBPs involved
in memory and plasticity, two events impacted by AD. Coupled with these events is the production
of amyloid beta monomers (Aβ) and oligomers (Aβo). The recent revelations that Aβ and Aβo each
bind to both CaM and to a host of Aβ receptors that are also CaMBPs adds a new level of complexity
to our understanding of the onset and progression of AD. Multiple Aβ receptors that are proven
CaMBPs (e.g., NMDAR, PMCA) are involved in calcium homeostasis an early event in AD and
other neurodegenerative diseases. Other CaMBPs that are Aβ receptors are AD risk factors while
still others are involved in the amyloidogenic pathway. Aβ binding to receptors not only serves
to control CaM’s ability to regulate critical proteins, but it is also implicated in Aβ turnover. The
complexity of the Aβ/CaM/CaMBP interactions is analyzed using two events: Aβ generation and
NMDAR function. The interactions between Aβ, CaM and CaMBPs reveals a new level of complexity
to critical events associated with the onset and progression of AD and may help to explain the failure
to develop successful therapeutic treatments for the disease.

Keywords: calmodulin binding proteins; amyloid beta receptors; Alzheimer’s disease; neurodegen-
eration; calcium regulation; amyloid pathway; NMDAR

1. Calmodulin Binding Proteins and Alzheimer’s Disease

While the initiating events of Alzheimer’s disease (AD) are controversial and still
under analysis, risk factors, neuroinflammation and calcium dysregulation are widely
accepted as precursor events to the resulting production of amyloid plaques, neurofibrillary
tangles (NFTs) and neurodegeneration, the classic hallmarks of AD [1–6]. The importance
of calcium dysregulation was recognized in the 1980s and continues to be a fundamental
hypothesis for AD (Calcium Hypothesis) [2]. Calcium mainly works by binding to proteins
of which calmodulin (CaM) is the primary brain calcium-binding protein [7]. The early and
intimate relationship between CaM and AD has been well established by a multitude of
researchers [8–10]. CaM binds to and regulates target CaM-binding proteins (CaMBPs) in
most if not all AD. Over two dozen proteins linked to the onset and progression of AD are
experimentally validated CaMBDs (Figure 1). These and other data continue to support the
Calmodulin Hypothesis of AD [8].

The inter-connected events of calcium dysregulation and neuroinflammation occur
early in AD and other neurodegenerative diseases and either activate risk factors or respond
to them. Four proteins involved in AD neuroinflammation are experimentally proven
CaMBPs (e.g., CaMKII, PP2B, NOS, Aβ) while at least eight mediate calcium dysregulation
(e.g., NMDAR, PMCA, SK channels, TRP channels, NCX channels, RyR2, LTCC; Aβ;
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Figure 1; Table 1). Many AD risk factors have also been proven to be experimentally
validated CaMBPs (e.g., ABCA1, AβPP, BIN1, Ng, Nm, PSEN-1; Figure 1).
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Figure 1. Experimentally validated calmodulin binding proteins (CaMBPs, Green) are involved in
critical events in the onset and progression of Alzheimer’s disease.

Table 1. Calmodulin Regulation of Aβ Receptors linked to Alzheimer’s Disease.

A. DIRECT REGULATION

1. Validated CaMBPs
Aβ Receptor Example Function CaMBP Reference Aβ Receptor Reference
Aβ oligos/fibrils/plaques [11] Not applicable
AβPP1 source of Aβ [12] [13]
mGluR Ca2+ homeostasis [14] [15]
NMDAR Ca2+ homeostasis [16] [17]
PMCA Ca2+ homeostasis [18] [19]
PSEN-1 γ-secretase subunit [20] [21]
2. Presumptive CaMBPs
Aβ Receptor Example Function CaMBP Reference Aβ Receptor Reference
APOE 2-4 risk factor [9] [22]
CLU/ApoJ risk factor [9] [23]
PICALM risk factor [9] [24]
TREM2 risk factor [10] [25]

B. INDIRECT REGULATION

Aβ Receptor Example Function CaMBP Reference Aβ Receptor Reference
α7nAChR Ca2+ homeostasis Regulated by CaMKII [26]
AMPAR Ca2+ homeostasis Regulated by PP2B [27]
β2AR adrenergic function Regulated by CaMKII [28]

Legend. α7nAChR, a7 nicotinic acetylcholine receptor; Aβ, amyloid β; AβPP1, amyloid β precursor pro-
tein 1; AdoA2, adenosine receptor A2; AMPAR, α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor;
APOE 2-4, apolipoprotein E 2-4; β2AR, β2 adrenergic receptor; CaMKII, calcium/calmodulin dependent protein
kinase II; Cav2, L-type Ca Channel; CLU/ApoJ, clusterin/apolipoprotein J; D2DR, D2 Dopamine Receptor;
mAchR, metabotropic muscarinic receptor; mAchR, metabotropic glutamine receptor; NMDAR, N-methyl-D-
aspartate receptor; PICALM, Phosphatidylinositol-binding clathrin assembly protein; PP2B, protein phosphatase
2b, calcineurin; PSEN-1, presenilin-1; TREM2, triggering receptor expressed on myeloid cells 2.
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Calmodulin function is central to both the amyloid and NFT pathways of AD. CaM
binds to AβPP, the precursor for Aβ production [12,29]. (Figure 1). BACE1, the first enzyme
in the amyloid beta pathway, is a CaMBP as is PSEN-1, a component of the second enzyme
γ-secretase [20,30]. The CaMBP ADAM10 is involved in redirecting AβPP1 processing
along the non-amyloidogenic pathway [31]. As detailed below the product of BACE1
and γ-secretase is the peptide Aβ of which Aβ42, a peptide of 42 amino acids, appears to
be the most toxic. CaM function extends to the NFT pathway where CaMKII and PP2B
come into play again, as they do in other events, such as LTP, LTD and plasticity, that are
not covered here [32,33]. Tau is a CaMBP that is phosphorylated (pTau) by many kinases
including the CaMBP cdk25 prior to its oligomerization towards NFT formation [34,35]. In
addition to experimentally validated CaMBPs, many putative CaMBPs involved in AD have
been identified [8,9].

While the fine details of CaM’s regulatory involvement in the onset and progression of
AD continue to be sorted out, it has recently been shown that Aβ binds directly to CaM and
to multiple proteins involved in disease. Here we show that many AD-linked Aβ receptors
are also CaMBPs adding new levels of complexity to our understanding of the onset and
progression of AD.

2. Aβ/CaMBP Receptors Involved in Alzheimer’s Disease

Over 100 potential Aβ/Aβo receptors have been identified in human brain extracts
and their functions have been well reviewed [22,36–38]. Dozens of Aβ receptors are linked
to neuroinflammation, calcium regulation and other critical events linked to normal brain
function and neurodegenerative diseases including AD [22,37–39]. Of relevance here are
those Aβ receptors that are also CaMBPs intimately linked to AD (Table 1). The interaction
between CaM and those Aβ receptors can be divided into two primary groups: “Direct
Regulation” (e.g., Aβ receptor is a CaMBP) or “Indirect Regulation” (e.g., Aβ receptor is
not a CaMBP but is regulated by a CaMBP). Unless otherwise indicated the term Aβ will
be used to indicate the different Aβ species and oligomers.

Aβ receptors that are experimentally validated CaMBPs that show Direct Regulation
include: Aβ, AβPP1, mGluR, NMDAR, PMCA and PSEN1 (Table 1). Each of these CaMBPs
bind to and are regulated by Aβ. They are discussed further below. Examples of Aβ

receptors that show Indirect Regulation include α7nAChR, AMPAR and TREM2 (Table 1).
These Aβ receptors are not CaMBPs but, as listed here, are regulated via the classic CaMBPs
PP2B and CaMKII. Examples of direct and indirect regulation are detailed below revealing
how they can also work together in the Combined Regulation involving Aβ receptors.

While they will not be detailed here, several risk factors that are Aβ receptors that
possess CaM-binding domains (i.e., are presumptive CaMBPs) also show direct regulation
(Table 1). Present on the surface of microglia, TREM2 (triggering receptor expressed on
myeloid cells 2) is a transmembrane-glycoprotein receptor that is a risk factor for AD that
binds to Aβ [25,40]. (Table 1). CLU/ApoJ and PICALM are two other examples (Table 1).
Three APOE isoforms (APOE 2-4) differentially bind to Aβ modulating its conversion to
fibrils [22,41]. APOE has two potential CaMBDs with multiple binding motifs [9].

Thus, multiple Aβ receptors that are proven or presumptive CaMBPs are intimately
involved in the onset and progression of AD. Since Aβ also binds to CaM, the regulatory
implications become more complex. The two following examples will clarify this and
provide more insight into the direct, indirect and combined regulation of Aβ receptors.

3. Aβ, CaM and Calcium Channels

The role of the glutamate receptors NMDAR and AMPAR in AD have been reviewed
(Table 1) [42]. In addition to being both a CaMBP and Aβ receptor which opens them up
for direct regulation, NMDAR are also indirectly regulated by CaMKII, thus setting them
up for combined regulation. The intracellular C0 domain of the NMDAR NR1 subunit
binds to apo-CaM [43]. It desensitizes the NMDAR until sufficient glutamate stimulation
results in an influx of calcium ions that converts apo-CaM to Ca2+/CaM which, in turn,
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leads to the calcium-dependent inactivation (CDI) of the receptor and its release from
the membrane [16]. CDI functions as an autoinhibitory mechanism to protect against
unregulated calcium influx that could be cytotoxic. The resulting increase in local post-
synaptic calcium ion levels also transforms cytoplasmic apo-CaM to Ca2+/CaM which,
in turn, binds to and activates CaMKIIa. The kinase also binds to and likely potentiates
NMDAR activity [44]. To add to this complex interaction, CaMKIIa phosphorylates AMPAR
causing it to translocate to the membrane where it can interact with NMDAR. As part of this
indirect regulation, the presence of Aβ prevents this translocation [45]. Evidence has also
been presented that Aβ oligomers activate NMDARs containing GluN2B subunits [46,47].
While one group has presented evidence that this is a result of CaMKII activation by Aβ

oligomers others have shown that Aβ oligomers inhibit CaMKII autophosphorylation [33].
Clearly the interplay between Aβ, Aβ receptors and CaM is potentially complex with
multiple functions that have implications to AD.

4. The Complex Interplay between CaM and Aβ in the Amyloid Pathway

The interplay between CaM and Aβ occurs at the start of the amyloidogenic pathway
(Figure 2; Table 1). As covered above, several experimentally validated CaMBPs are
involved in the initial generation of Aβ: AβPP, BACE1, PSEN1. CaM-binding to BACE1
increases enzyme activity 2.5-fold in vitro [30]. BACE1 activity is also increased in both
early onset and late onset forms of AD and by PSEN1, mutations apparently through the
resulting increased generation of Aβ that activates BACE1 gene transcription increasing
the level of this primary enzyme in the amyloidogenic pathway [48]. Thus Aβ provides a
positive feed-back loop in its own production [38]. Aβ42 levels are dependent not only on
their production via the sequential degradation of AβPP by BACE1 and γ-secretase but also
by their depletion as they oligomerize and form fibrils on their pathway to plaque formation.
Since soluble Aβ oligomers are transient, they can re-release Aβ42 monomers [49]. To add
to this, as a cysteine protease, BACE1 is also involved in Aβ degradation [50].
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CaM-binding to AβPP regulates the non-amyloidogenic pathway while PSEN-1 bind-
ing to CaM has been shown to function in the regulation of intracellular calcium levels
(Figure 2; Table 1) [12,20]. Once Aβ is produced it feeds back on its synthesis via its binding
to both apo- and Ca2+/CaM, AβPP and PSEN1 [11,13,21]. The binding of Aβ to AβPP
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is a complex issue that has been reviewed but leaves the question of significance unan-
swered [5]. That is not the case for PSEN1, a catalytic subunit of γ-secretase. Aβ42 binds to
transmembrane domain 1 (TMD1) of PSEN1, a region that modulates Aβ generation, with
resulting effects on Aβ generation [21]. As mentioned above, Aβ is also known to increase
both BACE1 and AβPP levels via DNA Aβ-interacting domains (AβID) in the AβPP and
BACE1 promoters resulting in a feedback loop that increases Aβ production [51]. These
multiple interactions reveal that the amyloidogenic pathway story in Alzheimer’s is far
from complete and that CaM and Aβ lie at the heart of this critical stage in the disease.

5. Conclusions

The existence of Aβ receptors that are CaMBPs or are regulated by CaMBPs has
revealed new levels of regulation that are only beginning to be understood. As evidenced
above Aβ receptors can show direct regulation or indirect regulation. Research detailed
above also provided insights into the complexity of combined regulation. These events are
summarized in Figure 3 with CaMKII used as an example for events involved in combined
regulation. Examples for each of these regulatory events were detailed above. The figure
also reveals another series of potential regulatory options with reversions from one type
of regulation (e.g., combined regulation) to another (e.g., indirect regulation). As a simple
example, Indirect Regulation could be reversed by the removal of CaM. The impact of
these three Aβ receptor CaM-based regulatory mechanisms on normal cell function and in
neurodegenerative diseases requires further analysis.
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This complex interplay between CaM, CaMBPs and Aβ-receptors may explain why
no successful therapy has been developed to treat the various forms of AD. For example,
attempts to treat AD by inhibiting BACE1 have not only been unsuccessful, but they
have also led to confusing and, sometimes, contradictory results [1,52]. This could be
explained both by the multiple normal physiological functions of Aβ in cells and/or by
the multifaceted interplay between this CaM-binding peptide, its CaMBP/Aβ-receptors
and the concomitant regulatory role of CaM and other CaMBPs, such as CaMKII and PP2B,
on those receptors. With the multitude of critical CaM-binding and Aβ-binding proteins
involved in the onset and progression of AD, many of which are the same, it seems prudent
to continue this area of research. Determining the concentrations and intracellular locations
of CaM, Aβ and the relevant CaMBPs in brain regions in normal and AD at selected stages
(e.g., preclinical, MCI, dementia) versus non-AD brain regions could provide more insight
into the impact of each of these components and their potential level of interplay.
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Abbreviations

Aβ amyloid beta
Aβo amyloid beta oligomers
AβPP amyloid-β precursor protein
AchR acetylcholine receptor
AD Alzheimer’s disease
APOE apolipoprotein E
AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
BACE1 beta-secretase 1
BIN1 bridging Integrator 1
CaM calmodulin
CaMBD calmodulin binding domain
CaMBP calmodulin binding protein
CaMKII calcium/CaM-dependent kinase II
PP2B calcineurin
CLU clusterin
CRAC calcium release-activated calcium channels
CR1 complement receptor type 1
LTP long-term potentiation
LTD long-term depression
MARCKs myristoylated alanine-rich, C-kinase substrate
mGluR5 metabotropic glutamate receptor 5
NFTs neurofibrillary tangles
Ng neurogranin
NMDAR N-methyl-D-aspartate receptor
PMCA plasma membrane calcium ATPase
pTau phosphorylated Tau
RyRs ryanodine receptors
TREM2 triggering receptor expressed on myeloid cells 2
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