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Abstract: Mesenchymal stem cells (MSCs) with self-renewing, multilineage differentiation and
immunomodulatory properties, have been extensively studied in the field of regenerative medicine
and proved to have significant therapeutic potential in many different pathological conditions.
The role of MSCs mainly depends on their paracrine components, namely secretome. However,
the components of MSC-derived secretome are not constant and are affected by the stimulation
MSCs are exposed to. Therefore, the content and composition of secretome can be regulated by
the pretreatment of MSCs. We summarize the effects of different pretreatments on MSCs and their
secretome, focusing on their immunomodulatory properties, in order to provide new insights for the
therapeutic application of MSCs and their secretome in inflammatory immune diseases.
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1. Introduction

Mesenchymal stem cells (MSCs) play important roles in regenerative medicine due to
their potential for self-renewal and multi-directional differentiation [1]. MSCs were also
found to have strong immunoregulation capabilities caused by the secretion of various
signal factors or cell to cell contact [2].

1.1. Immunoregulatory Characteristics of MSCs

MSCs exert their immunomodulatory potential by regulating the function of a variety
of immune cells, especially monocytes/macrophages [3], T-cells [4], natural killer (NK)
cells [5] and B cells [6]. MSCs have been successfully used to treat inflammatory diseases,
such as multiple sclerosis [7], diabetes [8], myocardial infarction (MI) [9], graft-versus-host
disease (GVHD) [10], Crohn’s disease [11], etc.

According to research, the immunosuppressive properties of MSCs are necessary for
restoring immune homeostasis in inflammatory diseases; however, in an active disease
state, inflammation frequently changes dynamically, which can alter the immune proper-
ties [12]. MSCs can become immunosuppressive under strong inflammation, while weak
inflammation enhances their immune responses [13].

The immunomodulatory function of MSCs was initially thought to be intrinsic, but recent
studies have shown it is not constitutive and requires some degree of inflammatory response
and/or other stimuli, such as an extracellular matrix (ECM) or hypoxia [14–16], which is
consistent with the stimulations of MSCs in the microenvironment at the inflammatory sites
in the human body.
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1.2. MSC-Derived Secretome

MSCs mainly exhibit their effects due to the expression of various regulatory factors
participating in intercellular communication, including cytokines, immune-regulating
factors, chemokines, growth factors, nucleic acids, lipids and extracellular vesicles (EVs)
in the conditioned media (CM), collectively known as the secretome of MSCs, which is
crucial to the regulation of key biological processes [14,17,18]. Using the MSC-derived
secretome has the following advantages: (1) It avoids potential safety risks associated
with cells transplantation, and so far, no safety issues have been reported in secretome;
(2) it offers evaluation of dose, potency and safety which is similar to that of traditional
medicine; (3) it allows long-term storage under frozen or freeze-dried conditions without
losing biological activity; (4) customized cells lines can be used to produce a large quantity
of secretome in controlled laboratory conditions without the need to consider which tissue
or donor MSCs should be used; (5) pretreatment of MSCs can significantly increase the
content of secretome, with relevant therapeutic effects and disease-specific concerns; (6) the
regulation of complex immune response requires the synergistic action of various factors,
and the use of a single factor cannot reproduce the immunoregulatory effects of MSCs, so
the direct use of secretome avoids component screening [19–23].

Similar to MSCs, the derived secretome is therefore not a constant mixture of secretory
factors, but changes depending on the existing microenvironment of MSCs [24]. The
function of secretome can be altered differently by the pretreatment approaches, and
an appropriate pretreatment may induce MSCs to release a secretome with enhanced
regenerative potential [23].

The immunomodulatory capabilities of different pretreatment methods of MSCs and
their secretome in innate and adaptive immune responses, as well as in some inflammatory
disease models, are the primary focus of this review. In addition, we discuss the problems
relating to the application of secretome and the prospect of future research.

2. The Immunomodulatory Effects of Pretreated MSCs and Their Secretome

Pretreatment of MSCs prior to application has been performed to increase the im-
munomodulatory efficacy of MSCs therapy over the past few decades. Many pretreatment
strategies, including hypoxia, inflammatory factors, three-dimensional (3D) cell culture,
engineering methods and pharmacological or chemical agents, have been used to enhance
the immunomodulatory effects of MSCs in many ways (Figure 1).

2.1. Hypoxia

MSCs are generally located in a microenvironment of low oxygen (≤ 2–8% O2) in vivo,
whereas the normoxic oxygen tension used in conventional cells cultures is the atmospheric
pressure (21% O2) [25], and this variation may have an effect on cells activities.

Hypoxia is a common feature of the microenvironment of inflammatory tissues, which
can profoundly affect the inflammatory process [26]. Hypoxia enhances the immunomod-
ulatory effect of MSCs by increasing the production of cytokines or EVs associated with
immunomodulation (Table 1).

Table 1. Hypoxia pretreatment of MSCs.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

2% O2
24 h GT-MSCs FasL, IL-10↑

TNF-α↓

PBMCs proliferation
in vitro

skin wound model of mice

PBMCs apoptosis↑
inflammatory cells↓, skin

wound closure ↑
[27]
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Table 1. Cont.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

3% O2 + calcium
(1.8 mmol/L) UC- MSCs PLK1↑ T-cell proliferation in vitro

GVHD model of mice

T-cell proliferation↓
survival↑, weight loss↓ and
histopathologic injuries↓ in
GVHD target organs in vivo

(MCP-1 and p53/p21)

[28]

5% O2 BM-MSCs IDO↑ T-cell differentiation
in vitro Treg proliferation↑ [29]

1% O2
48 h BM-MSCs iNOS, NO↑ inflammatory bowel

disease model of mice

CD8+ T-cell activation↓
body weight loss, colon

shortening and colon
inflammation↓

[30]

1% O2 + IFN-γ
(50 ng/mL) +

TNF-α (20 ng/mL)
6, 24, 72 h

AT-MSCs IDO, CXCL10↑ T-cell proliferation in vitro inhibition of CD4+ and
CD8+ T-cell↑ in vitro [15]

1% O2 + IFN-γ
(100 ng/mL)

48 h
AT-MSCs IDO, HLA-G↑ mixed lymphocyte

reactions in vitro T-cell inhibition↑ [31]

2% O2 BM-MSCs FGF, VEGF, IL-6
and IL-8↑

monocytes migration
in vitro

skin wound model of mice

CD14+ monocyte
migration↑

macrophages recruitment↑
[32]

0.1% O2
7 d BM-MSCs

IL-8, VEGF, MCP-1,
RANTES↑

IL-6, IL-1β, IL-15,
IL-1Ra↓

CM implanting
subcutaneously in mice

inflammatory effect↓ after
subcutaneous

transplantation in vivo
[33]

5% O2
24 h AT-MSCs CM traumatic brain injury

model of rats

neurological impairment
and cognitive deficiency↓,
neuroinflammatory edema
and nerve fiber damage↓,

M1 macrophages↓ and M2
macrophages↑, IL-6,

TNF-α↓ and TSG-6, TGF-β↑

[34]

1% O2
48 h UC-MSCs

IGF1, IL-10, TSG-6,
TGF-β and PGE2↑

IL-6, IL-8↓
lung injury model of mice

anti-inflammatory
polarization and
efferocytosis of
macrophages↑

[35]

5% O2
24 h UC-MSCs EVs

(miR-146a-5p) ↑
allergic asthma model

of mice eosinophils↓and IL-4, IL-13↓ [36]

1% O2
48 h DP-MSCs EVs (miR-210-3p) ↑

calvarial osteolysis model
of mice

osteoclast differentiation
and macrophages

polarization in vitro

inflammatory bone loss↓
in vivo

M2 polarization↑ and
osteoclastogenesis↓ in vivo

and in vitro
(NF-κB1)

[37]
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Table 1. Cont.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

1% O2
48 h BM-MSCs exosomal

miR-216a-5p↑

contusive spinal cord
injury model of mouse

microglia/macrophages
polarization in vitro

functional behavioral
recovery after spinal cord

injury↑ in vivo
M1 to M2

microglia/macrophages
polarization↑ in vivo and

in vitro
(TLR4/NF-κB/PI3K/AKT)

[25]

Abbreviations: O2, Oxygen; IFN-γ, Interferon-γ; h, Hours; d, Days; TNF-α, Tumor necrosis factor-α; MSCs,
Mesenchymal stem cells; BM/GT/UCAT/DP-MSCs, Bone marrow/Gingival tissue/Umbilical cord/Adipose
tissue/Dental pulp-derived-MSCs; IL-6/8/10/1β/1Ra/15/4/13, Interleukin-6/8/10/1β/1receptor antago-
nist/15/4/13; FasL, Fas ligand; PLK1, Polo-like kinase 1; IDO, Indoleamine 2, 3-dioxygenase; HLA-G, Human
leukocyte antigen-G; iNOS, inducible nitric oxide synthase; CXCL10, CXC-chemokine ligand10; NO, Nitric oxide;
MCP-1, Monocyte chemoattractant protein-1; TGF-β, Transforming growth factor-β; CM, conditioned medium;
EVs, Extracellular vesicles; IGF1, Insulin-like growth factor 1; miR, Micro ribonucleic acid; TSG-6, TNF-stimulated
gene 6 protein; PGE2, Prostaglandin E2; PBMCs, Peripheral blood mononuclear cells; GVHD, Graft-versus-host
disease; Treg, Regulatory T-cell; TLR4, Toll-like receptor 4; NF-κB, Nuclear factor-κB; PI3K, phosphoinositide
3-kinase; AKT, Protein kinase B; ↑, increased expression; ↓, decreased expression.
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Figure 1. The immunomodulatory effects of different methods pretreated MSCs derived-secretome.
Hypoxia, inflammatory factors, 3D culture, engineering methods and pharmacological or chemical
agents’ pretreatment induce the release of MSC-derived secretome, then activates or inhibits related
multiple immune cells and inflammatory cytokines, ultimately, exert immunomodulatory effects.
3D, three-dimentional; IDO, Indoleamine 2, 3-dioxygenase; iNOS, Inducible nitric oxide synthase;
TSG-6, TNF-stimulated gene 6 protein; IL-1α/1β/Ra/2/4/6/8/10/17, Interleukin-1α/1β/1 receptor
antagonist/2/4/6/8/10/17; NO, Nitric oxide; COX2, Cyclooxygenase 2; EVs, Extracellular vesi-
cles; DCs, Dendritic cells; Treg, Regulatory T-cell; Th1/17, Type 1/17 helper T; NK, Natural killer;
TNF-α, Tumor necrosis factor-α; TGF-β, Transforming growth factor-β; IFN-γ, Interferon-γ; PGE2,
Prostaglandin E2; ROS, Reactive oxygen species.



Int. J. Mol. Sci. 2023, 24, 1277 5 of 38

Hypoxia-pretreated MSCs could cause peripheral blood mononuclear cells (PBMCs)
to undergo apoptosis by boosting the synthesis of the Fas ligand in vitro and reduce local
skin inflammation by decreasing tumor necrosis factor-α (TNF-α) while increasing inter-
leukin (IL)-10 [27]. Hypoxia and calcium ions exhibited enhanced immunomodulatory
functions of MSCs used to treat GVHD via the monocyte chemoattractant protein-1 (MCP-1)
and p53/p21 cascade [28]. The expression of indoleamine 2, 3-dioxygenase (IDO) [29]
and inducible nitric oxide synthase (iNOS) [30], mediators of MSCs immunomodulation,
increased after hypoxia pretreatment, and then inhibited CD8+ T-cell activation and pro-
moted Treg proliferation in vitro. Under 1 and 20% oxygen levels, MSCs were capable
of strong upregulation of IDO upon stimulation with interferon-γ (IFN-γ) and TNF-α
to inhibit T-cell proliferation in vitro [15]. Interestingly, there was no difference between
hypoxia and normoxia in the presence of inflammatory factors. Another in vitro study
indicated that a combination of IFN-γ-and hypoxia-pretreated MSCs displayed higher
induction of IDO over IFN-γ alone, which was related to the metabolic shift to glycolysis of
MSCs caused by hypoxia [31]. The CM containing increased growth factors, IL-6 and IL-8
derived from hypoxia-pretreated MSCs promoted skin wound healing [32]. CM from MSCs
cultured in near anoxic (0.1% O2) conditions exhibited a significant increased production
of vascular endothelial growth factor (VEGF), IL-8, MCP-1 and RANTES while decreased
inflammatory cytokines, which indicated its regenerative potential [33]. Intravenous injec-
tion of the CM improved neuroinflammation after brain injury by increasing M2 microglia
while decreasing M1 phenotypes [34]. Consecutive culture in 1% O2 promoted MSCs
to secrete immunomodulatory cytokines in vitro, and in acute lung injury (ALI) of mice,
their CM could limit lung inflammation by modulating anti-inflammatory polarization of
macrophages [35]. Furthermore, a hypoxic environment could promote MSCs to release
more EVs, which significantly ameliorated the eosinophils and pro-inflammatory mediators
in chronic asthmatic mice [36]. Meanwhile, the EVs could alleviate inflammatory bone
loss by transferring miR-210-3p, which directly targets NF-κB1 to induce M2 macrophages
polarization and inhibit osteoclastogenesis [37]. Exosomes derived from MSCs under hy-
poxia promoted functional behavioral recovery of spinal cord injury by shifting microglial
polarization from M1 to M2 through miR-216a-5p/TLR4/NF-κB/PI3K/AKT signaling cas-
cades [25]. Proteomics analysis of MSCs and their EVs found the enrichment of biological
processes and pathways related to glycolysis, the immune system and extracellular matrix
organization in hypoxic condition [38].

To sum up, by mimicking low oxygen levels in the inflammatory sites, hypoxic culture
pretreatment of the MSC-derived secretome improved its immunomodulatory effects,
despite differences in the hypoxic conditions. Beyond that, different tissues and organs
in the human body have different levels of oxygen, so different hypoxic pretreatment
conditions should be designed according to the specific application in order to better
simulate the niche in vivo conditions required for MSCs.

2.2. Inflammatory Factors

Aside from hypoxia, the production of inflammatory factors is another simultaneous
and related condition in inflammatory diseases, which can actively communicate with the
resident MSCs in the tissue microenvironment. Many studies have demonstrated that the
pretreatment of MSCs with inflammatory factors could improve their immunomodulatory
functions (Table 2).
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Table 2. Inflammatory factors pretreatment of MSCs.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

IFN-γ (2 ng/mL) BM-MSCs IDO↑ T, NK cells proliferation
in vitro

proliferation of activated T
or NK cells↓ [39]

IFN-γ (50 ng/m)
48 h BM-MSCs IDO, PGE2↑ NK cells activation

in vitro NK cells activation↓ [40]

IFN-γ (200 IU/mL)
24 h

BM-MSCs
UC-MSCs
AT-MSCs
WJ-MSCs

IDO↑
PBMCs proliferation

in vitro
GVHD model of mice

PBMCs proliferation↓
immune cells infiltration in
skin and small intestine↓

and survival rate↑ of GVHD
mice

(JAK/STAT1)

[41]

IFN-γ (500 U/mL) BM-MSCs IDO, iNOS↑
PBMCs proliferation

in vitro
colitis model of mice

PBMCs proliferation↓
serum amyloid A protein

levels and local
proinflammatory cytokine
levels↓ in colonic tissues

[42]

IFN-γ (50 ng/mL)
72 h BM-MSCs

IDO
(independent)↑,
B7H1, B7DC↑

T-cell proliferation and
cytokines production

in vitro

T-cell proliferation↓
Th1 cytokine (IFN-γ, TNF-α

and IL-2) ↓
T-cell degranulation↓

(B7H1 and B7DC/PD1)

[43]

IFN-γ (50 ng/mL) BM-MSCs
Exosomal

miR-125a and
miR-125b↑

T-cell differentiation
in vitro

colitis model of mice

differentiation of Treg↑ and
Th17 cells ↓in vitro

body weight loss, disease
activity index, colon
shortening, impaired

intestinal structure, TNF-α,
IFN-γ, IL-6 and Th 17 cells↓

and Treg↑ in vivo
(Stat3)

[44]

IFN-γ (10 ng/mL)/
TNF-α (15 ng/mL)

72 h
AT-MSCs

EVs (A20 and
TSG-6) ↑
RAB27B

T-cell proliferation in vitro activated CD4+ T-cell↓ [45]

IFN-γ (10 and
100 ng/mL)
12, 24, 48 h/

TNF-α
(100 ng/mL)
12, 24, 48 h

MSCs H factor↑
modified sheep

erythrocytes hemolytic
assay in vitro

complement activation↓ [46]

TNF-α (10 ng/mL)
48 h BM-MSCs COX2, PGE2↑

experimental allergic
conjunctivitis model

of mice

TNF-a, IL-4, IL-5, IL-1β↓and
TGF-β↑in the conjunctiva

B-cell IgE release↓
activation of mast cells↓

histamine release↓
(COX2/PGE2)

[47]

TNF-α
(100 ng/mL)

48 h
GT-MSCs

exosomal
miR-1260b,

exosomal CD73↑

macrophages polarization
in vitro

skin wound model of mice
periodontitis model

of mice

M2 macrophages
polarization↑ in vitro and

in vivo
wound healing↑

TRAP+ osteoclasts and bone
resorption↓

(Wnt5a/RANKL)

[48]
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Table 2. Cont.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

TNF-α (1 ng/mL)
72 h UC-MSCs exsomal

miR-299-3p↑

LPS-activated Kupffer
cells cytokines production

in vitro
acute liver failure model

of mice

secretion of IL-1β, IL-18 and
IL-6 in Kupffer cells↓

the damage of liver tissue↓,
IL-6, IL-1β, IL-18, aspartate

aminotransferase and
alanine aminotransferase in
peripheral blood serum↓ of

acute liver failure mice
(NLRP3)

[49]

IL-1β (10 ng/mL)
48 h UC-MSCs COX2, IL-6 and

IL-8↑ colitis model of mice

M1 macrophages↓ in the
peritoneal cavity of mice

Th1, Th17↓ and Treg, Th2↑
in spleen and lymph nodes

[50]

IL-1β (10 ng/mL)
12 h UC-MSCs exosomal

miR-146a↑

macrophages polarization
in vitro

sepsis model of mice

M2 macrophages
polarization↑ in vitro and

in vivo
survival rate↑, TNF-α, IL-6↓

and IL-10↑ in serum of
septic mice

[51].

IL-1β (10 ng/mL)
12 h MSCs exosomal miR-21↑

macrophages polarization
in vitro

sepsis model of mice

M2 macrophages
polarization↑ in vitro and

in vivo
survival rate↑, TNF-α↓ and

IL-10↑ in serum of
septic mice

[52]

IL-1β (10 ng/mL)
24 h BM-MSCs exosome

LPS-activated astrogliosis
in vitro

status epilepticus model
of mice

astrogliosis↓
C3, CD81 and Ki67↓, BDNF,

IL-1Ra, VEGF, IL-10 and
NGF↑ in vitro and in vivo

(Nrf-2)

[53]

IL-1β (25 ng/mL)
24 h BM-MSCs exosomal

miR-147b

IL-1β-induced
inflammatory SW982 cells

cytokines production
in vitro

IL-1β, IL-6, and MCP-1↓ in
inflammatory SW982 cells

(NF-κB)
[54]

IL-1β (1 ng/mL)
24 h GT-MSCs TGF-β1, MMP-1,

MMP-9↑

LPS-activated THP-1
cytokines production

in vitro
skin wound model of mice

TNF-α↓ and IL-1Ra↑ in
THP-1

skin wound healing↑
[55]

IL-1β (10 ng/mL)
24 h BM-MSCs G-CSF↑

LPS-treated BV2
microglial cells cytokines

production in vitro

IL-6, TNF-α↓ and IL-10↑ of
BV2 microglial cells [56]

IL-1β (10 ng/mL) +
6 % O2

48 h
BM-MSCs

IL-6, RANTES,
IL-8, MCP-1 and

PGE2↑

degenerative
intervertebral disc model

of bovina in vitro

IL-6, IL-8↓, aggrecan↑ in
intervertebral disc [57]

LPS (0.1 µg/mL)
12 h BM-MSCs NO↑ activated T-cell apoptosis

in vitro apoptosis of T-cell↑ [58]

LPS (100 ng/mL)
24 h

AT-MSCs IL-6 and IL-8↑ skin flap model of
diabetic rats

skin flap survival↑ in
diabetic rats [59]
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Table 2. Cont.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

LPS (5 µg/mL)
72 h MSCs CM immunized model of mice

serum IL-4, IL-5, BAFF,
TGF-β↑ and TNF-α↓ in

humoral immunity
CD4+ T-cell↑

serum IgG, saliva IgA↑ in
immunized mice

serum IL-6, TNF-α, IL-10↑
in immunized mice
vibriocidal activity↑

[60]

LPS (100 ng/mL)
48 h UC-MSCs exosomal

miRlet-7b↑

macrophages polarization
in vitro

cutaneous wound model
of diabetic rats

M2 macrophages
polarization↑ in vitro and

in vivo
M1 macrophages and

inflammation↓ in diabetic
wounds

(TLR4/NF-
κB/STAT3/AKT)

[61]

LPS (100 ng/mL)
24 h BM-MSCs exosomes

macrophages polarization
and cytokines production

in vitro
myocardial infarction

model of mice

M2↑ and M1↓ in vitro and
in vivo

IL-6, TNF-α, IL 1β↓ and
IL-10↑of macrophages

post-infarction
inflammation↓

(NF-κB/AKT1/AKT2)

[62]

LPS (250 ng/mL)
24 h DF-MSCs EVs periodontitis model of

beagle dogs

ROS and RANKL/OPG
ratio↓ of LPS pretreated

PDLSCs
(ROS/JNK)

M2 macrophages
polarization↑
(ROS/ERK)

periodontal tissue
regeneration↑ of
periodontitis dog

[63]

LPS (10 ng/mL)
24 h

BM-MSCs
PG-MSCs IL-6, IL-8, MIF↑

anti-microbial PMNs
activity in vitro

migration of PMNs↑
CCL4 secretion of PMNs↑

(NF-κB)
anti-microbial activity of

PMNs↑

[64]

LPS (500 ng/mL)
1 h BM-MSCs NO↓

IL-6, IL-8↑

T-cell proliferation and
differentiation in vitro

EAE model of mice

proliferation of CD3+ T-cell,
Th1 and Th17↑

percentages of Th1 and
Th17↑ in EAE mice

reverse the therapeutic
immunosuppressive effect

of MSCs

[65]

LPS (10 ng/mL)
1 h UC-MSCs IL-6, IL-8↑ T-cell proliferation in vitro

colitis model of mice

T-cell proliferation↑
clinical signs and severity of

intestinal inflammation↑
in vivo

[66]

LPS (1 µg/mL),
72 h T-MSCs

thrombospondin-
1↑

exosomes

macrophages polarization,
cytokines production and

T-cell differentiation
in vitro

M1 macrophages, IL-6,
TNF-α↑

differentiation of CD4+

T-cell to Th17 cells↑

[67]
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Table 2. Cont.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

LPS (500 ng/mL)
48 h BM-MSCs IL6, iNOS↑ T-cell proliferation in vitro

EAE model of mice

T-cell proliferation↓
clinical score↓, Th17↓ and

Treg↑ in vivo
[68]

Poly (I:C))
(10 µg/mL)

1 h
BM-MSCs NO↑

IL-6↓

T-cell proliferation and
differentiation in vitro

EAE model of mice

proliferation of CD3+ T-cell,
Th1 and Th17↓

percentages of Th1 and
Th17↓ in EAE mice

clinical signs and the
severity↓ of EAE

[65]

Poly (I:C))
(1 µg/mL)

1 h
UC-MSCs IDO, IL-6 and

IL-8↑
T-cell proliferation in vitro

colitis model of mice

T-cell proliferation↓
clinical signs and severity of
intestinal inflammation↓ in
the acute murine model of

colitis

[66]

Poly (I:C))
(100 µg/mL)

24 h
BM-MSCs COX2, PGES↑ GVHD model of mice (TLR3/PGES/COX2/PGE2) [69]

Poly (I:C))
(1 µg/mL) UC-MSCs PGE2↑ colitis model of mice

IFN-γ, IL-17A, IL-21, IL-23↓
and IL-10↑ in colitis tissues

proliferation of
activated mesenteric

lymphnode cells↓
Th1/17 cells↓ and Treg↑ in

the colon
proliferation of

mononuclear cells↓
clinical and pathological

manifestations in
colitic mice↓

(TLR3/Jagged-1/Notch-1)

[70]

TNF-α + IFN-γ
24 h BM-MSCs ROS, HIF1α↑

delayed-type
hypersensitivity model

of mice

oxidative phosphorylation
metabolism↓

Th1, Th17↓in vitro and
in vivo

[71]

TNF-α (1 ng/mL) +
IFN-γ (10 ng/mL)

24 h
MSCs

IDO↑
PTGS2 and IL-6↓
in the presence

of palmitate

PBMCs proliferation and
cytokines production

in vitro

PBMCs proliferation and
production of IFN-γ,

TNF-α↓ in the presence
of palmitate

(IFN-γ/JAK1/2)

[72]

TNF-α (3 ng/mL) +
IFN-γ (10 ng/mL)

24 h
BM-MSCs IDO↑

macrophages polerization
and T-cell proliferation

in vitro

M2 macrophages↑
T-cell proliferation↓ [73]

TNF-α (20 ng/mL)
+ IFN-γ

(20 ng/mL)
24 h

UC-MSCs CM

macrophages migration,
polarization and cytokines

production in vitro
skin wound model of mice

migration, M2 polarization,
and phagocytic ability of

macrophages↑
secretion of VEGF, IL-10,

IL-13 and IL-4↑ and TNF-α↓
of macrophages

proangiogenic ability↑
wound closure↑

(IL-6/IL-
4Rα/STAT6/PPARγ and

IL-6/STAT3)

[74,75]
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Table 2. Cont.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

TNF-α (10 ng/mL)
+ IFN-γ

(10 ng/mL)
24 h

UC-MSCs

IDO, TSG-6↑
CXCL9, CXCL10

and CXCL11↑
Hexokinase II↑

inflammatory bowel
disease model of mice

inflammatory parameters in
inflammatory bowel

diseases mice↓
(PI3K/AKT)

[76]

TNF-α
(1.5 ng/15 ng) +

IFN-γ
(6.5 ng/65 ng)

48 h

BM-MSCs

CCL5, CXCL9,
CXCL10 and

CXCL11↑
IDO, PD-L1 and

HLA-G↑

/ / [77]

TNF-α (10 ng/mL)
+ IFN-γ

(10 ng/mL)
24 h

BM-MSCs CMA, LAMP-2A↓

T-cell proliferation and
recruitment t in vitro

inflammatory liver injury
model of mice

T-cell↓ in vitro and in vivo
T-cell recruitment to MSCs↑
(NF-κB and STAT1/AKT)

[78]

TNF-α (10 ng/mL)
+ IFN-γ

(10 ng/mL)
24 h

BM-MSCs miR-155↑ T-cell proliferation in vitro

T-cell proliferation↓
iNOS and NO expression

of MSCs↓
(TAB2)

[79]

TNF-α (20 ng/mL)
+ IFN-γ

(50 ng/mL)
24 h

UC-MSCs

tumor necrosis
factor-α-related

apoptosis-
inducing ligand

and IDO↑

leukemia cells cycle,
apoptosis in vitro

acute myeloid leukemia
model of mice

leukemia cells apoptosis↑
survival↑, leukemia burden

in peripheral blood and
bone marrow↓ of acute
myeloid leukemia mice

[80]

IL-1β (5 ng/mL) +
IFN-γ (20 ng/mL)

24 h
UC-MSCs PGE2, IDO↑

PBMC proliferation, T-cell
differentiation and
migration in vitro

colitis model of mice

PBMCs proliferation↓
Th1 differentiation↓ and

Treg differentiation↑
CD4 + T-cell migration↑

body weight, colon
structure improvement↑

[81]

IL-1β (3 ng/mL) +
IFN-γ (30ng/mL)

24 h
BM-MSCs NO, IL-6 and

PGE2↑
macrophages polarization

in vitro

M1 macrophages↓ in
inflammation

M2b macrophages↓ in anti-
inflammation

(IL-6)

[82]

IL-17 (10 ng/mL) +
IFN-γ (10 ng/mL)

+ TNF-α
(10 ng/mL)

12 h

BM-MSCs iNOS↑ T-cell proliferation in vitro
hepatitis model of mice

T-cell proliferation↓
mononuclear cells and T-cell
infiltration↓ in liver injury

mouse model

[83]

IL-17 (10 ng/mL) +
IFN-γ (10 ng/mL)

+ TNF-α
(10 ng/mL)

24 h

BM-MSCs iNOS, NO↑ tumor model of mice tumor growth↑
(NO/STAT3) [84]

LPS (20 µg/mL) +
TNF-α (20 ng/mL)

72 h
BM-MSCs PGE2 and

Arginase-1↑
macrophages polarization

in vitro
M2 macrophages↑
M1 macrophages↓ [85]
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Table 2. Cont.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

IFN-γ (100 ng/mL)
+ poly(I:C)
(10 µg/mL)

BM-MSCs IDO1↑ colitis model of mice

body weight loss, colon
shortening and colon
epithelial loss, crypt

destruction, inflammatory
cells infiltration↓, intestinal

stem cells proliferation,
enterocyte differentiation,

and epithelial regeneration↑
in inflammatory bowel

diseases mice
IL-1β, TNF-α„ IL-6↓, IL-10↑

in colon tissue
Treg↑ in lymphoid organs

and in vitro

[86]

TGF-β (10 ng/mL)
+ IFN-γ

(1000 IU/mL)
72 h

UC-MSCs exosomes (IL-10,
IFN-γ, IDO) ↑

PBMCs proliferation and
differentiation in vitro

PBMCs proliferation↓
proportion of Treg↑ [87]

IL-1β (50 ng/mL) +
IL-6 (40 ng/mL) +

TNF-α
(100 ng/mL) +

IFN-γ (200 ng/mL)
72 h

BM-MSCs chemerin↑ L1.2-ChemR23 cells
migration in vitro

L1.2-ChemR23 cells
migration↑ [88]

Abbreviations: IFN-γ, Interferon-γ; h, Hour/ Hours; TNF-α, Tumor necrosis factor-α; LPS, Lipopolysaccha-
ride; IL-1β/17/6/8/10//2/4/5/13/18/1Ra/4Rα/21/23, Interleukin-1β/17/6/8/10//2/4/5/13/18/ 1receptor
antagonist /4 receptor α/21/23; poly(I,C), Polyinosinic-polycytidylic acid; COX2, Cyclooxygenase 2; TGF-β, Trans-
forming growth factor-β; PGE2, Prostaglandin E2; MSCs, Mesenchymal stem cells; BM/UC/AT/WJ/GT/DF/PG-
MSCs, Bone marrow/Umbilical cord/Adipose tissue/Wharton’s jelly/Gingival tissue/Dental follicle/Parotid
gland-derived-MSCs; T-MSCs, Thymic MSCs; IDO, Indoleamine 2, 3-dioxygenase; CCL4/5, CC-chemokine lig-
and4/5; iNOS, Inducible nitric oxide synthase; miR, Micro ribonucleic acid; MMP-1/9, Matrix metalloproteinases-
1/9; G-CSF, Granulocyte-colony stimulating factor; MIF, Macrophage migration inhibitory factor; RANTES,
regulated on activation, normal T cell expressed and secreted; NO, Nitric oxide; EVs, Extracellular vesicles; CM,
Conditioned media; TSG-6, TNF-stimulated gene 6 protein; PGES, Prostaglandin synthases; ROS, Reactive oxygen
species; PTGS2, Prostaglandin-endoperoxidase synthase 2; HIF1α, Hypoxia inducible factor 1α; CXCL9/10/11,
CXC-chemokine ligand 9/10/11; PD-L1, Programmed death ligand-1; CMA, Chaperone mediated autophagy;
LAMP-2A, CMA related lysosomal receptor lysosomal-associated membrane protein 2; HLA-G, Human leukocyte
antigen-G; NF-κB, Nuclear factor-κB; NK, Natural killer; PBMCs, Peripheral blood mononuclear cells; MCP-1,
Monocyte chemoattractant protein-1; VEGF, Vascular endothelial growth factor; GVHD, Graft-versus-host disease;
JAK, Janus kinase; STAT1/3/6, Signal transducers and activators of transcription 1/3/6; Th1/2/17, Type 1/2/17 T
helper; IgE/G/A, Immunoglobulin E/G/A/; TRAP+, tartrate-resistant acid phosphatase positive; RANKL, Recep-
tor activator of NF-κB ligand; BAFF, B-cell activating factor; TLR3/4, Toll-like receptor 3/4; AKT, Protein kinase B;
OPG, Osteoprotegerin; JNK, Jun N-terminal kinase; PDLSCs, Periodontal ligament stem cells; Treg, Regulatory
T-cell; ERK, Extracellular signal-regulated kinase; PMNs, Polymorphonuclear neutrophil granulocytes; EAE,
Experimental autoimmune encephalomyelitis; TAB2, TAK1-binding protein 2; PI3K, phosphoinositide 3-kinase;
NLRP3, NOD-like receptor family pyrin domain containing 3; NGF, Nerve growth factor; BNDF, brain-derived
neurotrophic factor; ↑, increased expression; ↓, decreased expression.

2.2.1. IFN-γ

IFN-γ is a key pro-inflammatory factor that plays an important role in regulating the
immunomodulatory function of MSCs. In 2006, researchers first proposed IFN-γ as a key
player in activating the immunosuppressive ability of MSCs, at least in part, by enhancing
IDO activity [39]. Then, another study found that IFN-γ enhanced the immunosuppressive
activity of MSCs against NK cell activity and protected MSCs from NK-cell-mediated cyto-
toxicity by promoting the production of IDO and prostaglandin E2 (PGE2) [40]. In addition,
subsequent studies found that IDO expression was conducted through the JAK/STAT1
pathway [41] and glucose metabolic reprogramming [89]. Meanwhile, in experimental
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colitis, mucosal damage was reduced because the pretreated MSCs significantly inhibited
type 1 T helper (Th1) inflammatory responses by decreasing T-cell activation and proinflam-
matory cytokine secretion [42]. Another study indicated that the pretreated MSCs inhibited
T-cell proliferation, Th1 cytokine secretion and T-cell degranulation through B7H1 and
B7DC/PD1 pathways [43]. Although IFN-γ pretreatment increased IDO activity of MSCs,
IDO was unnecessary for inhibition of T-cell function [43]. In addition, the pretreatment
significantly increased the factor H secretion of MSCs, and then inhibited the complement
activation, suggesting another mechanism of MSCs’ broad immunosuppressive effects [46].
Exosomes derived from pretreated MSCs increased miR-125a and miR-125b, which inhib-
ited the differentiation of Th17 cells and then had therapeutic efficacy for colitis [44]. In
addition, pretreated MSC-derived EVs, containing TNF-stimulated gene 6 protein (TSG-6)
and A20, inhibited T-cell proliferation [45].

2.2.2. TNF-α

TNF-α, another important pro-inflammatory cytokine, was undoubtedly involved in
the immunoregulation of MSCs. CM from TNF-α-pretreated MSCs eased the symptoms
of experimental allergic conjunctivitis via cyclooxygenase 2 (COX2)/PGE2 signaling [47].
Furthermore, TNF-α enhanced CD73 expression of MSC-derived exosomes, leading to
the polarization of M2 macrophages. Local injection of exosomes significantly reduced
the resorption of periodontal bone in mouse periodontitis models and exosomal miR -
1260b played an important role in inhibiting the osteoclast activity via the Wnt5a/RANKL
pathway [48]. Meanwhile, miRNA-299-3p was upregulated in the pretreated MSC-derived
exosomes, which attenuated inflammatory damage of acute liver failure and promoted liver
tissue repair [49]. In addition, TNF-α pretreatment could also exert immunosuppressive
function by increasing the factor H secretion of MSCs [46].

2.2.3. IL-1β

In inflammatory diseases, IL-1β also acts as a pathological mediator. MSCs pretreated
with IL-1β could treat colitis by increasing COX2, IL-6 and IL-8 to regulate the polarization
and differentiation of immune cells [50]. Pretreatment of IL-1β resulted in a strong upreg-
ulation of miR-146a [51] and miR-21 [52] in MSC-derived exosomes, and this transferred
to macrophages, resulting in M2 polarization. Meanwhile, the exosomes significantly
inhibited astrogliosis and inflammatory responses via the Nrf-2 signaling pathway [53],
and enhanced anti-inflammatory activity via miR-147b mediated inhibition of NF-κB path-
way [54]. By upregulating the expression of transforming growth factor-β1 (TGF-β1) and
matrix metalloproteinases (MMPs), CM from pretreated MSCs promoted wound healing
in vivo [55]. MSCs pretreated with IL-1, including IL-1α and β, increased expression
of granulocyte-colony-stimulating factor via IL-1 receptor 1, and the CM decreased the
production of inflammatory factors in activated microglial cells [56]. Additionally, by
secreting pro-inflammatory cytokines, the secretome from pretreated MSCs regulated the
inflammatory response and aggrecan deposition in degenerative intervertebral discs [57].

2.2.4. Lipopolysaccharide (LPS)

LPS is the main cell wall component of Gram-negative bacteria and play a crucial
role in the interaction between pathogens and the host immune system [90]. It is also a
commonly inflammatory inducer in the study of inflammatory diseases.

It was found that a low concentration of LPS-pretreated MSCs inhibited activated
T-cell by up-regulating nitric oxide (NO) [58]. Pretreated MSCs displayed high levels
of IL-6, IL-8 and more effectively promoted diabetic skin-flap survival [59]. The CM of
pretreated MSCs defended against V. cholerae infection by inducing vibriocidal antibodies
and regulating inflammatory and anti-inflammatory effects [60]. Meanwhile, the CM
promoted the recruitment and phagocytosis of polymorphonuclear neutrophil granulocytes
(PMNs) by upregulating IL-6, IL-8 and macrophage migration inhibitory factor (MIF)
of MSCs [64]. Furthermore, LPS pretreatment of MSC-derived exosomes significantly
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increased anti-inflammatory cytokines while decreased pro-inflammatory cytokines of
monocytes and macrophages, promoted their polarization to M2 macrophages and reduced
the inflammatory response of diabetic skin wounds and MI [61,62]. The miRlet-7/TLR4/NF-
B/STAT3/ATK pathway may be responsible for this effect [61]. Under inflammatory
conditions, LPS-pretreated MSC-derived EVs could decrease the RANKL/OPG of PDLSCs
by inhibiting the ROS/JNK pathway and promote M2 macrophages polarization through
the ROS/ERK pathway, which enhanced the therapeutic efficacy for periodontitis [63].

Some studies have suggested that LPS promotes MSCs to generate a pro-inflammatory
phenotype and reverse their therapeutic immunosuppressive effect. Brief LPS pretreatment
of MSCs increased IL-6 and IL-8 and showed a decreased capacity to inhibit T cells. It also
reversed the protective effect of MSCs against experimental autoimmune encephalomyelitis
(EAE) and colitis [65,66]. Meanwhile, pretreated MSC-derived exosomes promoted M1
macrophages polarization, IL-6 and TNF-α production and Th17 cells differentiation [67].
Furthermore, LPS promoted the expression of thrombospondin-1 of MSCs, which was
involved in LPS proinflammatory regulation [67].

This immunomodulatory difference of LPS-pretreated MSCs may be caused by cell
types (mouse versus human), tissue origin, concentration of LPS, in vivo versus in vitro
studies and cells’ pretreatment time. A study indicated that different LPS pretreatment
time could change the phenotype of MSCs, playing different immunomodulatory and
therapeutic roles [68].

2.2.5. Polyinosinic–Polycytidylic Acid (poly(I:C))

Poly(I:C), a toll-like receptor (TLR) 3 ligand, pretreated MSCs ameliorated colitis
by reducing the proliferation of T-cell [66], and improved EAE by inhibiting Th1 and
Th17 cells [65]. The pretreated MSCs also promoted ligament healing by promoting M2
macrophages polarization, IL-1Ra expression, early endothelialization and procollagen 1α
matrix deposition [91]. In addition, Poly(I:C) pretreatment increased PGE2 production of
MSCs via the expression of COX2 and prostaglandin E synthase [69] or Jagged-1-Notch-1
pathway [70], resulting in significant immunosuppression. The above study also found
that poly(I:C) induced increased PGE2 secretion compared with IFN-γ or TNF-α [69].

Previous research has observed diverse effects in vitro. TLR4-activated MSCs mostly
expressed pro-inflammatory mediators, and TLR3-activated MSCs mostly expressed im-
munosuppressive factors [92]. This is consistent with the above results of Poly (I:C) pre-
treated MSCs, while there is still uncertainty related to LPS pretreatment.

2.2.6. Combined Pretreatment of Inflammatory Factors

Combining TNF-α and IFN-γ could also enhance the immunosuppressive activity
of MSCs. In normoxic conditions, hypoxia-inducible factor 1α (HIF1α) was induced and
maintained by the expression of ROS of activated MSCs [71]. Then, HIF1α enhanced
the immunosuppressive activity of MSCs by modulating their metabolic status [71]. The
pro-inflammatory effects caused by high levels of palmitate were fully reversed by the
pretreated MSCs, which provided a robust and durable prelicensing regimen for protecting
MSCs’ immunosuppressive function in relation to type 2 diabetes [72]. Meanwhile, the
pretreatment increased IDO production of MSCs and promoted M2 macrophages polar-
ization to inhibit PBMCs [73]. In acute myeloid leukemia therapy, the pretreated MSCs
increased tumor necrosis factor-α-related apoptosis-inducing ligand and IDO, enhancing
the pro-apoptotic effect of leukemic cells [80]. The CM derived from combined pretreated
MSCs efficiently accelerated wound closure via IL-6-dependent M2 polarization [74,75].
Related mechanism research showed that the combined pretreatment increased the produc-
tion of IDO and TSG-6 by PI3K/AKT pathway, thereby enhanced the immunosuppressive
ability of MSCs [76]. Interestingly, another study indicated that MSCs can be induced to
generate a pro-inflammatory phenotype by the combined pretreatment, but these MSCs
also produced anti-inflammatory factors, which concurred with the classical conception
that the two microenvironments inhibiting and promoting tumor growth coexist [77]. The
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pro-inflammatory chemokines induced aggregation of immune cells closely associated
with MSCs, creating a microenvironment in which the local effects produced by MSCs
lead to strong immunosuppression. In addition, chaperone-mediated autophagy activation
was inhibited in pretreated MSCs, leading to immunosuppressive function [78]. Another
study indicated the pretreatment induced miR-155 expression of MSCs and inhibited the
immunosuppressive capacity by reducing iNOS expression which might protect MSCs
from NO in inflammatory situations [79].

IL-β combined with IFN-γ significantly improved the immunoregulatory effects of
MSCs by increasing the production of IDO and PGE2 [81]. Meanwhile, pretreatment
of MSCs promoted the secretion of IL-6, inhibited M1 macrophages polarization under
inflammation and inhibited M2b polarization under anti-inflammation via the IL-6 path-
way [82]. This finding supports the implication that inflammatory condition was a critical
determinant of the immunomodulatory characteristics of MSCs described above.

IL-17 could dramatically enhance the immunosuppressive effect of MSCs induced by
IFN-γ and TNF-α through the promoted expression of iNOS in liver injury [83] and tumor
progression [84].

Compared to the combination of IFN-γ and TNF-α or single treatment, MSCs pre-
treated by LPS and TNF-α promoted M2 macrophages polarization and enhanced os-
teogenic differentiation by increasing PGE2 and Arginase-1 [85].

IFN-γ and poly(I:C) pretreated MSCs were more effective at improving experimental
colitis. They increased Treg, decreased inflammation and stimulated intestinal epithelial
regeneration by promoting the expression of IDO1 [86].

Exosomes derived from MSCs pretreated by TGF-β and IFN-γ promoted the differen-
tiation of Treg, dependent on IDO [87].

MSCs pretreated by IL-1β, IL-6, TNF-α and IFN-γ increased the production of inactive
chemerin, which could then be activated by inflammation-induced tissue proteases, thereby
promoting the migration of ChemR23- expressing immune cells with immunomodula-
tory effects [88].

To summarize, many inflammatory factors have been used to pretreat MSCs, and in
general, pro-inflammatory pretreatments increased the immunosuppressive properties of
MSCs by inducing the anti-inflammatory phenotype of immune cells and stimulating the
expression of anti-inflammatory factors. However, due to the fact that there are numerous
inflammatory factors and more choices for combined applications, it is difficult to reach
unified conclusions or conduct in-depth research in a certain direction. Meanwhile, some
studies suggest a combination of different inflammatory factors is superior to a single one,
but the other studies directly applied combinations of inflammatory factors and compared
them with untreated MSCs. So, it is impossible to verify whether the combination is better
than the single factor, which needs more research to confirm this. There is one more point
that, so far, there is no clear standard for the selection of combined inflammatory factors.

It is worth noting that MSCs, like immune cells, can retain information from environ-
mental stimuli for a period of time. When pretreated with LPS or TNF-α, MSCs displayed
increased secretion of IL-6, IL-8 or MCP-1 and retained high expression of these cytokines
for over 7 days without the influence of cell division. These cytokines were increased
further after secondary stimulation [59]. Following LPS pretreatment, MSCs increased the
production of iNOS, IL-1β and IL-6 after IFN-γ and TNF-α retreatment, and decreased
expression of proinflammatory genes after LPS retreatment [93]. Thus, the inflammatory
stimuli treated MSC-derived-secretome can contain more abundant regulatory factors. This
also suggests that the secondary stimulation of MSC-derived secretome could lead to more
effective in immunomodulation, which is worth further exploration.

2.3. D Cell Culture

MSCs are typically grown in two-dimensional (2D) culture plates. However, remov-
ing them from their endogenous 3D niche, as well as enzymatic passaging, can result
in a loss of multipotency, accumulation of chromosomal aberrations within the MSCs
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genome, dysfunction in DNA repair, replicative senescence, decreased surface markers
(e.g., CD105, CD90, CD73) associated with the MSCs’ undifferentiated phenotype [94–98].
Three-dimensional cell culture systems’ ability to bridge the gap between cell-based meth-
ods and animal models for studying the repair and replacement of tissues and organs is
becoming increasingly apparent [99].

Three-dimensional cell culture methods have been used to improve the immunomodu-
latory properties of MSCs (Table 3). A study indicated that the loss of T-cell-suppressive abil-
ities in MSC spheroids was caused by increasing PGE2 and decreasing IDO and CD73 [100].
MSC spheroids promoted the paracrine of TSG-6 and ameliorated renal function of acute
kidney injury (AKI) compared with 2D-cultured cells [101]. After transplantation into
mouse, MSC spheroids promoted the production of IFN-γ and IL-6 while suppressing
TNF-α, thereby alleviating liver necrosis and promoting regeneration [102]. MSC spheroids
increased the production of immunomodulatory paracrine factors and the immunosup-
pressive effect on macrophages functional activity, which was further strengthened by
pretreatment with IFN-γ and TNF-α [103]. The CM from MSC spheroids efficiently inhib-
ited the expression of inflammatory cytokine, increased the expression of anti-inflammatory
cytokines in LPS activated macrophages, and promoted the transformation of M1 into
M2 macrophages [104–106]. It also had the potential to accelerate wound healing and
mature, fully functional tissue regeneration [107]. In addition, the predominant expres-
sion of anti-inflammatory cytokines in CM from 3D cultured MSCs demonstrated its
superior regenerative and anti-inflammatory potential in arthritis [108] and ear wound
model [109]. Compared with 2D culture, spheroid MSC-derived exosomes indicated en-
hanced immunomodulatory effects by restoring the reactive Th17/Treg balance in inflamed
periodontal tissues and experimental colitis [110]. MSC spheroids in combination with
hypoxia or hypoxic-mimetic condition provided by dimethyloxalylglycine synergistically
increased TSG-6, MMP-2 and VEGF involved in tissue repair processes [111].

MSCs cultured on electrospun gelatine/polycaprolactone fibers scaffolds in advance
promoted the expression of IL-6 and chemokines, and the secretome significantly improved
corneal wound healing [112]. Synthetic polyisocyanide hydrogel created a 3D culture
environment and directed the secretome composition of MSCs, which had therapeutic
potential in wound healing [14].

In summation, 3D cultures of MSCs efficiently exerted immunosuppressive effects.
However, there was still some debate regarding the MSC spheroids. When they reached
critical sizes, their nutrient and oxygen supply might be non-homogenous and could affect
cells proliferation and viability [113]. Compared with spherical culture, the secretome
produced by 3D hydrogel-cultured MSCs had enhanced immunomodulatory capabilities
and regeneration potential [114]. Research has found that the matrix stiffness [115] and
composition [14] of hydrogel, and enhanced cell–cell contacts in spheroids [103] could
regulate the immunomodulatory function of MSCs. At present, most studies focus on the
immune regulation and mechanism of 3D-cultured MSCs, while the interaction between
cells has not been thoroughly and comprehensively explored. Studies showed that the
microenvironment established within the spheroids acted in an autocrine process to increase
the cell-cell interaction [107]. In addition, the matrix stiffness, viscoelasticity, porosity, and
degradation of 3D hydrogel and scaffold directly affect MSCs’ aggregation and promote
their secretion by increasing cell–cell contacts [116].

Therefore, hydrogel could be designed with suitable structures and properties to ulti-
mately generate an optimized secretome. Meanwhile, as simulated ECM, hydrogels could
be used as a tool to collect the secretome of MSCs, which is worthy of further investigation.
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Table 3. 3D culture pretreatment of MSCs.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

spheroids

BM-MSCs
UC-MSCs

COX2, PGE2↑
CD73, Kynurenine

and free
phosphate↓

PBMC proliferation
in vitro T-cell suppressive abilities↓ [100]

AT-MSCs TSG-6↑ acute kidney injury model
of rats therapeutic effects of AKI↑ [101]

BM-MSCs TSG-6,
stanniocalcin-1↑

LPS-activated
macrophages cytokines

production in vitro
Peritonitis model of mice

secretion of TNF-α↓of
macrophages

neutrophil activity, TNF-α,
IL-1β, CXCL2/MIP-2,

PGE2↓in inflammatory
exudates and plasmin

activity↓ in serum

[104]

BM-MSCs PGE2↑

LPS-activated
macrophages

macrophages polarization
and cytokines production

in vitro

TNF-α, IL-6, IL-12P40, IL-23,
CXCL2↓ and IL-1Ra, IL-10↑

in macrophages
polarization of M1 to M2↑

(COX2/PGE2/EP4)
(caspases/NF-κB)

[105]

BM-MSCs

IL-1α, IL-1β,
COX2, TSG-6,

stanniocalcin-1
and PGE2↑

macrophages polarization
in vitro

polarization of M1 to M2↑
(caspases/NF-κB/IL-

1/PGE2 and
Notch/PGE2)

[106]

UC-MSCs
MMP-2, MMP-9,

TGF-β1, IL-6,
G-CSF↑

skin wound model of rats wound healing↑ in skin
wound [107]

UC-MSCs IFN-γ, IL-6 ↑
TNF-α↓

acute liver failure model
of mice

necrosis↓, regeneration↑
and liver repair↑ [102]

BM-MSCs PGE2, TGF-β, IDO
and IL-6↑

lipopolysaccharide and
IFN-γ activated

macrophages in vitro

TNF-a secretion↓ of
macrophages [103]

DP-MSCs
exosomes
exosomal
miR-1246

periodontitis and colitis
model of mice

restored Th17 cells/Treg
balance in both the inflamed

periodontium and colon
alveolar bone loss↓,

inflammatory cells↓ and
osteoclasts↓ in experimental

periodontitis
colon length↑, inflammatory
cells↓, IL-1β, IL-6, TNF-α↓

in colitis
(miR-1246/Nfat5)

[110]

UC-MSCs IL-10, LIF↑ arthritis model of rats local and systemic arthritic
manifestations↓ [108]

spheroids
+microbeads+

hydrogel
AT-MSCs IL-10, TGF-β↑ ear full thickness wound

model of rabbits

infiltration of lymphocytes↓
in wound

ear full-thickness wound
healing↑

[109]

spheroids + 2%
O2/ dimethyloxa-

lylglycine
BM-MSCs TSG-6, MMP-2 and

VEGF↑
tube formation assay

in vitro tube formation of HUVECs↑ [111]
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Table 3. Cont.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

polycaprolactone
and gelatin

electrospun fiber
scaffolds

BM-MSCs
eotaxin, IL-6, LIF,

MCP-1 and
MCP-3↑

corneal wound model of
rabbits in vitro corneal wound healing↑ [112]

polyisocyanide
hydrogel AT-MSCs IL-10↑ wound healing assay

in vitro wound healing↑ [14]

Abbreviations: O2, Oxygen; MSCs, Mesenchymal stem cells; BM/UC/AT/DP/-MSCs, Bone marrow/Umbilical
cord/Adipose tissue/Dental pulp-derived-MSCs; COX2, Cyclooxygenase 2; PGE2, Prostaglandin E2; VEGF, Vascu-
lar endothelial growth factor; TSG-6, TNF-stimulated gene 6 protein; IL-1α/1β/6/10/12p40/23/Ra, Interleukin-
1α/1β/6/10/12p40/23/1receptor antagonist; MMP-2/9, Matrix metalloproteinases-2/9; LIF, Leukemia inhibitory
factor; TGF-β, Transforming growth factor-β; G-CSF, Granulocyte-colony stimulating factor; IFN-γ, Interferon-γ;
TNF-α, Tumor necrosis factor-α; IDO, Indoleamine 2, 3-dioxygenase; miR, Micro ribonucleic acid; MCP-1/3,
Monocyte chemoattractant protein-1/3; AKI, Acute kidney injury; LPS, Lipopolysaccharide; CXCL2, CXC-
chemokine ligand 2; Th17:Type 17 T helper; MIP-2, Macrophage inflammatory protein-2; Treg: Regulatory T-cell;
EP4, Prostaglandin E receptor subtype 4; Nfat5: Nuclear factor of activated T-cell 5; HUVECs, Human umbilical
vein endothelial cells; ↑, increased expression; ↓, decreased expression.

2.4. Engineered Pretreatment

Engineered MSCs contribute to the immunomodulatory ability by expressing specific
immunomodulators (Table 4).

Table 4. Engineering pretreatment of MSCs.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

IL-4 gene
transfection
+spheroids

AT-MSCs IL-4↑

IL-1β-treated
chondrocytes apoptosis

and cytokines production
in vitro

osteoarthritis model
of rats

chondrocytes apoptosis↓,
NO, iNOS MMP-13)↓and

cartilage ECM (Col2) ↑
in chondrocytes

production of NO↓,
chondrocyte apoptosis↓,
expression of the pain

mediators↓ in osteoarthritis

[117]

IL-10 gene
transfection

MSCs IL-10↑
orthotopic liver

transplantation model
of rats

liver allograft survival↑
acute rejection↓

Th17↓ and Treg↑
IL-17, IL-23, IL-6, IFN-γ,

TNF-α↓ and IL-10, TGF-β1↑
in T-cell of liver and

in serum

[118]

BM-MSCs IL-10↑
T-cell proliferation in vitro

corneal allograft model
of rats

proliferation of T-cell↓
corneal allograft
survival time↑

infiltration of CD4+, CD68+

T-cell↓ in the corneal grafts
CD4+, CD68+ T-cell↓ and

Treg↑ in the draining
lymph nodes

lncRNA 003946 expression↑
in CD68+ infiltrating cells

[119]
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Table 4. Cont.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

TGF-β1 gene
transfection BM-MSCs TGF-β1↑

T-cell proliferation,
cytokines production and

differentiation in vitro
liver allograft model

of rats

T-cell proliferation and
IFN-γ secretion↓ and Treg↑

acute rejection↓ and
survival↑ after
liver transplant

T-cell, Th17 cells, IL-1β, IL-6,
IFN-γ↓, Treg, IL-10↑ in vivo

[120]

IL-35 gene
transfection AT-MSCs IL-35↑ cardiac allograft model

of mice

acute cellular rejection↓
allograft survival↑

Th17, Th1/Th2↓ and Treg↑
in spleen

IL-17↓ in graft

[121]

IDO gene
transfection

BM-MSCs IDO↑

T-cell proliferation,
differentiation and

cytokines production
in vitro

orthotopic renal
transplantation model

of rabbits

T-cell proliferation↓, Treg↑,
CTLA-4, IL-10 and TGF-β1
expression of Treg↑ in vitro

renal graft survival
and tolerance↑

[122]

BM-MSCs IDO↑

T-cell and DCs
differentiation in vitro

heterotopic heart
transplantation model

of rats

DCs markers↓ and
Treg↑ in vitro and in vivo
IL-10, TGF-β↑ and IL-2,

IFN-γ↓ in serum
infiltration of inflammatory
cells, hemorrhage, edema,

and myocardial
damage↓ in the

transplantation mode

[123]

HO-1

BM-MSC HO-1↑ small bowel allograft
model of rats

recipient survival rates↑
clinical manifestation and

weight loss↓
grading of acute rejection↓

in small bowel graft
apoptotic↓ cells in small

intestine mucosa↓
NK cells activity↓ in graft

IFN-γ. IL-2, IL-17, IL-6,
IL-23, TNF-α↓ and IL-10,

TGF-β↑ in serum
Treg↑ in the spleen

[124]

BM-MSC HO-1↑
orthotopic liver

transplantation model of
rats

recipient survival rates and
liver function↑

clinical manifestations↓
grading of acute rejection↓

in hepatic grafts
apoptotic cells↓ in hepatic

tissue
IFN-γ. IL-2, IL-17, IL-6,

IL-23, TNF-α↓ and IL-10,
TGF-β↑ in serum

Treg↑ in the spleen

[125]
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Table 4. Cont.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

BM-MSC HO-1↑

lymphocytes proliferation
and differentiation in vitro

reduced-size liver
transplantation model

of rats

T-cell, NK cells activation↓
and Treg↑ in vitro

recipient survival rates↑
clinical manifestations↓

grading of acute rejection↓
in hepatic graft

Treg↑ in the spleen
TNF-α, IL-2, IL-17, IL-23↓

and IL-10, TGF-β↑ in serum
NK cells activation↓ in

hepatic graft

[126]

PD-L1 gene
transfection BM-MSC EVs (PD-L1)

T-cell proliferation,
differentiation and

cytokines production
in vitro

GVHD model

Treg↑, T-cell proliferation↓
IL-10, IL-2, TGF-β, IFN-γ↑

of CD4+ T-cell
host versus graft rejection↓

graft survival↑
Treg↑ and Th17, Th1 cells↓

in vivo

[127]

BPI21/LL-37
gene transfection UC-MSCs BPI21/LL-37↑

antibacterial activity
and endotoxin

neutralization assay
LPS-activated

macrophages in vitro
sepsis model of mice

antibacterial and endotoxin-
neutralizing activity↑

IL-1β, TNF-α, IL-6↓ and
IL-10↑ both in macrophages

and in serum
bacterial clearance and

endotoxin-neutralizing↑ in
septic mice

[128]

HIF1α gene
transfection DP-MSCs

HIF1α,
CCL2/MCP-1,

galectin 1, IL-6↑

T-cell proliferation, DCs
differentiation, monocytes

recruitment and
differentiation, and NK

cells-mediated lysis
in vitro

T-cell proferization↓
DCs differentiation↓

recruitment of monocytes
and differentiation into

suppressor macrophages↑
degranulation and IFN-γ
production of NK cells↓

[129]

HIF1α gene
transfection/+

IFN-γ (50 ng/mL)
+ TNF-α

(10 ng/mL) +
IL-1β (10 ng/mL)

DP-MSCs EVs
IL-6, IDO↑

macrophages polarization,
T-cell proliferation,

PBMCs adhesion in vitro
delayed type

hypersensitivity model
of mice

colitis model of mice

M1 repolarizes to M2↑
efferocytic and

immunosuppressive
capacity of M1↑

fibrosis Induced by TGF-β
expression of VCAM and
P-selectin of HUVECs↓

PBMCs adhesion on
activated endothelium↓
proliferation of CD4+,

CD8+ T-cell↓
leucocyte infiltration↓
ear-swelling response↓

hyperplasia↓ and CD45+

cells infiltration↓, M1↓and
M2↑ in a DTH mice
inflammatory cells

infiltration↓, TNF-α, IL-1β,
IL-6↓, M1↓and M2↑ in

colitis mouse model
(PD-L1/PD-1/NF-κB)

[130,131]
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Table 4. Cont.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

sFgl2 gene
transfection AT-MSCs sFgl2↑

IFN-γ and LPS-activated
macrophages polarization,

migration and
phagocytosis in vitro
heart transplantation

model of mice

M1↓, M2↑ in vitro and
in vivo

(JAK/STAT and NF-κB)
phagocytosis and migration

of macrophages↑
myocyte necrosis, vasculitis,
lymphocytes infiltration↓ in

the heart grafts
Treg↑ in spleen

IFN-γ, IL-12, TNF-α, IL-6,
and IL-1β↓, TGF-β1, IL-4,

IL-10↑ in the serum
acute rejection after

heart transplantation↓

[132]

hepatocyte
growth factor

gene transfection
DP-MSCs hepatocyte

growth factor↑

T-cell differentiation
in vitro

psoriasis model of mice

Th1, Th17 cells↓, Treg↑
expression of cytokeratin 6
and cytokeratin 17↓ in the

psoriatic skin lesions.
IFN-γ, IL-17A, TNF-α↓ in

the serums
T-box transcription factor 21,
IFN-γ, retinoic acid-related
orphan receptor-γt, IL-17A,
IL-17F, IL-23↓ and Foxp3,

IL-10↑ in the psoriatic
skin lesions.

[133]

heparin
microparticle

loaded with IFN-γ
(20 µg/mg

microparticle) +
spheroids

BM-MSCs IDO↑
T-cell proliferation,

activation and cytokines
production in vitro

T-cell activation and
proliferation↓

secretion of TNF-α↓, IL-10↑
of PBMCs

[134]

internalization of
PLGA

microparticle
loaded with
budesonide

(loading 7.05%)

MSCs IDO↑
PBMCs proliferation and

cytokines production
in vitro

proliferation and IFN-γ
production of PBMCs↓

(STAT1/ FOXO3)
[135]

Abbreviations: IFN-γ; Interferon-γ; IL-2/4/10/35/6/17/23/1β, Interleukin-2/4/10/35/6/17/23/1β; TGF-β,
Transforming growth factor-β; IDO, Indoleamine 2, 3-dioxygenase; HO-1, haem oxygenase-1; HIF1α, Hypoxia in-
ducible factor 1α; sFgl2, soluble fibrinogen-like protein 2; PLGA, poly (lactic-co-glycolic acid); MSCs, Mesenchymal
stem cells; AT/BM/UC/DP-MSCs, Adipose tissue/Bone marrow/Umbilical cord/Dental pulp-derived-MSCs;
CCL2, CC-chemokine ligand 2; MCP-1, Monocyte chemoattractant protein-1; ECM, Extracellular matrix; Col2,
Collagen 2; NO, Nitric oxide; lncRNA, Long non-coding RNA; iNOS, Inducible nitric oxide synthase; MMP-13,
Matrix metalloproteinases-13; MI, Myocardial infarction; Th1/2/17, Type 1/2/17 T helper; CTLA-4, Cytotoxic T
lymphocyte antigen-4; Treg, Regulatory T-cell; DCs, Dendritic cells; NK, Natural killer; STAT1, Signal transducers
and activators of transcription1; PD-L1, Programed death ligand-1; VCAM, Vascular cell adhesion molecule;
HUVECs, Human umbilical vein endothelial cells; PD-1, Programmed cell death protein 1; DTH, Delayed type
hypersensitivity; PBMCs, Peripheral blood mononuclear cells; NF-κB, Nuclear factor-κB; JAK, Janus kinase; LPS,
Lipopolysaccharide; FOXO3, Forkhead box O3; GVHD, Graft-versus-host disease; ↑, increased expression; ↓,
decreased expression.

IL-4 transfected MSCs in spheroids demonstrated improved chondroprotective and
anti-inflammatory effects in osteoarthritis (OA) model both in vitro and in vivo [117].
IL-10, TGF-β1 or IL-35 transfected MSCs could significantly prolong allograft survival
by regulating the production of inflammatory cytokines and phenotypic transformation
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of immune cells [118–121]. As an inducible enzyme responsible for the breakdown of
haem, haem oxygenase-1 (HO-1) had antioxidant and immunomodulatory functions [136].
Programmed death-ligand 1 (PD-L1) was critical to Treg differentiation and function. HO-1
or IDO overexpressing MSCs and EVs derived from PD-L1 transfected MSCs efficiently
improve graft-versus-host reaction following transplantation by increasing Treg and anti-
inflammatory cytokines, and decreasing proinflammatory cytokines, NK cells and effector
T-cell activity [122–127].

Broad-spectrum antibacterial fusion peptide BPI21 and LL-37 transfected MSCs not
only enhanced antibacterial and toxin-neutralizing activities but displayed significant
immunomodulatory effects [128].

MSCs, overexpressed by HIF1α, exhibited increased resistance to NK-cell-mediated
lysis, impaired DCs differentiation and induced higher attraction of monocytes which
acquired immunosuppressive properties efficiently [129]. HIF1α-overexpressed MSCs with
or without pro-inflammatory treatment released EVs with potent immunomodulatory
activity [130,131].

Soluble fibrinogen-like protein 2 (sFgl2), mainly secreted by Treg, exerted potently
immunosuppressive activities. sFgl2 overexpressed MSCs inhibited acute heart transplant
rejection and induced immune tolerance by promoting M2 macrophage polarization [132].

Hepatocyte growth factor overexpressed MSCs could enhance the treatment effect on
psoriasis by regulating T-cell differentiation and inflammatory factors expression [133].

Compared with MSC spheroids pretreated with IFN-γ, heparin microparticle-mediated
release of IFN-γ in MSC spheroids could increase sustained immunomodulatory effects by
inducing continuous IDO expression throughout 7 days of culture and anti-inflammatory
cytokines secretion of monocytes [134]. Similarly, to achieve sustained IDO production of
MSCs, the internalization of budesonide -loaded poly (lactic-co-glycolic acid) microparticles
into MSCs could improve their immunosuppressive properties [135].

Engineered MSCs have advantages in maximizing and maintaining immunomod-
ulatory potential, and they enable the enhanced expression of specific factors without
consideration for which tissues or donors MSCs should derive. Engineered MSCs are
mostly directly applied at present, and given that the effect of engineered MSCs is superior
to the transfected factor itself, it is speculated that the secretome derived from engineered
MSCs is more useful. Subsequent studies should concentrate on the effect of secretome to
make the most of its advantages. Meanwhile, the complicated process and the influence
of transfection efficiency and stability continue to restrict development. The addition of
drug/cytokine-loaded microparticles provides an effective method to enhance and main-
tain immunomodulatory activity of MSCs. But drug/cytokine selection, sustained release
time and dosage are still in need of further study.

2.5. Pharmacological or Chemical Agents

Pharmacological or chemical agents, with simple, cheap and efficient features, also
represent common pretreatments for MSCs in immunomodulation (Table 5).

Tetrandrine is a potent calcium channel blocker and anti-inflammatory antioxidant
agent. It can increase PGE2 secretion of MSCs through the NF-κB/COX2 signaling pathway
and significantly reduced pro-inflammatory factors production [137].

Glucocorticoids have seen decades of clinical use as potent anti-inflammatory and im-
munosuppressive agents. Budesonide increased IDO expression of MSCs following IFN-γ
treatment and restored IDO expression in over-passaged MSCs via glucocorticoid-induced
expression of transcriptional enhancer Forkhead box O3 (FOXO3) [135]. Pretreatment
of MSCs with dexamethasone enhanced immunosuppression in mixed lymphocyte reac-
tion [138]. Dexamethasone and JWH-133, a cannabinoid receptor 2 selective agonist, could
restore the anti-inflammatory and immunoregulatory properties of immune thrombocy-
topenia patient-derived-MSCs via Bcl2 signaling [139].

Melatonin is a ubiquitous hormone involved in the function of immune cells. Mela-
tonin pretreated MSC-derived exosomes promoted M2 macrophages polarization by in-
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creasing PTEN expression and inhibiting AKT phosphorylation, and regulated inflam-
matory factors expression, ultimately promoting the healing of diabetic wounds [140].
Exosomal miRNAs, such as miR-34a, miR-124, and miR-135b may be responsible for the
improved anti-inflammatory regulation [141].

Table 5. Pharmacological or chemical agent pretreatment of MSCs.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

tetrandrine
(5µM and 10µM)

24 h
BM-MSCs PGE2↑

LPS-activated
macrophages cytokine

production in vitro
ear skin inflammation

model of mice

TNF-α secretion of
LPS-activated
macrophages↓

TNF-α↓ in ear skin
inflammation sites

(NF-κB/COX2)

[137]

budesonide (1 µM)
24 h + IFN-γ

(100ng/mL) 48 h
MSCs IDO↑

PBMCs proliferation and
cytokines production

in vitro

proliferation and IFN-γ
production of PBMCs↓

(STAT1/ FOXO3)
[135]

dexamethasone
(1000 ng/mL,
2000 ng/mL,
3000 ng/mL)
24 h and 48 h

UC-MSCs
DP-MSCs
AT-MSCs
BM-MSCs

PGE2, IDO,
HLA-G↑

PBMCs proliferationt
in vitro proliferation of PBMCs↓ [138]

JWH-133 (2.5µM) /
+ dexamethasone

(100 nM)
24 h

ITP-MSCs IL-6↓
IL-4, Bcl2↑

T lymphocytes
proliferation and

cytokines production
in vitro

T lymphocytes
proliferation↓

TNF-α↓ in LPS-treated
T-cell
(Bcl2)

[139]

melatonin
(1µM)
48 h BM-MSCs

exosomes
exosomal miR-34a,

miR-124 and
miR-135b↑

monocytes polarization
and cytokines production

in vitro
air pouch model of mice
diabetic wound healing

of rats

ratio of M2 to M1↑ in vitro
and in vivo

IL-1β, TNF-α, iNOS↓,
Arginase-1, IL-10↑ of
macrophages in vitro

gene expression of TGF-β1,
Il-10 and TSG-6↑ of

activated THP-1 cells
angiogenesis and collagen

synthesis↑ in
diabetic wound
(PTEN/AKT)

[140]

melatonin
(10µM)

72 h
BM-MSCs

exosomal miR-34a,
miR-124 and
miR-135b↑

monocytes polarization
and cytokines production

in vitro

M2 polarization and gene
expression of TGF-β1, Il-10

and TSG-6↑of activated
THP-1 cells

[141]

trimetazidine
(50 µM) 6 h
/diazoxide

(100 µM) 0.5 h
ESC-MSCs secretome

LPS-activated PBMCS
cytokines production

in vitro
endotoxemia model of

mice

IL-10, TNF-α and IL-1β↑
secreted by PBMCs

CXCL13, IL-12, CCL2,
TNFR1, IL↓ and IL-3, IL-10,
KC, CXCL2α, XCL1, CCL5↑

in serum of LPS
injected mice

necroinflammatory score↓
in kidney and liver of LPS

injected mice
alveolar space↑ and

inflammatory infiltration↓
in lung of LPS injected mice

[142,143]
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Table 5. Cont.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

chlorzoxazone
(10 µM)

24 h
UC-MSCs

IDO, COX2, IL-4,
TSG-6, CCL5,
CXCL9 and
CXCL10↑

IL-6↓

T-cell proliferation
acute nephritis model of

mice

T-cell activation and
proliferation↓

inflammatory infiltration
and tissue damage in AKI

rat model↓
(FOXO3)

[144]

metformin
(0.1, 1 and 5 mM)

72 h
AT-MSCs IDO, IL-10 and

TGF-β↑
T-cell proliferation in vitro

lupus model of mice

CD4+ T-cell proliferation↓
cervical lymph node and

kidney weight, proteinuria,
serum anti-dsDNA IgG and
renal pathology↓ in lupus

nephritis mice
regulatory effect on

peripheral blood and
splenic cellular subsets in

lupus nephritis mice
Th17/Treg ratio↓ of spleen

and kidney in lupus
nephritis mice

[145]

SP
(100 nM)

48 h
BM-MSCs TGF-β1↑

T-cell proliferation and
cytokines production

in vitro

activity and IL-2/ IFN-γ
secretion of T-cell↓ [146]

rapamycin
(3 µM)

24 h

UC-MSCs TGF-β1↑ T-cell proliferation in vitro CD4+ T-cell proliferation↓ [147]

BM-MSCs TGF-β1, CXCL8↑ T-cell migration and
differentiation in vitro

migration and Treg
differentiation↑

Th1 cells differentiation and
IL-17A, IFN-γ, IL-2

production of CD3/CD28+

T-cell↓

[148]

UC-MSCs IL-10, TGF-β1,
IDO↑

liver
ischemia/reperfusion
injury model of mice

neutrophils infiltration and
ROS↓ in liver tissues

IL-1β, IL-6, TNF-α gene↓ in
liver tissues

[149]

CB
(10 µg/mL)

0.5 h
AT-MSCs microvesicles

PBMCs proliferation and
cytokine production,

T-cytotoxic lymphocytes,
Th cells, and B cells
proliferation in vitro

transplantation
sheep red blood cells
immunization model

of mice
allogeneic and xnogeneic

microvesicles in mice

anti-sheep red blood cells
antibody↓ in serum

proliferation of PBMCs↓,
activation of Th cells. B cells

and T-cytotoxic
lymphocytes↓

fractalkine↓, G-CSF,
GM-CSF, MCP-3, MDC,
IL-12p70, IL-1β, MCP-1

of PBMCs↑

[150,151]

kynurenic acid
(200µM)

48 h
UC-MSCs TSG-6↑ acute lung injury model

of mice

neutrophil infiltration
in ALI↓
(AhR)

[152]
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Table 5. Cont.

Treatment
Conditions

MSCs
Sources

Secreted Factors
or Expressed

Genes
Research Scenarios

Immunomodulatory
Effects

(Signaling Pathway)
Reference

glutamine
(2 mM and 10 mM)

14 d
BM-MSCs IL-1β, IL-6↓

IL-10, TGF-β↑

lymphocytes and
macrophages proliferation
and cytokine production

in vitro

lymphocytes and
macrophages proliferation↓

IL-10 production↑
of lymphocytes

and macrophages
IFN-γ production↓

of lymphocytes
(NF-κB/STAT3)

[153]

Tongxinluo
(400 µg/mL)

24 h
BM-MSCs exosomal

miR-146a-5p
acute myocardial

infarction model of rats

cardiomyocyte apoptosis↓
apoptotic cardiomyocytes,

Bax, cleaved-Caspase 3, IL-6,
TNF-α, infarct size and

cardiac fibrosis↓ and
angiogenesis↑ in the

infarct region
(IRAK1/NF-κB p65)

[154]

Magnesium
(5 mM) 24 h + LPS

(1.25 µg/mL)
/TNF-α

(10 ng/mL) 2 h

C3H/10T1/2
MSCs

IL-1β, IL-6↓
IL-10, PGE2↑

LPS-activated
macrophages proliferation
and cytokine production,
lymphocytes proliferation

and cytokine
production in vitro

Proliferation production of
TNF-α, IL-β, IL-6 ↓ and
IL-10↑ of macrophages
IL-10 production↑ of

lymphocytes
(NF-κB/STAT3)

[155]

Abbreviations: µM, µmol/L; mM, mmol/L; nM, nmol/L; h, Hours; d, Days; IFN-γ, Interferon-γ; SP, Substance
P; TNF-α, Tumor necrosis factor-α; CB, cytochalasin B; LPS, Lipopolysaccharide; MSCs, Mesenchymal stem
cells; BM/UC/DP/AT/ITP/ESC-MSCs, Bone marrow/Umbilical cord/Dental pulp/Adipose tissue/Immune
thrombocytopenia patients/embryonic-derived-MSCs; A-MSCs, Amniotic MSCs; PGE2, Prostaglandin E2; IL-
6/4/10/1β/12/3/2/12p70/1α, Interleukin-6/4/10/1β/12/3/2/12p70/1α; IDO, Indoleamine 2, 3-dioxygenase;
Bcl2, B-cell lymphoma 2; HLA-G, Human leukocyte antigen-G; miR, Micro ribonucleic acid; COX2, Cyclooxyge-
nase 2; TSG-6, TNF-stimulated gene 6 protein; CCL2/5, CC-chemokine ligand 2/5; CXCL2α/8/9/10/13, CXC-
chemokine ligand 2α/8/9/10/13; HIF1α, Hypoxia inducible factor 1α; MMP-2/9, Matrix metalloproteinases-2/9;
TGF-β1, Transforming growth factor-β1; NF-κB, Nuclear factor-κB; TNF-α, Tumor necrosis factor-α; PBMCs,
Peripheral blood mononuclear cells; FOXO3, Forkhead box O3; STAT1/3, Signal transducers and activators of
transcription 1/3; iNOS, Inducible nitric oxide synthase; MCP-1/3, Monocyte chemoattractant protein-1/3; PTEN,
Phosphatase and tensin homolog; AKT, Protein kinase B; KC, keratinocyte-derived-chemokine; XCL1, chemokine
C-motif-ligand-1; TNFR1, tumor necrosis factor receptor 1; AKI, Acute kidney injury; ALI, Acute lung injury;
ROS, Reactive oxygen species; Th, T helper; G-CSF, Granulocyte-colony stimulating factor; Treg, Regulatory
T-cell; GM-CSF, Granulocyte-macrophage colony-stimulating factor; MDC, macrophage-derived-chemokine; ↑,
increased expression; ↓, decreased expression.

With regard to trimetazidine or diazoxide, common anti-ischemic drugs for angina,
pretreating MSC-derived secretome increased the secretion of IL-10, TNF-α and IL-1β from
LPS-activated PBMCs [142] and reduced systemic proinflammatory cytokines, immune
cells recruitment and inflammatory cells infiltration [143].

Pretreated MSCs with chlorzoxazone, a drug currently used for muscle relaxation,
were able to significantly suppress T cells, increase IDO and other mediators, and more
effectively reduce inflammatory infiltration and tissue damage associated with AKI by
modulating the phosphorylation of FOXO3 [144].

Metformin, commonly used to treat type 2 diabetes, optimized the immunoregulatory
properties of MSCs by enhancing the production of IDO, IL-10 and TGF-β through the
STAT1 pathway, resulting in significant disease activity improvement in lupus [145].

Neuropeptide Substance P (SP) was involved in inflammation regulation and wound
healing. By promoting the release of TGF-β1, SP pretreated MSCs might restore the reduced
immunosuppressive function of late-passage MSCs, which could improve the therapeutic
effectiveness of expanded MSCs in long-term culture [146].
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Rapamycin was a macrolide used clinically for anti-fungal treatment and immunoreg-
ulation. Rapamycin pretreatment of MSCs mediated T-cell proliferation, migration and
differentiation by increasing the secretion of TGF-β1 and CXC-chemokine ligand 8 of
MSCs [147,148], and improved the pathological changes, inflammatory cytokine levels and
hepatic function in the liver damage model [149]. All of the above effects were achieved by
inducing autophagy.

Cytochalasin B (CB) had a reversible effect on the interaction of cytoskeleton and
membrane. CB pretreated MSC-derived microvesicles could suppress the production of
anti-sheep red blood cell antibody [150], the proliferation of PBMCs and the activation of
Th cells, B cells and T-cytotoxic lymphocytes [151].

An IDO metabolite, kynurenic acid, specifically regulated TSG-6 production. Kynurenic
acid pretreated MSCs could further promote TSG-6 production and thus enhance the thera-
peutic capacity of ALI [152].

Glutamine is a nonessential amino acid that modulates immune responses. Glutamine
in high doses used to pretreat MSCs modulated immune responses by regulating anti- and
pro-inflammatory cytokines, while the CM had immunosuppressive effects on lymphocytes
and macrophages [153].

Tongxinluo, a Chinese medicine used to treat coronary artery disease, pretreated MSC-
derived exosomes demonstrated better cardioprotective effects by inhibiting apoptosis and
inflammation via miR-146a-5p/IRAK1/NF-κB p65 pathway [154].

Magnesium was able to modulate the immunoregulatory properties of MSCs by
decreasing pro-inflammatory cytokines and increasing anti-inflammatory cytokines of
MSCs stimulated with LPS or TNF-α, and the CM modulated the production profile of
inflammatory cytokines in macrophages [155].

To sum up, these studies demonstrated the potentially beneficial effects of MSCs pre-
treated with pharmacological or chemical agents. This kind of pretreatment can effectively
avoid the side effects of drug administration caused by in vivo application, control the
drug dosage and improve the efficiency of treatment. The study of drug selection, specific
pretreatment conditions and related mechanisms should be carried out in the future.

3. Immunomodulatory Mechanisms of Pretreated MSCs and Their Secretome

Pretreated MSCs and their secretome modulate inflammatory and immune responses
by promoting/inhibiting multiple immune cells and cytokines (Figure 1) and play active
roles in different inflammatory disease models (Figure 2). Obviously, several factors play
important roles in this process.

3.1. IDO/iNOS

IDO, a principal enzyme in tryptophan catabolism, regulated immune responses
and promoted cancer progression [156]. IDO catalyzed tryptophan into kynurenine, and
following the subsequent enzymatic reactions, kynurenine was further converted into
the energetic substrates to fuel cellular metabolic functions [157]. Hypoxia, inflamma-
tory factors, engineering methods and drug pretreatment could increase IDO produc-
tion of human MSCs to inhibit the proliferation and activation of T-cell [15,31,39,43,66,
73,122,130,131,134,144,145], NK cells [39,40], PBMCs [41,42,72,81,135,138] and production
of pro-inflammatory cytokines [43,72,86,103,123,130,131,134,135,149], and enhance Treg
proliferation [29,81,86,87,122,123,145] and M2 polarization [73,130,131].

The immunosuppressive effects of IDO are related to its characteristic tryptophan
catabolism: IDO mediated tryptophan depletion and production of kynurenine, which was
involved in the inhibition of immune cells [158]. Tryptophan is an essential amino acid and
its reduction would affect the survival of immune cells [159]. Kynurenine could induce
T-cell arrest or apoptosis, and its accumulation may induce the differentiation of Treg [160].
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Figure 2. The application of pretreated MSCs and their secretome in multiple inflammatory disease
models. The blue circle corresponds to the pretreatment methods, the green circle corresponds to
secretory factors, the yellow circle corresponds to related immune cells and the red circle corresponds
to the applied inflammatory disease model. IFN-γ, Interferon-γ; TNF-α, Tumor necrosis factor-
α;IL-4/6/8/10/1β/17/35, Interleukin-4/6/8/10/1β/17/35; LPS, Lipopolysaccharide; Poly(I,C),
Polyinosinic-polycytidylic acid; IDO, Indoleamine 2, 3-dioxygenase; MCP-1/3, Monocyte chemoat-
tractant protein-1/3; iNOS, inducible nitric oxide synthase; miR, Micro ribonucleic acid; NO, Nitric
oxide; TGF-β, Transforming growth factor-β; TSG-6, TNF-stimulated gene 6 protein; COX2, Cyclooxy-
genase 2; HO-1, haem oxygenase-1; PGE2, Prostaglandin E2; GVHD, Graft-versus-host disease; Treg,
Regulatory T-cell; LIF, Leukemia inhibitory factor; EAE, experimental autoimmune encephalomyelitis;
sFgl2, soluble fibrinogen-like protein 2; MI, Myocardial infarction.

Inflammatory factors and engineering pretreatments promoted iNOS expression in
the case of rodent MSCs. iNOS catalyzes arginine, resulting in the production of NO, which
mediates a variety of biological processes, including immune regulation [161]. NO regu-
lated the immune cells, particularly the proliferation and responsiveness [16,30,42,65,68,83],
apoptosis [58], Th1 and Th17 cells differentiation [65,68] in vitro and T-cell infiltration [83],
the percentage of Th1 and Th17 subsets [65,68] and inflammatory cytokines production [42]
in inflammatory tissue, then consequently regulated the immune response.

The inhibition of T cells may be attributed to the process of NO production depleting
L-arginine, which is an essential nutrient for T cells [162]. Meanwhile, NO caused T-cell
cycle arrest by affecting the JAK signal transductor and STAT signal pathway. In addition,
NO could also regulate MAPK and NF-κB [163]. Furthermore, NO induced Treg which
inhibited T cells and Th17 cells in vitro and in vivo [164], interfered with the production
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of pro-inflammatory cytokines in macrophages [165], and attenuated the cytotoxicity
and capacity of NK cells to produce inflammatory cytokines [166]. Additionally, iNOS
attenuated inflammation by reducing the influx of DCs and T cells and their ability to
produce inflammatory cytokines [167].

Researchers also identified a common downstream mechanism of T-cell inhibition in
both IDO and iNOS as endoplasmic-reticulum stress [168].

3.2. COX2/PGE2

PGE2, a mediator of many physiological and pathological functions, and COX2, a key
enzyme that catalyzed the rate-limiting steps in the conversion of AAs to prostaglandins,
both play crucial roles in the inflammatory process [169]. Consecutive hypoxia, inflam-
matory factors, spheroid culture and pharmacological pretreatment effectively promote
COX2/PGE2 expression. The COX2/PGE2 axis effectively promoted M2 macrophages
polarization [35,50,85,105,106,170]. A study indicated that COX2-dependent production
of PGE2 was a major paracrine mediator of MSCs in regulating M1 to M2 macrophages
polarization by changing their metabolic status [171]. In addition, PGE2 reprogramed
macrophages by acting on their EP2 and EP4 receptors of them and stimulated the expres-
sion of IL-10 [172].

Meanwhile, COX2/PGE2 expression of pretreated MSCs also inhibited the prolifer-
ation, migration and activation of T cells [81,100,144,173], proliferation of mononuclear
cells [70,174] and PBMCs [81,138], activity of NK cells [40], differentiation of Th1 and Th17
cells [50,70,81] and the secretion of pro-inflammatory cytokines [70,103,137,155,173–175],
and enhanced Treg differentiation [70,81,170,174,175]. In addition, PGE2 could modulate
the differentiation of DCs toward an anti-inflammatory and reparative profile [176], and
suppressed the differentiation of monocytes to mature DCs in vitro [177].

3.3. TSG-6

TSG-6 was an inflammation-associated protein secreted by MSCs, which mediated
immunomodulation and regeneration [178]. Spheroid culture and some drug pretreatment
promoted TSG-6 expression of MSCs. TSG-6 inhibited the migration of neutrophils via
direct interaction with the neutrophils chemokine CXC-chemokine ligand 8 [179], and then
inhibited the neutrophils infiltration in injury tissue [152]. Meanwhile, TSG-6 induced
M1 to M2 macrophages polarization [35,106] and inhibited T-cell [45,144] and TNF-α
secretion of activated macrophages [104]. Furthermore, TSG-6 also increased the production
of Treg and suppressed the Th1 mediated immune response [180]. Collectively, TSG-6
derived from pretreated MSCs effectively inhibited inflammation response in different
inflammatory models [101,104,144,152]. Importantly, IDO could mediate the regulation of
TSG-6 expression through its metabolite, kynurenic acid [152].

3.4. MSC-Derived EVs

MSC-derived EVs regulated the biological function of immune cells by transferring
multiple types of bioactive cargos, such as nucleic acids and proteins to targeting cells.
Local and systemic application efficiently inhibited detrimental immune responses and
promoted regeneration in inflamed tissues [181].

The immunomodulatory effects of pretreated MSC-derived EVs depended on the
transfer of miRNAs (e.g., miR-216a-5p, miR-125a, miR125b, miR-1260b, miR-146a, miR-
146a-5p, miR-210-3p, miR-34a, miR-124, miR-299-3p, miR-21, miR-147b, miRlet-7b, miR1246
and miR-135b) and proteins (e.g., TGF-β, CD73, IFN-γ, PD-L1, IDO, A20, TSG-6 and
IL-10) to target cells and then enabled their phenotypic conversion into immunosuppres-
sive types [25,37,44,48,49,51,52,54,61–63,87,110,140,141]. EVs also acted on T cells and
PBMCs [45,87,127,130,131,150,151] and inhibited ROS in MSCs [63].
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3.5. IL-6

IL-6 is a pleiotropic cytokine involved in inflammation, immune response and
hematopoiesis [182]. Pretreated MSCs exhibited different expression of IL-6 and dif-
ferent immunomodulatory properties, because IL-6 had context-dependent pro- and
anti-inflammatory properties [183]. It has been suggested that the regenerative or anti-
inflammatory effects of IL-6 were mediated by classic signaling whereas its pro-inflammatory
effects were mediated by trans-signaling [184].

IL-6 increased following several different pretreatment methods. On one hand, high
expression of IL-6 might play a positive role in the recruitment and migration of monocytes,
macrophages and MSCs, and then promote wound healing [32,59,64,102,107,112]; on the
other hand, it might have anti-inflammatory effects [50,57,66,71,75,103,129–131,170,185].
However, due to the multiple simultaneously occurring factors after pretreatment, the
actual function of IL-6 was not clarified.

Here, we try to focus on its anti-inflammatory mechanisms. IL-6, to a lesser ex-
tent, could modulate the in vitro differentiation of macrophages and DCs toward an anti-
inflammatory and reparative profile [176]. IL-6 could enhance macrophages differentiation
into M2 subtype by activating JAK2/STAT3 signaling pathway [186], upregulate IL-4 re-
ceptor expression, promote STAT6 phosphorylation of macrophages, and promote M2
macrophages polarization [75,187]. Additionally, IL-6 promoted the production of IL-10 of
T cells, which would restrict many inflammatory processes [188].

As a variable component of the secretome, IL-6 may be a keystone cytokine in regulat-
ing inflammatory states and deserves more attention.

4. Problems and Prospects

Earlier studies primarily attributed the therapeutic effect of MSCs to their ability to
locally transplant and differentiate into multiple tissues, but the implanted cells are unable
to survive for a long period of time [189]. Additionally, the direct application of MSCs is
constrained in a few ways, including by the limited source of cells, immunocompatibility,
tumorigenicity, emboli formation, phenotype changes in differentiation and proliferation, and
problems related to cells’ treatment, storage and transportation, as well as the time-consuming
process of cell culture, senescence, sensitivity to toxic environments, and heterogeneity in
isolation and culture methods between different laboratories [21,25,190–195].

By contrast, using the MSC-derived secretome as a cell-free therapy strategy can help
to effectively avoid the abovementioned problems and provides several advantages over
MSC-based applications which have described in “Introduction”.

Studies have shown that pretreating MSC-derived secretome reveals immunomodula-
tory potential more efficiently than in untreated MSCs. Compared to engineered methods,
pretreating MSCs with drugs, cytokines, hypoxia or 3D culture may be faster and simpler
approaches. Additionally, these types of induction techniques more closely the in situ stim-
ulations of inflammatory pathological locations in the host. However, the accompanying
issues should be tackled before putting the secretome to clinical use:

1. Selection of pretreatment methods: it is essential to understand how each pretreatment
method affects MSCs’ paracrine behavior. Some studies suggest that the combination
of different pretreatment methods is superior to one single method, but further
studies are still required to confirm this. Meanwhile, pretreatment strategies can be
categorized as selective or non-selective: selective approaches, such as engineered
methods, target a single pathway or a small number of related pathways to achieve a
desired secretome, whereas non-selective strategies, such as hypoxia or inflammatory
factors, activate multiple signaling pathways that collectively increase expression of
downstream signal factors or receptors.

2. Heterogeneity: it is extremely difficult to understand the mechanism underlying the
reported effects on pretreatment of MSCs due to their tissue origin, the health and age
of the donors, cells separation and culture techniques and the animal models.
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3. Purification: the current method for collecting and purifying secretome is centrifugation
to remove the cell debris in CM [112], and some studies concentrated the secretome
after centrifugation [108,143]. However, additional culture media components may be
collected simultaneously and may influence the purity of secretome. Currently, there is
no standard purification method of secretome as there is for exosomes.

4. Components selection: the comparative effect of the specific components (soluble
factors or EVs) and the overall application of secretome remains to be verified.

5. Standardization and optimization: this is problematic because secretome is a combi-
nation of various molecules and deserves further study to evaluate its potency and
determine a safe dosage.

Collectively, in the subsequent studies, optimal design of pretreating and reliable
isolation methods needs to be developed to purify the secretome; cell culture and cell line
selection need to be unified. A simple and reliable method of standardizing secretome
features is also required.

5. Conclusions

MSCs exhibit a regulatory phenotype and react quickly to the environmental stimulus
that influence their secretome. Pretreatment of MSCs with hypoxia, inflammatory factors,
3D culture, engineering methods and pharmaceutical stimuli, or a combination of the above
methods prior to application is a novel strategy to enhance the immunomodulatory effects
of MSCs and their secretome in the local or systemic immune response. These models
showed that it was possible to improve the regulation of innate and adaptive immune
responses. The variable approaches and combinations employed in MSC pretreatment
need to be optimized, and new techniques need to be developed to better characterize
and standardize the secretome. In the near future, we believe this strategy may be studied
further and potentially applied to treat individuals with immune system-related disorders.
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