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Abstract: MDM2 amplification represents the leading oncogenic pathway and diagnostic hallmark
of liposarcoma, whose assessment is based on Fluorescence In Situ Hybridization (FISH) analysis.
Despite its diagnostic relevance, no univocal interpretation criteria regarding FISH assessments
of MDM2 amplification have been established so far, leading to several different approaches and
potential diagnostic misinterpretations. This study aims to address the most common issues and pro-
poses troubleshooting guidelines for MDM2 amplification assessments by FISH. We retrospectively
retrieved 51 liposarcomas, 25 Lipomas, 5 Spindle Cell Lipoma/Pleomorphic Lipomas, and 2 Atypical
Spindle Cell Lipomatous Tumors and the corresponding MDM2 FISH analysis. We observed MDM2
amplification in liposarcomas cases only (43 out of 51 cases) and identified three MDM2-amplified
patterns (scattered (50% of cases), clustered (14% of cases), and mixed (36% of cases)) and two
nonamplified patterns (low number of signals (82% of cases) and polysomic (18% of cases)). Based
on these data and published evidence in the literature, we propose a set of criteria to guide MDM2
amplification analysis in liposarcoma. Kindled by the compelling importance of MDM2 assessments
to improve diagnostic and therapeutic liposarcoma management, these suggestions could represent
the first step to develop a univocal interpretation model and consensus guidelines.

Keywords: MDM2 amplification; liposarcoma; FISH; MDM2 interpretation guidelines

1. Introduction

Within the neoplastic soft tissue panorama, liposarcoma (LPS) represents the most
common type of adult sarcoma, accounting for almost 20% of cases worldwide [1,2]. LPS is
a clinical challenge, as it presents a high recurrence rate, unsatisfactory response to available
treatments, and a challenging diagnostic workup, especially if based on morphology and
immunohistochemistry alone [3].

The new WHO Classification of Soft Tissue Tumors edition identifies several specific
subtypes of LPS, namely Atypical Lipomatous Tumors (ALT)/Well-Differentiated LPS
(WDLPS), Myxoid LPS (MLPS), Dedifferentiated LPS (DDLPS), and Pleomorphic LPS
(PLPS) [4–6]. The most common variants are WDLPS and MLPS, while DDLPS represents
the aggressive evolution of WDLPS [7]. From a pathologist perspective, WDLPS and DDLPS
represent the most challenging variants, as WDLPS can present overlapping features
with benign tumors such as Lipomas, while DDLPS may show extensive dedifferentiated
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areas that are morphologically indistinguishable from other high-grade sarcomas [8–10].
Additionally, these neoplasms are usually initially approached with a needle biopsy, further
complicating pathologist’s evaluation because of the limited sample available. Although
immunohistochemistry (IHC) represents a valuable diagnostic tool for multiple sarcoma
types, unfortunately, no immunophenotype specifically defines LPS, limiting its usefulness
in this setting [8,11].

Molecular testing is a reliable and informative analysis to achieve an LPS diagnosis.
The amplification of the Murine Double Minute-2 (MDM2) gene emerged as an essential
molecular hallmark of LPS, particularly for ALT/WDLPS and DDLPS. MDM2 is an onco-
gene located in the long arm of chromosome 12 (12q15) (Figure 1) and its activity is strictly
related to the expression of p53, with a negative feedback-type relationship.
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MDM2 also regulates the Retinoblastoma protein (RB) [13]. In human tumor cell lines, 
MDM2 enhances RB degradation through a proteasome-dependent mechanism in a sim-
ilar process as seen for p53 [12]. 
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Figure 1. MDM2 location and function. (A) MDM2 is located in the long arm of chromosome 12,
region 1, and band 5 (12q15). (B) MDM2 is an E3 ubiquitin ligase that targets p53 for ubiquitylation
and subsequent proteasomal degradation.

MDM2 acts as an E3 ubiquitin-ligase, binding p53 and promoting its ubiquitylation
and consequent proteasome-dependent degradation [12] (Figure 1). Low levels of p53
activity are unable to (I) regulate the cell cycle and (II) induce apoptosis in DNA-damaged
cells, leading to uncontrolled proliferation. On the other hand, p53 regulates the expression
of MDM2, balancing its activity and influence on the cell cycle and proliferation. MDM2
also regulates the Retinoblastoma protein (RB) [13]. In human tumor cell lines, MDM2
enhances RB degradation through a proteasome-dependent mechanism in a similar process
as seen for p53 [12].

MDM2 amplification emerged as an oncogenic pathway in several malignances, but
it is mostly represented in soft tissue sarcomas [14–17] where, differently from other tu-
mors, MDM2 amplification and p53 mutation are mutually exclusive [18–21]. In soft
tissue sarcomas, the MDM2 amplification occurs mainly through the so-called double
minutes chromosomes (Dmins) mechanism [22]. Dmins are small, generally acentric, and
autonomously replicating chromatin bodies that act as an amplification mechanism for sev-
eral oncogenes, including MDM2 [23–26]. The sarcomas showing the highest percentages
of MDM2 amplification are the low-grade/periosteal osteosarcoma, ALT/WDLPS, DDLPS,
and intimal sarcoma [27]. Indeed, the evaluation of the MDM2 status is fundamental in
the LPS diagnostics workup, as its amplification is present in 95% of WDLPS and DDLPS
cases, while benign lipomatous lesions show no amplification at all [9,10,12]. IHC for
MDM2 expression is available and frequently (>95% of cases) positive in WDLS. However,
previous reports found an unsatisfactory correlation between IHC for the MDM2 protein
and MDM2 gene amplification status, particularly in poorly differentiated cases or in cases
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with MDM2 overexpression not related to gene amplification [8,11,27–29]. Considering the
clinical consequences of misdiagnosing these lesions, the molecular analysis of MDM2 is
essential, and it is usually performed with Fluorescence In Situ Hybridization (FISH) [30].
Indeed, the MDM2 amplification evaluation by FISH is a crucial and well-established assay
for liposarcoma diagnostic work-up and, nowadays, is considered as a diagnostic gold stan-
dard [31–33]. However, despite its diagnostic relevance, no definitive consensus has ever
been defined for determining the MDM2 gene status. Considering the frequency of LPS in
the adult population and the diagnostic and prognostic implications, the establishment of
interpretation guidelines is an unmet need of crucial importance.

In this setting, our study aims to improve the diagnostic interpretation of the FISH
assessment of MDM2 amplification in LPS by evaluating the potential drawbacks and
pitfalls and suggesting a potential set of diagnostic criteria to achieve a standardized
evaluation of this diagnostic test.

2. Results
2.1. MDM2 Amplification Accurately Stratify Our Series

We collected and analyzed 27 DDLPS, 19 WDLPS/ALT, 3 PLPS, 2 MLPS, 25 Lipomas,
5 Spindle Cell Lipoma/Pleomorphic Lipomas (SLC/PL), and 2 Atypical Spindle Cell
Lipomatous Tumors (ASCLT). In our series, 43 cases (52%) presented MDM2 amplification
including 25/27 DDLPS (93%) and 18/19 WDLPS/ALT (95%).

Amplified DDLPS cases presented a mean MDM2/CEP12 ratio of 10.1 (range 4.0–20.3)
further detailed in a mean MDM2 copy number per cell of 24.1 (range 13.9–30.2) and a
mean CEP12 copy number per cell of 2.5 (range 1.4–3.5).

WDLPS amplified cases presented a mean MDM2/CEP12 ratio of 8.2 (range 4.8–16.0).
The mean MDM2 copy number per cell was 17.9 (range 11.4–28.4), and the mean CEP12
copy number per cell was 2.4 (range 1.8–3.7). The results are detailed in Table 1.

Table 1. LPS variants/other lipomatous tumors and corresponding MDM2 amplification rate.

Case Series
MDM2 Amplification

Amplified Not Amplified Ratio (%)

DDLPS 25 2 25/27 (93)

ALT/WDLPS 18 1 18/19 (95)

PLPS 0 3 0/3 (0)

MLPS 0 2 0/2 (0)

SCL/PL 0 5 0/5 (0)

ASCLT 0 2 0/2 (0)

Lipoma 0 25 0/25 (0)

Total 43 40 43/83 (52)
DDLPS: Dedifferentiated LPS; LPS: liposarcomas; ALT/WDLPS: Atypical Lipomatous Tumors/Well-differentiated
LPS; PLPS: Pleomorphic LPS; MLPS: Myxoid LPS; SCL/PL: Spindle Cell Lipoma/Pleomorphic Lipoma;
ASCLT: Atypical Spindle Cell Lipomatous Tumor.

2.2. MDM2 Amplification Patterns

MDM2 amplified cases presented a high number of MDM2 copies (mean 21;
range 11–30.2), a low number of CEP12 (mean 2.5; range 1.4–3.7), and, consequently,
an MDM2/CEP12 ratio > 2. MDM2 positive cases presented three distinctive FISH amplifi-
cation patterns: (i) the first (50% of cases) was characterized by several scattered signals
distributed over the whole nucleus (Figure 2A); (ii) the second pattern (14% of cases) pre-
sented MDM2 signals clustered in specific areas of the nucleus (Figure 2B); (iii) the third
presented overlapping features of the two previous patterns, as signals were contemporar-
ily clustered and scattered (36% of cases). Regardless of these patterns, MDM2 amplified
cases also presented extra chromosomal signals that were referred to as being Dmin. These
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signals were so small that they could be read by the Metafer 4 in 18 of the 43 amplified cases
(42%) only. Of note, the Dmin amplification could present focal areas with overlapping
signals resulting in an overall blurry appearance [34–37].
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appear blue. (A) MDM2 amplification with MDM2 > 10 and CEP12 = 2. Notably, several MDM2 gene
dot-like signals are scattered over the whole nucleus. Focal areas with overlapping signals are also
present. Overall, this pattern is consistent with gene localization on Dmin. (B) MDM2 amplification
with several areas with crowded, overlapping signals arranged in clusters over the whole nucleus
and two CEP12 signals. This pattern is typical of Dmin amplification as well. (C) No MDM2 amplifi-
cation nor CEP12 augmented copies are present in interphase of tumor cells’ nuclei (negative case).
(D) An increased number of both MDM2 and CEP12 signals (3–4 copies) in a polysomic sample which
resulted negative for MDM2 amplification. (E) A challenging sample with the presence of “giant
nuclei”: a polysomic non-MDM2-amplified nucleus with more than ten MDM2 and CEP12 signals is
shown in the top inset; for comparison, the lower inset presents an MDM2 amplified nucleus from
another case with MDM2≥ 10 and a ratio > 2. (F) EGFR (red signals) and CEP7 (green signals) probes
in “giant nuclei” (same case of 3E).

On the other hand, cases resulting negative for MDM2 amplification presented two
different patterns: (i) The most common one (82% of cases) showed less than three MDM2
gene signals (MDM2 < 3; mean 2.2; range 1.7–2.9). These cases were considered negative
regardless of the MDM2/CEP12 ratio (Figure 2C). (ii) The second pattern (18% of cases)
showed instead three or more MDM2 gene signals (MDM2 ≥ 3; mean 3.7; range 3.1–4.3)
together with a gain of the chromosome 12 centromere (mean 3.1; range 2.0–3.9) (Figure 2D).

We also identified two subgroups of cells with “giant nuclei” (i.e., at least two times
larger than nearby nuclei) that presented challenging features. The first subgroup consisted
of chromosome 12 polysomy (more than ten MDM2 and CEP12 signals) (Figure 2E—top
inset) that was negative for MDM2 amplification by ratio. The evaluation of the EGFR/CEP7
dual probe expression in this subgroup revealed EGFR/CEP7 polysomy and confirmed
the cells’ polyploidy (Figure 2F). The second subgroup is represented by amplified cells
with “giant nuclei” harboring increased MDM2 gene signals and was positive by ratio
(Figure 2E—bottom inset).

2.3. Literature Review and Analysis

We first identified 90 studies that initially satisfied the keywords research on main
databases. After a careful analysis and screening, 36 studies were eventually selected
(Table 2).

Table 2. Selection of the most relevant published studies evaluating FISH MDM2 amplification. IHP:
in-house probe; SP: single LSI MDM2 probe; DCP: dual color probe.

Sample Size FISH Probes N◦ Nuclei Evaluated Amplification Diagnostic
Cut Off Year of Publication Reference

38 DCP 40 MDM2/CEP12 ≥ 2 2022 [38]
439 DCP 200 MDM2/CEP12 ≥ 2 2022 [31]
20 DCP 20 MDM2/CEP12 ≥ 2 2022 [32]
55 DCP n.a. n.a. 2021 [39]
35 DCP n.a. n.a. 2021 [33]
113 DCP n.a. n.a. 2019 [40]
17 DCP 100 MDM2/CEP12 > 2 2019 [41]
180 DCP n.a. MDM2/CEP12 ≥ 2 2018 [42]
66 DCP 100 MDM2/CEP12 ≥ 2 2018 [43]
25 DCP n.a. MDM2/CEP12 > 2 2018 [44]
232 DCP 200 n.a. 2017 [45]
101 DCP 40 MDM2/CEP12 > 2 2017 [46]
18 DCP n.a. MDM2/CEP12 > 2 2017 [47]
140 IHP-DCP 200 MDM2/CEP12 ≥ 2 2016 [48]
102 DCP 40 MDM2/CEP12 ≥ 2 2016 [49]
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Table 2. Cont.

Sample Size FISH Probes N◦ Nuclei Evaluated Amplification Diagnostic
Cut Off Year of Publication Reference

5 DCP 100 MDM2/CEP12 > 2.0 2016 [50]

5 DCP n.a. MDM2 ≥ 3
CEP12 = 2 2016 [51]

347 DCP n.a. 2–4 CEP12 signals with ≥6
extra MDM2 signals. 2015 [30]

10 DCP 100-200
MDM2 ≥ 10
Polysomy CEP12:
MDM2/CEP12 ≤ 2

2015 [52]

77 DCP 60 MDM2/CEP12 > 2 2015 [53]
50 SP 40 MDM2 > 5.0 2015 [54]

347 DCP n.a. MDM2 ≥ 6
CEP12 = 2–4 2015 [30]

301 DCP 200
At least 15% of nuclei
presenting at least 15 MDM2
signals per cell

2015 [55]

46 DCP 60 MDM2/CEP12 ≥ 2 2014 [56]

64 DCP 100 MDM2 ≥ 5
CEP12 = 1–2 2014 [57]

172 IHP-DCP n.a. MDM2/CEP12 > 2 2013 [10]
38 SP n.a. n.a. 2013 [1]
82 DCP 100 MDM2/CEP12 ≥ 2.2 2012 [58]
428 DCP 50 MDM2/CEP12 > 2.0 2012 [59]
12 IHP-DCP n.a. n.a. 2010 [60]
54 DCP n.a. MDM2/CEP12 ≥ 2.0 2010 [61]
41 IHP-DCP 40 MDM2/CEP12 ≥ 2.0 2009 [9]
130 IHP-DCP 40 MDM2/CEP12 ≥ 2.0 2008 [8]
200 SP 100 MDM2 > 5 signals/cell 2007 [11]
71 IHP-DCP 100 MDM2/CEP12 > 3 2006 [62]
21 SP n.a. MDM2 > 2 signals/cell 2000 [63]

From these studies, a relevant heterogeneity in the MDM2 amplification assessment
clearly emerged, as the median number of evaluated nuclei per analysis was 60 but with
a wide range (20 to 200). Similarly, the definition of MDM2 amplification itself varied
significantly, as some studies based their evaluation upon the absolute MDM2 count
(i.e., three or more signals as sufficient for a diagnosis of amplification [51,63], while
others set the limit to five signals) [30,52,54,57]. More commonly, the MDM2/CEP12 ratio
was used, but again with variable cut-off thresholds including >2 [10,41,44,46,47,50,59],
≥2 [8,9,42,43,48,49,56,61], or ≥2.2 [58], probably borrowing this criteria from the previous
ASCO/CAP interpretation guidelines for HER2 assessment [64]. Of note, even the type of
FISH probes utilized greatly differed or was not exhaustively reported. FISH probes ranged
from home made [8–10,48] to commercially available, the latter including dual probes (LSI
MDM2/CEP12) [30,44,46,47,49–52,56–59,61] but also single locus probes (LSI MDM2) that
do not allow chromosome 12 polysomy evaluation [1,54,56] (Figure 3).
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3. Discussion

To date, soft tissue lesions are initially approached and diagnosed mainly through
the accurate combination of clinical data and morphological features of biopsy samples.
This practice, although useful and accurate in several settings, presents crucial drawbacks,
especially when dealing with equivocal and misleading histopathological findings, as in the
LPS scenario. Indeed, LPS and, particularly, the ALT/WDLPS, DDLPS, and UPS variants
present relevant overlapping morphologic features with other types of malignant sarcomas
or even with benign entities, such as Lipomas, thus leading to a challenging diagnostic
assessment and a broad differential diagnosis process. In this context, the evaluation of
MDM2 status is of crucial support, as it represents a diagnostic hallmark of LPS. Regardless
of its diagnostic relevance, no guidelines or consensus criteria regarding MDM2 gene
amplification interpretation have ever been proposed, whereas previous studies assessing
this molecular hallmark adopted significant methodological differences, including a broad
spectrum of criteria for probe counting and diagnostic cut-off values [65,66]. This method-
ological heterogeneity could lead to confounding definitions and hamper the diagnostic
reliability/reproducibility, eventually misleading patient clinical management.

Based on published evidence and our data, we hereby provide a set of considerations
and recommendations regarding FISH interpretation criteria for MDM2 amplification
assessments that should be considered in the LPS diagnostic workup (Figure 4).

#1 The analyzed nuclei must be representative of the entire lesion. The FISH analysis
is performed in a small, selected area, that, however, has to be representative of the whole
lesion. We recommend that an expert pathologist in soft tissue tumors determines the
area for FISH analysis, supplying marked hematoxylin–eosin (H&E)-stained slides. This
criterion, common to every molecular analysis, should be strictly and routinely applied to
avoid misleading results due to nonrepresentative sampling.

#2 The MDM2 amplification is secondary to a Dmin-based mechanism. Dmins are
extra chromosomal elements that are considered cytogenetic hallmarks of high-gene ampli-
fication. Based on our data, Dmins were the main mechanism behind MDM2 amplification
in all the cases evaluated.

#3 MDM2/CEP12 ratio is essential to define MDM2 status. We recommend deter-
mining the MDM2/CEP12 ratio and consider only cases with a ratio > 2 as amplified.
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Generally, MDM2 amplified cases present many MDM2 gene signals together with a mean
of two CEP12 signals. In our experience, observing a >2 MDM2/CEP12 ratio is neces-
sary to differentiate amplified from polysomic cases. We did not experience cases with
a ratio = 2, but we consider that this equivocal pattern could be solved by extending the
cells count. Furthermore, we observed no cases with MDM2 signals < 4 and a ratio > 2. This
eventuality could happen due to the loss of the CEP12 (CEP12 < 1.8), but we would have
considered these cases as not amplified without any further analysis. Similarly, cases with
several MDM2 signals (e.g., >6) but a <2 ratio should be considered nonamplified as well.
In this scenario, the use of other enumeration probes could prove helpful in confirming
cells’ polysomic nature.

#4 Ambiguous cases require attention and critical review, especially if polysomy is
suspected. In ambiguous cases and, in particular, if polysomy is suspected, we recommend
analyzing at least 50 nuclei to avoid MDM2 status misinterpretation. In these cases, a
careful assessment of the MDM2/CEP12 ratio is crucial to properly determine the amplifica-
tion status.
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Figure 4. Criteria settled for FISH MDM2/CEP12 analysis. * Generally, cases with MDM2 ampli-
fication have a lot of MDM2 signals, so we think that an MDM2/CEP12 ratio > 2 is better than
MDM2/CEP12 ≥ 2 as a diagnostic criterion. ** This parameter supports excluding cases with loss of
CEP12 (CEP12 per nucleus < 2) as amplified.

Screening and reviewing the literature regarding MDM2 amplification, we noticed
that several studies used assessment criteria similar to the ones reported in breast cancer
HER2 evaluation guidelines. Overall, we discourage this practice, as these guidelines
were tailored for a different setting (breast cancer) and a diverse gene with its peculiar
amplification pattern. As we already discussed, MDM2 amplification is developed through
the Dmin mechanism and is usually characterized by the presence of several gene signals
(MDM2 > 10) clustered or scattered over the whole nucleus, with a low centromere number
(Figure 5A). Differently, HER2 amplification mainly occurs with two distinct amplification
mechanisms: 30% of HER2-positive breast tumors present a Dmin amplification mechanism
with a pattern similar to the ones described for MDM2 (Figure 5A), but the majority of HER2-
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positive breast cases (~60%) involve intrachromosomal regions called homogeneously
staining regions (HSR) (Figure 5B) [67,68]. HSR have also been identified in breast cancer
cell lines, including BT474, SKBR3, and JIMT-1 [69]. HSR are unusual patterns associated
with the gain (CEP > 2), loss (CEP < 2), or coamplification of the centromeric region [70].
The differences could depend on the HSR extension and the presence of other cytogenetic
aberrations (translocations, inversions, and deletions) involving the gene loci and the CEP.
Furthermore, breast cancer HER2 assessment guidelines are based on different aims which
mainly include the prognostic and predictive assessment (the selection of eligible patients
for Trastuzumab treatment). Differently, LPS MDM2 amplification harbors a diagnostic
value only, to date. Based on this evidence and distinct characteristics, the application of
HER2 criteria to define MDM2 status could increase, rather than reduce, inappropriate
interpretations and diagnosis.
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Figure 5. Gene amplification patterns. Amplified DNA can be observed in two different patterns:
(A) Gene amplification in extra chromosomal entities called double minutes (Dmins). Small fragments
of extra chromosomal DNA scattered over the whole nucleus are commonly observed. This pattern is
characteristic of the MDM2 gene. (B) Gene amplification in intrachromosomal entities called homo-
geneously staining regions (HSR). HSR are chromosomal segments of various lengths but uniform
staining intensity. In the chromosomal region where HSR occur, a segment of the chromosome is
amplified or duplicated several times. This pattern is the most common in HER2 amplified cases.

Our study presents some limitations, mainly represented by the monocentric collection
and analysis of our series and the absence of external validation, which is required to
independently confirm our diagnostic recommendations.

This effort is especially important if we consider the evaluation of MDM2 amplification
by FISH as a cornerstone of the LPS diagnostic workup, but it is still affected by the lack of
consensus guidelines, potentially resulting in different and even misleading approaches.
Our study represents the first attempt to solve this controversial scenario and develop
formal guidance for the interpretation of this assay to optimize the diagnostic and clinical
management of patients with suspected LPS.
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4. Materials and Methods

This study focuses on the FISH assessment of MDM2 status in LPS by combining data
acquired at our Institution and the evidence published in the literature so far.

4.1. Case Series Construction and FISH Analysis

Formalin-fixed paraffin-embedded (FFPE) tissue blocks of 83 adipocytic tumors (di-
agnosed from 2014 to 2019) were retrieved from the archive of the Pathology Unit of the
Città della Salute e della Scienza Hospital (Turin, Italy). From each FFPE block, two 4 µm
thick tissue serial sections were cut for a tissue adequacy evaluation and FISH analysis.
The slides for the tissue adequacy assessment were stained with hematoxylin and eosin
and reviewed by two pathologists with soft-tissue expertise (Figure 6).

The slides for FISH analysis were baked overnight at 58 ◦C and then deparaffinized.
Later, samples were treated with the Invitrogen Spot-light tissue pretreatment kit (Invit-
rogen Corporation, Camarillo, CA, USA) at 98 ◦C for 15 min, and enzymatic digestion
with a protease solution (pepsin) at 37 ◦C for 45 to 60 min was then performed. Finally,
the sections were dehydrated in ethanol of different concentrations for the subsequent
hybridization. The hybridization was performed indifferently using two commercially
available dual-color probes: MDM2 (green spectrum)/CEP12 (orange spectrum) (Abbott
Molecular, Chicago, IL, USA) and ZytoLight SPEC MDM2 (green spectrum)/CEN 12 (or-
ange spectrum) (Zytovision. GmbH, Bremerhaven, Germany) (for consistency, the control
probe has always been identified as CEP12). The slides were codenatured in an HYBrite Sys-
tem at 72 ◦C for 5 min (Abbott) or 75 ◦C for 10 min (Zytovision) and hybridized overnight
at 37 ◦C. The slides were then washed in a 0.7xSSC/0.3% NP-40 solution at 73.5 ◦C for 3 min
(Abbott) or in a 2xSSC/0.3% NP-40 solution at 73.5 ◦C for 3 min (Zytovision); then, they
were dehydrated in ethanol of different concentrations, air-dried, and counterstained with
6-diamidino-2-phenylindole (DAPI). The presence of polyploidy was identified using a
dual-color probe for EGFR (7p11) (orange spectrum; Abbott Molecular) and the centromere
of chromosome 7 (D7Z1) (green spectrum; Abbott Molecular).

On each slide, five to ten tumor areas of interest were identified, selected, and auto-
matically acquired with the motorized Metafer 4 Scanning System (Carl Zeiss MetaSystems
GmbH. Jena, Germany) equipped with AxioImager epifluorescence microscope (one fo-
cus plane for DAPI and nine focus planes for green and red spots). An analysis of the
MDM2/CEP12 and EGFR/CEP7 probe patterns was performed both with the Metafer 4
software and by counting the MDM2 and CEP12 spots on images taken through Metafer 4
and transferred into the Integrated Set of Information Systems (ISIS) software.

Successively, the MDM2 gene was evaluated on 20 to 200 nuclei in the selected repre-
sentative areas. Only nuclei with both the MDM2 and CEP12 signals were assessed.

An MDM2/CEP12 ratio higher than two (MDM2/CEP12 > 2) was considered positive
for MDM2 amplification, as assumed from the available literature [9,18–24]. Cases with
a ratio equal or smaller than two were considered not MDM2 amplified regardless of the
absolute number of copies (e.g., polysomic cases with a relatively high number of MDM2
copies, but with a high number of CEP12 copies too).
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Figure 6. Matched histopathological features of the representative samples presented in Figure 2.
Hematoxylin and eosin stain were used to evaluate the histological characteristics of the analyzed
tumors and select representative areas for FISH analysis. (A) An MDM2-amplified DDLPS showing
only focal lipomatous areas (the corresponding MDM2 amplification pattern is shown in Figure 2A).
(B) An MDM2-amplified WDLPS (the MDM2 amplification pattern of this cases is represented in
Figure 2B); (C,D) Representative images of two lipomas that were analyzed for MDM2 amplification
(the corresponding negative MDM2 FISH patterns are represented in Figure 2C,D); (E) A non-MDM2-
amplified undifferentiated pleomorphic sarcoma with giant cells (the corresponding MDM2 and
EGFR FISH patterns are represented in Figure 2E (including the top inset) and Figure 2F, respectively);
(F) An MDM2-amplified DDLPS with scattered giant cells (the corresponding MDM2 FISH pattern is
provided in Figure 2E (bottom inset)).

4.2. Literature Analysis

An extensive literature review of the published evidence regarding MDM2 status in
LPS was performed by querying PubMed, Scopus, Embase, and Web of Science databases.
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Up to 90 papers were identified using the following keywords: (“MDM2”) AND (“am-
plification”) AND (“FISH”) AND (“LPS” OR “Liposarcoma”). Abstracts of conference
presentations, case reports, and non-English written papers were excluded. The title and ab-
stract of the selected papers were then screened and assessed for appropriateness, whereas
references were double checked to identify potentially neglected relevant articles and en-
sure literature research adequacy. From each study, details about study design, material
and methods, and FISH analysis outcomes were then evaluated and recorded.

5. Conclusions

In conclusion, clinical data and morphologic features are of crucial relevance to ap-
proach LPS diagnosis, but molecular techniques, such as FISH cytogenetic analysis, are
increasingly required to achieve a conclusive diagnosis, particularly for specific variants
such as ALT/WDLPS and DDPLS. Considering its crucial diagnostic role in the LPS diag-
nostic workup, MDM2 amplification assessment requires a clearly defined workflow and
interpretation criteria.

Based on our experience as a tertiary referral center for LPS diagnostic assessment and
considering the current literature evidence, we here proposed a set of criteria for MDM2
FISH assessment as a step towards the development of consensus-based formal guidelines.
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