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Abstract: SnRK1 protein kinase plays hub roles in plant carbon and nitrogen metabolism. However,
the function of SnRK1 in legume nodulation and symbiotic nitrogen fixation is still elusive. In this
study, we identified GmNodH, a putative sulfotransferase, as an interacting protein of GmSnRK1
by yeast two-hybrid screen. The qRT-PCR assays indicate that GmNodH gene is highly expressed
in soybean roots and could be induced by rhizobial infection and nitrate stress. Fluorescence micro-
scopic analyses showed that GmNodH was colocalized with GsSnRK1 on plasma membrane. The
physical interaction between GmNodH and GmSnRK1 was further verified by using split-luciferase
complementary assay and pull-down approaches. In vitro phosphorylation assay showed that Gm-
SnRK1 could phosphorylate GmNodH at Ser193. To dissect the function and genetic relationship of
GmSnRK1 and GmNodH in soybean, we co-expressed the wild-type and mutated GmSnRK1 and
GmNodH genes in soybean hairy roots and found that co-expression of GmSnRK1/GmNodH genes sig-
nificantly promoted soybean nodulation rates and the expression levels of nodulation-related GmNF5α

and GmNSP1 genes. Taken together, this study provides the first biological evidence that GmSnRK1
may interact with and phosphorylate GmNodH to synergistically regulate soybean nodulation.
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1. Introduction

Legumes, members of the Fabaceae/Leguminosae family, are the third largest family
of higher plants with almost 20,000 species belonging to 650 genera, and are ubiquitous
all over the world [1]. Soybeans (Glycine max) are important economic crops that provide
abundant and high-quality oil and protein for human beings [2]. Rhizobia aids soybean
to fix nitrogen in the soil, allowing legumes to grow in poor soils deficient in mineral and
organic nitrogen [3].

SNF1-related protein kinase 1 (SnRK1) is the plant orthologue of an evolutionarily
conserved family of energy-sensing, central metabolic regulators that include yeast sucrose
non-fermenting 1 (SNF1) and mammalian AMP-activated protein kinase (AMPK) [4]. The
SnRK1 family kinases coordinate the energy and redox homeostasis of plants in response to
a plethora of growth-inhibiting stresses and regulate a broad range of metabolic pathways
through the phosphorylation of the key enzymes or transcription factors to improve stress
tolerance and promote survival [5]. The protein exists as a complex formed by the SnRK1α
catalytic subunit and the SnRK1β and SnRK1γ regulatory subunits. The roles of SnRK1 in
restoring energy balance range from regulating metabolic processes, phosphorylation of
key enzymes, to regulating significant changes in gene expression [6].
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Nitrate reductase (NR), a key enzyme that catalyzes the first step of nitrate assimila-
tion, was one of the first targets of SnRK1 discovered in plants. In spinach, phosphorylation
of nitrate reductase by SnRK1 inhibited the in vitro activity of nitrate reductase [7]. In
Arabidopsis, SnRK1 promotes the phosphorylation of NR1 and NR2, and negatively reg-
ulates NR activity [8]. Therefore, NR enzymes may be the main targets of SnRK1 in
regulating nitrate assimilation in plants. In yeast and mammals, Snf1/AMPK activity is
tightly regulated by cellular nitrogen levels. Activation of Snf1/AMPK under low nitro-
gen conditions inhibits TOR activity through direct phosphorylation-mediated inhibition
of RAPTOR [9]. Under nitrogen sufficient condition, TORC1 inhibits Snf1 activity by
downregulating Thr210 phosphorylation in the activation loop of the kinase subunit [10].
However, how TORC1 inhibits Snf1 activity remains to be determined in yeast. Recently,
in mammals and Saccharomyces cerevisiae, TORC1 was found to directly inhibit AMPK sig-
naling through phosphorylation of evolutionarily conserved serine residues in the AMPK
kinase subunit [11]. Therefore, the interaction between TORC1 and Snf1/AMPK/SnRK1
may be critical for growth regulation according to nitrogen availability in eukaryotes. In
Arabidopsis, nitrogen starvation moderately increased the in vitro activity of SnRK1 [12].
However, the physiological significance of SnRK1 signaling in nitrogen starvation is still
unclear in plants.

Sulfate transferases/sulfotransferases (SOTs) are sulfate-regulated proteins in a variety
of organisms. In plants, the binding reaction of sulfate plays a crucial role in the growth and
development of plants and the response to various stresses [13]. Studies have shown that
SOT genes can regulate plant stimuli responses, stress sensing and signaling mechanisms,
and developmental processes. For example, in rice, the expression levels of 11 OsSOTs
showed significant up- and downregulation in different tissues due to dehydration, high or
low temperature, and hormonal stresses [14].

The symbiotic relationship between legumes and rhizobia typically begins in nitrogen-
deficient soils, where legumes secrete a class of metabolites called flavonoids [15]. Rhi-
zobia recognizes these signaling compound to trigger the synthesis and release of lipid
oligosaccharide (LCoS)/nodulation (Nod) factors through nodulation genes/proteins of
rhizobia [16]. Flavonoids in legume root exudates act as chemotactic signals for rhizobia un-
der low nitrogen conditions, and together with isoflavones, they confer host specificity [17].
For example, isoflavones found in the root exudates of soybean and common bean induce
the expression of nodulation genes in their compatible rhizobia symbionts, respectively [18].
Host-specific flavonoids are thought to interact directly with rhizobial NodD protein, a
transcription factor (TF) that induces the expression of “normal” nodulation genes, result-
ing in the production of lipo-oligosaccharides with a conserved core structure Nodulation
factors (NFs) [19]. Partner selection is further facilitated by various side groups generated
by enzymes encoded by “host-specific” nodulation genes [20].

In this work, we determined the physical and genetic interaction of GmSnRK1 with
the sulfotransferase GmNodH, validating that GmNodH is a phosphorylated substrate of
the GmSnRK1 protein kinase. Their effects on the symbiotic relationship of soybean root
nodules were discussed to provide some references for analyzing the molecular mechanisms
of nodulation and symbiotic nitrogen fixation in legumes.

2. Results
2.1. Identification of GmNodH from Soybean

In our previous work [21], we screened a soybean cDNA library by using GmSnRK1
as bait by yeast two-hybrid approach and obtained a clone encoding GmNodH as a
GmSnRK1-interacting protein. The bioinformatics analysis (ProtParam http://web.expasy.
org/protparam/, accessed on 6 March 2021) showed that the soybean GmNodH consists
of 341 amino acids, with a relative molecular mass of 39.7 kDa and an isoelectric point of
8.94. Prediction of GmNodH protein functional domain by Pfam (http://pfam.xfam.org/,
accessed on 6 March 2021) and SMART (http://smart.embl-heidelberg.de/, accessed on 6
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March 2021) suggests GmNodH has a putative sulfotransferase domain from the 99th to
322nd amino acid (Supplementary Figure S1).

More prediction showed that GmNodH protein has a significant plasmamembrane
localization signal (Supplementary Figure S2). To verify this prediction, we co-expressed
GmNodH-GFP and PIP2;1-mCherry in the leaves of Nicotiana benthamiana. The results
showed that GmNodH-GFP is overlapped with mCherry-tagged PIP2;1 which is a typical
plasma membrane-localized protein (Figure 1).
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Figure 1. Subcellular localization of GmNodH protein. GFP-GmNodH is located in plasma mem-
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2.2. Analysis of GmNodH Expression Patterns

To investigate the physiological function of GmNodH, we measured the spatial ex-
pression patterns of GmNodH gene in soybean tissues (root, stem, leaf, cotyledon) by
using qRT-PCR approach. We found that GmNodH gene was differentially expressed in
soybean plants, in which GmNodH demonstrates the highest expression level in roots
(Figure 2A). However, GmNodH did not show significant difference in root tissues and
nodules (Supplementary Figure S3).
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In order to determine whether the GmNodH gene can be induced by rhizobia, we
inoculated the soybean plants with the slow-growing rhizobia USDA110, and sampled the
infected plants after 1-, 4-, 6-, 8-, 10-, 15-, 20-, and 25-day treatment for qRT-PCR analyses.
The results showed that the expression level of GmNodH was stimulated after rhizobia
infection (4 days), and then rose and fell around 10 days (Figure 2B). The results indicated
that GmNodH was responsive to rhizobia infection at the transcriptional level, suggesting
that GmNodH may be involved in soybean nodulation and symbiotic nitrogen fixation.

Legumes can only establish a symbiotic relationship with rhizobia under low nitrogen
conditions to form a special organ–root nodule [22]. Therefore, we tested whether the
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level of nitrate nitrogen can affect the expression of GmNodH gene. Therefore, we grew
4-week soybean plants in nitrogen-free, low nitrogen (3 mM NO3

−), normal nitrogen
(10 mM NO3

−), and high nitrogen (20 mM NO3
−) conditions for 0, 3, 6, 12, 24, 48, and

72 h [23], and sampled the treated plants for analyses of expression levels of GmNodH gene
by qRT-PCR analyses. The results indicated that GmNodH could significantly induced by
low nitrogen condition and was repressed by high nitrogen (Figure 2C). The responses
of GmNodH to rhizobia and nitrate treatments suggest that GmNodH may be involved in
soybean nodulation and nitrogen metabolism.

2.3. Overexpression of GmNodH Promotes Soybean Nodulation and Alters the Gene Expression
Patterns in Nodulation-Related Pathways

To determine the effect of GmNodH on soybean nodulation, we constructed an over-
expression vector haboring GmNodH gene driven by 35S promoter and transformed it into
soybean hairy roots by Agrobacterium rhizogenes. The expression of GmNodH was confirmed
by qRT-PCR in the transgenic hairy roots (Figure 3A). Afterwards, the composite plants
were inoculated with Rhizobium USDA 110, and the plants were sampled for observation
of nodulation after 1-month growth at normal condition. The results indicated that overex-
pression of GmNodH significantly increased the number of soybean hairy root nodules by
approximately three-fold compared to EV controls (Figure 3B,C). Therefore, GmNodH may
play a positive regulatory role in soybean nodulation.

Moreover, we determined whether overexpression of GmNodH altered the expression
levels of genes in nodulation pathways by qRT-PCR. The results showed that overexpres-
sion of GmNodH promoted the expression levels of nodulation-related genes such as
GmNF5α, pre-miR172C, GmNSP1, ENOD401, GmNSP2, and GmNF1α (Figure 3D).
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genes in nodulation-related pathways. (A) Expression levels of GmNodH in different transgenic
soybean lines. (B) Overexpression of GmNodH promoted soybean nodulation. (C) Comparison of
the number of nodules on the EV and GmNodH-overexpressing hairy roots 1-month after inoculation
with rhizobia. The nodule numbers were normalized dry root weight (1 g). (D) Overexpression of
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2.4. Physical Interaction between GmSnRK1 and GmNodH

Since GmNodH was initially identified as a binding protein of GmSnRK1 from a screen
of cDNA library, here, we verified their physical interaction by yeast two-hybrid experiment
(Figure 4A). The pull-down assay indicated that the bait protein GmSnRK1 interacted with
the target protein GmNodH in vitro (Figure 4B). Bimolecular fluorescence complementation
(BiFC) experiments showed that a yellow fluorescent protein (YFP) signal generated by the
interaction between GmSnRK1 and GmNodH was on the cell membrane and the YFP signal
was overlapped with the fluorescence signal of PIP2;1-mCherry, suggesting that GmSnRK1
and GmNodH interacted and were co-localized on the plasma membrane (Figure 4C). When
GmNodH-nLUC and GmSnRK1-cLUC were co-transformed into N. benthamiana, a significant
LUC signal was detected (Figure 4D), confirming their physical interaction in planta.

2.5. In Vitro Phosphorylation Analysis of GmNodH by GmSnRK1

We predicted seven potential SnRK1 phosphorylation sites on GmNodH by using
the PPSP tool (http://ppsp.biocuckoo.org/, accessed on 12 November 2021). Of these
putative phosphorylation sites, Ser193 has the highest score of 7.0 (Supplementary Figure
S4). To verify these phosphorylation sites, we generated a series of GmNodH mutants and
found that only S193A mutation could abolish phosphorylation of GmNodH by GmSnRK1.
Treatment of phosphorylated GmNodH by calf intestine phosphatase (CIP) could eliminate
the phosphorylation signal, confirming that GmNodH is a phosphorylation substrate of
GmSnRK1 and Ser193 in GmNodH is the only phosphorylation site (Figure 5).

http://ppsp.biocuckoo.org/
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ure 5). 

 
Figure 5. In vitro phosphorylation analysis of GmNodH by GmSnRK1 using Phos-tag technique.

2.6. Coexpression of GmSnRK1 and GmNodH Can Promote Soybean Nodulation

To dissect the biological function and genetic relationship of GmSnRK1 and GmNodH
in soybean, we co-expressed the wild-type and mutated GmSnRK1 and GmNodH genes in
soybean hairy roots. The transgenic composite plants were equally inoculated with Rhizo-
bium USDA110 and were grown for 30 days in the normal conditions. The plant hairy roots
with different genetic background exhibited different nodulating abilities (Figure 6A). The
phenotypic data showed that the plant hairy roots carrying GmSnRK1 and GmNodH bore
the most nodules among the other composite plants. Compared to the EV control, single ex-
pression of GmSnRK1 or GmNodH and double expression of GmSnRK1 (K49M)/GmNodH
or GmSnRK1/GmNodH (S193A) could also enhance nodulation rates.
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Figure 6. Phosphorylation of GmNodH by GmSnRK1 can promote soybean nodulation. (A) Pheno-
typic analysis of transgenic chimeric soybean. (B) Under rhizobial treatment, the phenotypic data of
nodule number and nodule weight, and biochemical data of nitrate and chlorophyll contents. The
nodule numbers were normalized dry root weight (1 g). (C) Expression patterns of GmNSP1 and
GmNF5α genes in rhizobial-infected roots. The experiments were repeated three times, the data are
expressed as mean ± SD, the error bars indicate SE (t test), and the different lowercase letters are
used to indicate the significant difference p < 0.05.

Under rhizobial treatment, the phenotypic data of nodule number and nodule weight,
and biochemical data of nitrate and chlorophyll contents of the co-expressed GmSnRK1/
GmNodH transgenic chimera plants were significantly improved compared with the control
groups, and the effect of positive regulation on soybean nodulation was more obvious
(Figure 6B). The results implicate that the involvement of GmNodH in regulating soybean
nodulation is achieved through the phosphorylation of GmSnRK1 protein kinase.

2.7. Expression Analyses of Genes Involved in Signaling Pathways of Nodulation

In order to further explore the effect of GmSnRK1-GmNodH module on signaling
pathways, we analyzed the responses of genes involved in soybean nodulation signaling
pathways. Since GmNF5α is a soybean nodulation factor gene and GmNSP1 is a transcrip-
tion factor gene which are required for soybean nodulation initiation and nodulation [24],
here, we investigated how GmSnRK1-GmNodH module regulated the expression levels of
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these two genes. The results showed that overexpression of GmSnRK1-GmNodH could
significantly enhanced the expression levels of GmNF5α and GmNSP1 (Figure 6C), which
is consistent to the phenotypes shown in Figure 6A.

3. Discussion
3.1. GmNodH Plays a Positive Regulatory Role in the Symbiotic Nitrogen Fixation of Soybean

In leguminous rhizobia symbiosis, the exchange of signals leads to the development of
nodules, the special organ where rhizobia interact with the host plants to fix nitrogen [25].
The roots of a legume plant excrete flavonoid compounds to attract rhizobia, that, in turn,
begin to produce the bacterial signal molecules called Nod factors (Nodulation factors) [26].
Specific plant flavonoids act as positive inducers of Nod gene transcription. The spatial
structure of the nod gene promoter, the binding of RNA polymerase, and the initiation
of Nod gene transcription were changed after the NodD protein of rhizobia was bound
to specific flavonoids [19]. In Rhizobium meliloti, NodH factor determines host range by
helping to mediate the production of a specific extracellular signal [27]. NodH catalyzes
the transfer of sulfate from 3′-phosphoadenosine 5′-phosphosulfate to the terminal 6-O [28].
In alfalfa, the expression of nodulin gene MtENOD12 was significantly inhibited after
inoculation with a nodH mutant compared to the wild-type Rhizobium meliloti, suggesting
the sulfated Nod factors are required for nodulation by R. meliloti [29]. However, alfalfa
nodulation by Sinorhizobium fredii does not required sulfated Nod-factors [30].

In plants, the binding reaction of sulfate plays a crucial role in the growth and de-
velopment of plants and the response to various stresses [13]. The protein structure of
GmNodH was in silico predicted to have a sulfotransferase domain (Figure S1). Sul-
fate/sulfotransferases (SOTs) are sulfate-regulated proteins in a variety of organisms.
The presence of the sulfate modification on Nod factor is absolutely required for the
establishment of the symbiosis of Sinorhizobium meliloti on alfalfa and is dependent on
the products of three genes, nodH, nodP, and nodQ. The nodH gene product catalyzes
the sulfonyltransfer to the Nod factor backbone, while the nodP and nodQ gene prod-
ucts form a sulfate-activating complex which catalyzes the conversion of sulfate to 3′-
phosphoadenosine-5′-phosphosulfate, an activated form of sulfate used by all known
carbohydrate sulfotransferases [31]. In Lotus japonicus, autophosphorylation is essential
for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated
signaling in cooperation with Nod factor receptor 5 [32]. Recently, in woody plant Populus,
a putative sulfotransferase PtSS1 gene was determined to be induced by treatment of
lipo-chitooligosaccharides (LCOs) which are produced by rhizobia and a wide range of
fungi, including mycorrhizal ones, and act as symbiotic signals that promote lateral root
formation. PtSS1 gene can serve as a visual marker of LCO perception in Populus roots
and can be used to study symbiotic interactions with the bacterial and fungal symbionts of
Populus sp [33].

3.2. GmSnRK1 Regulates the Expression and Function of GmNodH Gene

The Snf1-Related Protein Kinase 1 (SnRK1) is the plant homolog of the heterotrimeric
AMP-activated Protein Kinase/Sucrose Non-Fermenting 1 (AMPK/Snf1), which works as
a major regulator of growth under nutrient-limiting conditions in eukaryotes [34]. SnRK1 is
not only an important regulator of plant carbon metabolism, but also an important regulator
of plant nitrogen metabolism. The fact that SnRK1 phosphorylates and inactivates nitrate
reductase provides a route through which SnRK1 can affect nitrogen metabolism [35]. The
regulation of nitrogen absorption is closely related to SnRK1 [8]. It has been reported that
abundant SnRK1 and SnRK3-related protein kinases can be detected in the developing
nodules of L. japonicus by immunological screening [36]. This means that GmSnRK1 may
not only play an important role in plant energy, but also in nitrogen metabolism [37].

In this study, we determined that GmNodH gene expression levels altered to varying
degrees after treating soybean seedlings with rhizobia and nitrate nitrogen stress. This re-
sult indicated that GmNodH was differentially expressed in soybean tissues and affected by
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rhizobia and nitrate nitrogen. Previously, GmSnRK1 was used as the bait protein to screen
the soybean cDNA library by yeast two-hybrid approach, and two interacting proteins,
GmNodH and GmNFR5α, were obtained. Both proteins are nodulation-related proteins,
and GmNFR5α is a nodulation factor receptor [38]. It has been verified that GmSnRK1
can phosphorylate GmNodH, and it is speculated that GmSnRK1 can also phosphory-
late GmNFR5α. In the future, we will determine whether GmSnRK1 may mediate the
interaction of GmNodH and GmNFR5α to form a nodulation factor receptor complex
to transduct the nodulation signals in soybean. In addition, when we co-expressed Gm-
SnRK1/GmNodH genes, the expression levels of GmNF5α and GmNSP1 were significantly
increased, providing more evidence that the GmSnRK1–GmNodH module may directly
participate in regulating soybean nodulation.

4. Materials and Methods
4.1. Plant Materials and Growing Conditions

The soybean (G. max cv Williams 82) seeds were imbibed on moist filter paper at
28 ◦C in the dark for 48 h, and the seeds were germinated and grown under a 14-h
photoperiod (200 µmol·m−2s−1 light intensity) at a constant temperature of 24 ◦C with a
relative humidity of ~70%. The soybean seedlings were transferred to the garden soil at
26 ◦C and photoperiod of 16-h light/8-h dark.

4.2. RNA Extraction, cDNA Synthesis, and Quantitative Real-Time PCR

Plant total RNA samples were extracted using TRIzol reagent by following the manu-
facturer’s instructions. The Transcript ALL-in-One First-Strand cDNA Synthesis SuperMix
kit (Transgen, Beijing, China) was used for cDNA syntheses. The TransStart Top Green
qPCR Supermax kit (Transgene, Beijing, China) was used for qRT-PCR analysis. GmGAPDH
was used as the reference gene for all qRT-PCR analyses. The 2−∆∆CT method was used
to analyze the obtained data. The qRT-PCR primers for GmNodH and other stress-related
genes are listed in Supplementary Table S1.

4.3. Subcellular Localization of GmNodH-GFP Protein

The pCAMBIA3301-GmNodH-GFP and pCAMBIA2300-PIP2;1-mCherry plasmids were
transformed into Agrobacterium tumefaciens strain GV3101. The obtained bacterial strains
were infiltrated into the abaxial air spaces of 4- to 6-week-old leaves of N. benthamiana
plants by needleless syringe. After 48-h growth, the infected leaf sections were excised for
observation of fluorescent signals under a confocal microscope.

4.4. Yeast Two-Hybrid Assay

For the Y2H assay, GmSnRK1 and GmNodH genes were cloned into pGBKT7 and
pGADT7 vectors, respectively. The combination of pGBKT7-SnRK1β and pGADT7-SnRK1α
was used as a positive control. The obtained bait and prey constructs were co-transformed
into Y2H Gold yeast competent cells.

4.5. BiFC and Split-LUC Complementation Assays

For BiFC analysis, the GmNodH and GmSnRK1 coding sequences were subcloned into
the SmaI and PmaI sites in pPBEL-BiFC vector, respectively [21]. The obtained constructs
were introduced into strain GV3101 for transient expression in tobacco leaves. After 48-h
growth, the infected leaf sections were excised for observation of fluorescent signals under
a confocal microscope. For split-LUC complementation assays, the full-length GmNodH
and GmSnRK1 genes were cloned into pCAMBIA-1300-nLUC and pCAMBIA-1300-cLUC
vectors, respectively, and co-infiltrated into tobacco leaves for LUC signals.

4.6. Protein Pulldown Assays

The GmNodH-HA and GmSnRK1-GST recombinant proteins were expressed and
purified from Escherichia coli. GST-GmSnRK1 and GST alone were immobilized on GST
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resin and mixed with GmNodH-HA in the protein binding buffer (50 mM HEPES, 10%
(w/v) glycerol, 1% (w/v) Triton X-100, 1.5 mM MgCl2, 150 mM NaCl, 1 mM egtazic acid,
1 mM phenylmethylsulfonyl fluoride, protease inhibitor cocktail, pH 7.5) with gentle
agitation for 3 h at 4 ◦C. The immobilized proteins were washed for 5 times and were boiled
for 10 min in 1× protein loading buffer. The protein samples were fractionated in 12.5%
SDS-PAGE gels. The target proteins were detected by Western blotting using anti-HA or
anti-GST antibodies (ABMART, Shanghai, China).

4.7. Protein Phosphorylation Assay

For in vitro phosphorylation analysis, the purified recombinant proteins (Flag-GmGRIK1,
Myc-GmSnRK1, HA-GmNodH and their mutants) were added into kinase buffer (25 mM
Tris (pH 7.4), 12 mM MgCl2, 1 mM dithiothreitol, and 1 mM ATP). The protein mixtures
were incubated at 30 ◦C for 30 min. Dephosphorylation was carried out by treating the
protein samples with calf intestine phosphatase (CIP). The reactions were stopped by
addition of 1× protein loading buffer and boiled at 95 ◦C for 5 min. The protein samples
were resolved in normal SDS-PAGE gel or SDS-PAGE gel with 12% acrylamide plus Zn2+-
Phos-tag Biotin BTL-104 (NARD INSTITUTE, Ltd., 16A-03, Tokyo, Japan) according to the
manufacturer’s instructions.

4.8. Transient Gene Expression and Induction of Hairy Roots in Soybean Plants

The wild-type GmSnRK1, GmNodH genes and their mutants were cloned into plant
binary vectors. GmSnRK1 (K49M) is a kinase-dead mutant [21] and is used as a negative
control. The constructs were transformed into Agrobacterium rhizogenes strain K599. The
soybean (Williams 82) seeds were germinated in wet vermiculite and the seedlings were
grown under conditions of 16-h light and 8-h dark photoperiod, 28 ◦C, and 80% soil
moisture. When the cotyledons are fully opened and the shoots reach about 5 cm in height,
a drop of A. rhizogenes culture (OD600 = 0.6–0.8) was injected into hypocotyls using a sterile
syringe needle. The inoculated seedlings were covered with transparent Saran film to
keep humidity and grown under the same conditions as above. After 15-day growth, the
primary roots were removed from seedlings to induce the hairy roots when the hairy roots
emerged. The plants with transgenic hairy roots are called composite plants.

4.9. Induction of Root Nodules

The composite plants with similar sizes of shoots and hairy roots were chosen for
inoculation of rhizobia. The plant roots (30 plants for each group) were soaked in the
diluted Bradyrhizobium japonicum USDA110 culture (OD600 = 0.01) or water for 10 min,
and then the plants were transferred to the sterile soil for 1 week and were continued to
grow with regular irrigation of nutrient solution under normal conditions for 30 days,
and the phenotypic data of nodule number and nodule weight, and biochemical data of
nitrate and chlorophyll contents were measured according to the described [39] and Grace
Biotechnology manual.

4.10. Statistical Data Analysis

All experiments were carried out using biological duplications for each treatment and
were replicated on at least three occasions. Multiple comparison tests were performed by
Duncan’s test using SPSS statistical software (Version 16.0, SPSS). Significance level was set
at p < 0.05.

5. Conclusions

We identified the physical and genetic interactions of GmSnRK1 with the sulfotrans-
ferase GmNodH, validated GmNodH as a phosphorylated substrate of GmSnRK1 protein
kinase, and explored their effects on soybean root nodule symbiosis, providing the new
evidence for dissecting the molecular mechanism of nodulation and symbiotic nitrogen
fixation in soybean.
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