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Abstract: Mollusks comprise one of the largest phylum of marine invertebrates. With their great
diversity of species, various degrees of mobility, and specific behavioral strategies, they haveoccupied
marine, freshwater, and terrestrial habitats and play key roles in many ecosystems. This success
is explained by their exceptional ability to tolerate a wide range of environmental stresses, such
as hypoxia. Most marine bivalvemollusksare exposed to frequent short-term variations in oxygen
levels in their marine or estuarine habitats. This stressfactor has caused them to develop a wide
variety of adaptive strategies during their evolution, enabling to mobilize rapidly a set of behavioral,
physiological, biochemical, and molecular defenses that re-establishing oxygen homeostasis. The
neuroendocrine system and its related signaling systems play crucial roles in the regulation of various
physiological and behavioral processes in mollusks and, hence, can affect hypoxiatolerance. Little
effort has been made to identify the neurotransmitters and genes involved in oxygen homeostasis
regulation, and the molecular basis of the differences in the regulatory mechanisms of hypoxia
resistance in hypoxia-tolerant and hypoxia-sensitive bivalve species. Here, we summarize current
knowledge about the involvement of the neuroendocrine system in the hypoxia stress response, and
the possible contributions of various signaling molecules to this process. We thusprovide a basis
for understanding the molecular mechanisms underlying hypoxic stress in bivalves, also making
comparisons with data from related studies on other species.

Keywords: mollusks; bivalves; biogenic amines; stress; nitric oxide; hypoxia; hypoxia-inducible
factor 1; neurotransmitters

1. Introduction

Mollusks comprise the largest phylum of marine invertebrates. With their great
diversity of species, various degrees of mobility, and specific behavioral strategies, they
have occupied marine, freshwater, and terrestrial habitats, playing key roles in many
ecosystems. Bivalves are common inhabitants of coastal marine waters. A number of marine
bivalves (e.g., oysters, clams, and mussels) with wide geographic distribution are target
aquaculture species, and are of high commercial value and scientific importance [1]. Bivalve
aquaculture facilities are traditionally installed in coastal waters, where cultured animals
can be exposed to permanent or periodic hypoxia, especially in the case of eutrophication
expanding across coastal habitats, which leads to a decrease in their growth rates, impaired
reproduction and development, diseases, and sometimes mass mortality [2–6]. Oxygen
deficiency exerts the most adverse effect on juvenile mollusks by reducing, in particular,
their growth, settlement, and survival rates [7]. In this regard, the knowledge of the
molecular mechanisms associated with physiological and biochemical responses to hypoxia
and resistance is essential to developing technologies for rearing certain mollusk species.

During their evolution, most marine bivalveshave been exposed to frequent short-
term fluctuations in oxygen levels in their marine or estuarine habitats. This stress factor
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has caused them to develop certain adaptive strategies [8,9] to rapidly mobilize behav-
ioral, physiological, biochemical, and molecular mechanisms that re-establish oxygen
homeostasis [10–15].

Within the phylum Mollusca, due to the need for adaptive resistance to low dissolved
oxygen levels, the behavioral and survival strategies against hypoxia havediverged widely
across hypoxia-tolerant, slow-moving or sessile mollusk species that cannot use avoidance,
and have to rely on physiological adjustments for coping with adverse conditions, in
contrast to hypoxia-sensitive mollusks with enhanced mobility, which can avoid the hypoxic
zone [2,16–18].

Hypoxia-tolerant intertidal species (e.g., mussels and oysters), the so-called oxygen
conformers, reduce metabolic demand for O2 consumption as a response to environmental
O2 levels [19–21], and also minimize energy demand [16,22–24]. These adaptations involve
metabolic rate depression, the use of alternative glycolytic pathways that produce more ATP,
the maintenance of high glycogen levels, and increases in the proton buffering capacities of
tissues [12,24,25]. One of the behavioral responses exhibited by hypoxia-tolerant bivalves
in the case of hypoxia is the closure of their shells and the regulation of the internal
environment [26] (Figure 1).
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bivalves are an important component of the neuroendocrine-immune regulation that is 
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sis [33–35] and acetylcholine (ACh) degradation (acetylcholinesterase (AChE)) [36] are 
detected in molluskan hemocytes. The inhibitory effects of catecholamines on hemo-
cytes’ functional responses have also been reported. Furthermore, hemocytes mediate 
the regulation of different effectors via specific receptors of neurotransmit-
ters/hormones/neuropeptides/cytokines on the cell surface [30,37,38].  

The neuroendocrine system in marine mollusks is sensitive to fluctuations in O2 
concentrations. The synthesis of several neurotransmitters/modulators is regulated by 
O2-requiring rate-limiting enzymes. The hypoxia resulting from perturbations in the O2 
homeostasis can affect neurotransmitter synthesis, thus causing altered neuronal func-

Figure 1. Division of marine bivalves on the basis of their metabolic response to hypoxia and the
differences in the molecular mechanisms of their tolerance to low-oxygen conditions.

Hypoxia-sensitive subtidal species (e.g., scallops), the so-called oxygen regulators [26],
maintain O2 consumption independently of environmental O2 levels, up to the point where
O2 consumption is limited to a level sufficient to maintain the aerobic process [23,27,28].
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Therefore, they, like other mobile benthic animals, primarily exhibit developed behavioral
and physiological mechanisms, such as the avoidance reaction, which allows for escaping
the adverse effects of the hypoxic zone (Figure 1).

Though hypoxia-sensitive and hypoxia-tolerant animals show different homeostatic
strategies to cope with oxygen deprivation [29], the major reaction of mollusks in response
to environmental stressors, including hypoxia, is the neuroendocrine stress reaction [26].
This adaptive response, caused by stress-induced processes in the mollusk’s nervous sys-
tem, induces behavioral and physiological changes in order to maintain homeostasis. The
regulation of the stress response in mollusks involves the general mechanisms and signal-
ing molecules preserved throughout evolution, having a molecular base similar to those in
vertebrates [30–32]. As has recently been found, hemocytes in marine bivalves are an impor-
tant component of the neuroendocrine-immune regulation that is undertakenin response to
environmental stress [30]. Enzymes for catecholamine synthesis [33–35] and acetylcholine
(ACh) degradation (acetylcholinesterase (AChE)) [36] are detected in molluskan hemocytes.
The inhibitory effects of catecholamines on hemocytes’ functional responses have also
been reported. Furthermore, hemocytes mediate the regulation of different effectors via
specific receptors of neurotransmitters/hormones/neuropeptides/cytokines on the cell
surface [30,37,38].

The neuroendocrine system in marine mollusks is sensitive to fluctuations in O2
concentrations. The synthesis of several neurotransmitters/modulators is regulated by
O2-requiring rate-limiting enzymes. The hypoxia resulting from perturbations in the O2
homeostasis can affect neurotransmitter synthesis, thus causing altered neuronal functions
and, consequently, affecting the physiological systems in mollusks and their stress response.

Although the role of neurotransmitters in the regulation of functions in mollusks
has long beena subject of research, their role in the hypoxia stress responses of marine
mollusks is reported only in a few studies. In some marine invertebrates, variations in the
level of biogenic amines (serotonin and dopamine) are considered as part of the hypoxia
response, and act to arrest processes such as growth, reproduction, and immunity [39–42].
The changes of neurotransmitters lead to the redirection of bioenergetic resources to specific
physiological functions (e.g., increased oxygen uptake, mobilization of energy substrates)
that are immediately required for adaptation and survival under stress [43,44]. Several
studies have reported the role of nitric oxide in invertebrates’ responses to stressful en-
vironmental conditions [45,46]. Other studies focus on gene expression during hypoxia
responses and the role of a transcription factor referred to as the hypoxia-inducible factor-1
(HIF-1), which triggers and coordinates the up-regulation of multiple genes in response to
low oxygen signals [47–50].

Even with recent advances, our understanding of the neuroendocrine system and
its involvement in hypoxia stress responses of marine bivalves still remains very limited.
Therefore, the study of the role of signaling systems in mollusks with different resistances
to hypoxia is a key to the knowledge of the strategies for their survival. Understanding
and determining this spectrum of neuroendocrine reactions to hypoxia will be useful for
predicting the physiological condition of mollusks in aquaculture and their acclimation,
which is important for the management of shellfish farms in coastal areas.

In this review, we have attempted to summarize data on some regulatory mechanisms
of mollusks’ hypoxia resistance using available publications that consider the effect of
hypoxia on the behavior and metabolic processes in mollusks, making also conceptual
comparisons with data from related studies on other species. Here, we overview the current
state of knowledge about the neuroendocrine regulation of oxygen homeostasis and the
molecular mechanisms of hypoxia resistance on the basis of published data and the results
of our research. The present review provides the current body of evidence elucidating the
involvement of the neuroendocrine system in the hypoxic stress response, and the possible
contributions of various signaling molecules in this process.
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2. Biogenic Amines

Biogenic amines belong to the evolutionarily ancient signaling systems that are in-
volved in the regulation of various physiological and behavioral processes, and in the
processes of adaptation to various environmental factors in vertebrates and invertebrates
exposed to stressful conditions [51]. These act not only as neurotransmitters and neuromod-
ulators in nervous tissue, but also, depending on the situation, can be released into body
fluids and act as neurohormones [51–53]. The major biogenic amines identified in mollusks
are norepinephrine (NE), serotonin (5-HT), dopamine (DA), and epinephrine (E) [30,54].
In the neuroendocrine system of marine bivalves, the catecholamines and serotonin reg-
ulations play major roles in stress responses [55,56]. Being involved in the physiological
response regulation in mollusks to maintain homeostasis through functional responses
of the heart, hemolymph redistribution, and metabolic depression, these neuroendocrine
messengers are immediately required for hypoxia tolerance.

2.1. Catecholamines

DA, NE, and E are present in various tissues of mollusks (in particular, bivalves),
including the ganglion, hepatopancreas, and hemocytes [30,57–60]. The source of cate-
cholamines in bivalves is predominantlythe neurosecretory neurons of the central nervous
system (CNS) [30,61]; their secretion in hemocytes has also been reported [30,35]. Al-
though DA, NE, and E have been identified in the mollusk CNS [30,54], DA isthe only
catecholamine recorded inbivalve ganglia, according to immunohistochemical methods.

In the CNS, DA-ergic neurons have been found in Mytilus edulis [62], Placopecten
magellanicus [59,63], and Patinopecten yessoensis [64,65]. A number of experimental studies
have shown variations in the CA level in the CNS and hemolymph of mollusks exposed to
various stress factors [61,66–68].

An increase in the CA concentration in the hemolymph is the primary adaptive neu-
roendocrine response exhibited by mollusks to any stress, which provides the metabolic
and behavioral adaptation of these animals to adverse conditions [31,61,69]. In many
invertebrates, including marine bivalves, hypoxia stimulates the secretion of the CA hor-
mones [55,70] (Figure 2). In marine mollusks, NE and DA are released into the hemolymph
within the first minutes after stress exposure [70]. The blood levels of both hormones in
stressed octopus (Eledone cirrhosa) increased about 2–2.5-fold after 5 min of air exposure [70].
Concomitantly, a significant decrease in the number of circulating hemocytes was observed,
whereas the hemocyte phagocytic activity and the superoxide anion production increased
transiently between 5 and 60 min after the onset of the stress exposure. Scallops (Chlamys
farreri) exposed to air for 12 h showed a significant increase in the hemolymph concentra-
tions of E and NE [55]. During this period, the DA level significantly increased regardless
of temperature (both at 5 and 17 ◦C) [55]. After entering the circulation, CAs contribute to
reductions in the detrimental effects that are often associated with oxygen deficiency.

In vertebrates and invertebrates, the beneficial effects of CAs are achieved, in part, by
the modulation of the cardiovascular and respiratory systems [39–41,71]. The rise in CA
levels initiates a series of compensatory physiological processes enhancing branchial O2
transfer and blood O2 transport.

In many bivalves, including M. edulis and Crassostrea virginica, the beating rates of lat-
eral cilia are controlled by the branchial nerve via the reciprocal DA-ergic and serotonergic
innervation originating from the cerebral and visceral ganglia [72,73]. DA is cilio-inhibitory
and, with a few exceptions, it mostly decreases the ciliary beat frequency [72,74–76]. The ac-
tivity of cilia can change in response to hypoxia, and is generally controlled by the nervous
system [76]. The increase in DA level in the gills of Cr. virginica exposed to hypoxia had
an inhibitory effect on gill ciliary beating [72]. Experimental evidence has shown that DA,
applied directly to the ganglia or stimulating the branchial nerve (20 Hz, 2 ms duration,
10 V current), causes a terminal release of DA in the gill, decreasing the beating rates of
lateral cell cilia [74,77,78]. In Cr.virginica, the direct application of dopamine to an isolated
gill reduced the lateral ciliary activity in a dose-dependent manner (10−7 to 10−3 M), with
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10−5 M being the ED50 dose [72]. However, as an exception, DA-ergic neurons induced
an increase in the ciliary beat frequency during the hypoxia response in embryos of the
snail Lymnaea [79]. In sea urchin embryos, DA increased the swimming speed, apparently
through a cilioexcitatory effect [80,81]. In experimental long-time air exposure, the DA
concentration was observed to decrease.
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In scallop (Ch. farreri), a significant decrease in the DA concentration in hemolymph
was observed after 24 h of air exposure, which may be due to the moribund condition
caused by the long-time air exposure that resulted in the disruption of DA responses [55].
A significant decrease in DA concentration was also observed in muscles of mussels (Perna
perna) exposed to air for 24 h [82]. This effect is probably related to the contraction of
adductor muscles for avoiding desiccation, as DA has been reported to cause acontractile
effect in the adductor muscle of the freshwater mussel Anodonta cygnea [83].

Decreased tyrosine hydroxylase activity and dopamine deficiency are the major patho-
genetic links in stress development in vertebrates and invertebrates [84]. Experiments
using theneurotoxin 6-hydroxydopamine and the organic pesticide rotenone have shown
the degeneration of a significant number of DA-synthesizing neurons and the dopamine
deficiency in the CNS in insects [85] and mollusks [86], which caused the disturbance of
their behavioral and locomotor reactions.

2.2. Serotonin

Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter implicated in a wide
range of physiological and behavioral processes in both invertebrates and vertebrates [87–90].
5-HT is a major neuromodulator of motor behaviors in many species of invertebrate phyla,
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including mollusks [91–94]. It has been shown to modulate cognitive functions and play a
fundamental role in the modulation of stress-induced excitability (arousal), in defensive
behavior, in the modulation of aggressive behaviors, and in anxiety control [94,95].

5-HT and its receptors have been identified in the CNS in vertebrates and all groups of
invertebrates, includingmollusks [62,94,96–101]. In the bivalve CNS, the organization of the
5-HT systems and 5-HT content differs between species and sexes, and is subject to seasonal
variations [96,101–103]. Hypoxia exposure causes the 5-HT-immunoreactivity level to
decrease in the ganglia and increase in the gills and other non-nervous tissues [72,104]
(Figure 3). These data agree with the long-established fact that 5-HT has a cilio-excitatory
and metabolic stimulatory effect on the gills of several bivalve mollusks [62,72,74,75,105,106]
(Figure 2). 5-HT-immunoreactivity has been detected in ciliary nerves in most groups of
ciliated animals [107], and similarities in the regulation of ciliary locomotion across different
groups of animals have been shown [76]. In the gills of Cr. virginica, 5-HT activated
movements of lateral cilia at a frequency proportional to the neuromodulator concentration,
whereas DA had an inhibitory effect [72]. However, when the organism flushed the mantle
cavity without feeding, the beating of laterofrontal cilia was arrested by high concentrations
of 5-HT released from the serotonergic fibers [72].
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Figure 3. Temporary changes indistribution of neurotransmitters in scallop ganglia during air
exposure-induced hypoxia. (Left) Quantitative representation of neurotransmitters. (Right) Varia-
tions in5-HT, CHAT, and uNOS in cerebropleural ganglia (CPG), pedal ganglia (PG), and visceral
ganglia (VG) during hypoxia exposure (at 0 (normoxia), 1, 3, 6, and 12 h).

Experimental studies have repeatedly confirmed the involvement of 5-HT in behav-
ioral hypoxia adaptations that help mitigate the effects of hypoxia in encapsulated embryos
of pond snails [79,108–110]. Encapsulated organisms are vulnerable to the adverse effects of
hypoxia because of their inability to relocate through locomotion. In encapsulated embryos
of Helisoma trivolvis and Lymnaeastagnalis, specific sensorimotor neurons release serotonin
onto postsynaptic ciliary cells in response to hypoxia, resulting in faster ciliary beating
and embryonic rotation [79,108,109] This induces more efficient oxygen diffusion due to
increased stirring, and this maintains an adequate O2 supply during hypoxia [79]. The
rotational behavior is a ventilation response that facilitates O2 diffusion to the embryo by
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reducing unstirred boundary layers [111]. This serotonin-mediated response acts through
G-protein-coupled receptors. One of the receptors signals through the Gq pathway, lead-
ing to increases in intracellular Ca2+ [112]. The hypoxia response is also accompanied
by increased cAMP levels in ciliated cells, mediated by another, Gs-coupled, serotonin
receptor [113]. Similar cilio-excitatory effects were investigated in experiments on crus-
taceans, where 5-HT increased the rate of scaphognathite movement [114], which increased
water circulation [114] and promoted a more rapid oxygen exchange in tissues as a response
to higher oxygen demand.

Bivalves can obtain more oxygen by increasing the heart rate and dilating blood
vessels in the case of hypoxia [115]. 5-HT is an excitatory agent that regulates the cardiac
performance in various animals, including marine bivalves [116–118]. An increase in its
level in response to declining oxygen leads to an increase in the heart rate and the amplitude
of the heartbeat in mollusks [116]. The underlying mechanism for 5-HT’s effects involves
the increase in cAMP [119]. In hypoxia-tolerant slow-moving or sessile mollusk species,
a decrease in ambient pO2 is usually accompanied by a reduction in the heart rate and
the amplitude of the heartbeat [116,120]. The heart rate in these mollusks decreases in
response to a decrease in ambient pO2, presumably as an energy-saving response [120]. At
intermediate levels of hypoxia, animals that regulate oxygen consumption may increase
their heart rate. As has been shown by the Doppler ultrasonography method, the heart
and respiratory rates in scallop (Argopecten irradians) increase when dissolved oxygen falls
below 5 mg/L, which indicates that scallops rapidly adjust the circulatory rhythm to adapt
to the stress [120]. Phasic changes in the heart rate in some species also appear to correlate
with phasic movements of other organs. In scallops, moderate hypoxia (3 mg/L dissolved
oxygen, DO) causes an increase in the blood flow, especially in the gill, to acquire more
oxygen from the water and transport to other tissues; in Perna viridis, it causes an increase
in the blood output to maintain the hemolymph circulation [121]. Neurotransmitters and
mechanisms involved in the regulation of these changes have not been studied, however.
The study of scallops by the Doppler ultrasonography method has shown that blood vessels
dilate, and blood is redistributed to the gill for oxygen acquirement and to the adductor
muscle for avoiding tissue damage [120]. In cases of severe hypoxia exposure in scallops,
although the heart rate (HR) and blood velocity (PS) of all tissues largely increase, the blood
flow volume (FV) in the tissue inevitably becomes reduced due to the constriction of the
blood vessel, which means that the circulatory regulation has failed and functional damage
is inevitable [120].

5-HT regulates the contraction and relaxation of the adductor and the anterior byssus
retractor muscle (ABRM), and is involved in the regulation of complex changes in the
protective behavioral reactions of mollusks during hypoxia. In bivalves such as the blue
mussel M. edulis, smooth muscles such as the ABRM can be locked in the contracted state
(i.e., “catch”), a crucial function that keeps the shell valves firmly closed during periods
of air exposure [122,123]. This occurs following the initial activation of the muscle. This
state is characterized by prolonged force maintenance in the face of low Ca2+, high in-
stantaneous stiffness, a very slow cross-bridge cycling rate, and low ATP usage [124–126].
Tension is maintained until the serotonergic fibers release 5-HT, which stimulates the
AC/cAMP/PKA system. Protein kinase A (PKA) is then responsible for the rapid muscle
relaxation through the phosphorylation of twitchin, a myosin-binding protein [119,125].
The ABRM fibers in the catch state can be relaxed by serotonergic nerve stimulation or by
the external application of 5-HT [123,125,127–129]. 5-HT induces an increase in the intracel-
lular cyclic AMP (cAMP) concentration [130], which activates cAMP-dependent PKA to
result in the phosphorylation of twitchin, a high-molecular-weight protein terminating the
catch state [131].

Unlike slow-moving or sessile mytilids exposed to hypoxic conditions, scallops show
an obvious escaping behavior, with the shells clapping frequently, which inducesa high
demand for energy and oxygen [120]. However, the poor regulation ability of tissues under
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severe hypoxia means that the scallop may have lost this ability to escape the hypoxic
“dead zone” to survive.

In bivalves exposed to chronic hypoxia, the 5-HT level in the CNS has been found
to decrease [104] (Figure 3), while the level of 5-HT in the hemolymph and mantle may
increase significantly against air exposure stress [56]. In Pacific oysters (Crassostrea gigas)
after exposure to air for 24 h, the high concentration of 5-HT in the hemolymph may
decrease the apoptosis rate of hemocytes. The stimulation by 5-HT can enhance the
resistance of oysters to oxidative stress under air exposure byincreasing the activity of
superoxide dismutase (SOD), and reduce the accumulation of H2O2 in the hemolymph [56].
These protective effects of 5-HT were tested by estimating the survival rate of oysters after
the stimulation of 5-HT in air, which showed anincrease in the survival rate of oysters upon
exposure to air stress [56].

3. Acetylcholine

Acetylcholine (ACh) is one of the conserved neurotransmitters in the nervous sys-
tem, and at the neuromuscular junction in vertebrates and invertebrates including mol-
lusks [132,133]. ACh is synthesized in the cytosol from acetyl-coenzyme A and choline (pro-
duced via lipid metabolism) by the catalytic action of choline acetyl transferase (CHAT) [134].
Many indices of ACh neurotransmission recorded invertebrates, such as ACh content,
CHAT activity, acetylcholinesterase activity, transporter mechanisms, and receptor-mediated
responses, have also been detected in invertebrates [135,136].

Biochemical and histochemical studies on mollusks have demonstrated the pres-
ence of the enzyme synthesizing acetylcholine (CHAT) and the enzyme hydrolyzing it
(acetylcholinesterase, AChE) in a multitude of taxonomic groups [36,104,132,135–137]. Fur-
thermore, substantial homologies have been found between the ACh receptors cloned to
date from invertebrate and vertebrate animals [138,139]. One AChE has also been identified
in Ch. farreri [36], as have nicotinic ACh receptors (nAChR) in Ch. farreri [32], Cr.gigas, Pinc-
tada fucata martensii, Lottia gigantea, Aplysia californica, Octopus bimaculoides, and Helobdella
robusta [140], and a homolog of the muscarinic ACh receptor in Cr. gigas [32].

Cephalopods and gastropods with enhanced mobility have fewer nAChR genes than
stationary bivalves [140]. The massive expansion and diversity of nAChR in stationary
bivalve mollusks with simple nervous systems may be an adaptation to stationary life
under a variable environment. In representatives of different mollusk groups such as
cephalopods (Octopus vulgaris) [141]), including an octopus arm [142], pteropods (Clione
limacina) [143,144], and bivalves (the scallop Azumapecten farreri) [104], ChAT-lir neurons
were identified in the CNS, where most of them are localized in the motor centers and are
involved in locomotor reactions [143,144], as well as in the escape behavior [141] (Figure 2).

In the scallop Az. farreri exposed to hypoxia, an increase in CHAT in the motor neurons
of the visceral ganglion [104], involved in adductor muscle contraction, correlates with
changes in the adaptive behavior that manifestsas attempts to escape hypoxic water [145].
In stationary bivalve mollusks, ACh is also involved in the adaptive behavioral response to
anoxia or low oxygen concentrations in seawater. It has been shown thatthe phosphoryla-
tion of PFK-1 alters the enzyme’s kinetic properties to convert it into a less active form in
the anterior byssus retractor muscle (ABRM) of M. edulis, and to allow it to be mediated via
cGMP [122]. An increase in cGMP occurs in the ABRM in response to ACh, which stimu-
lates the contraction of this catch muscle [146]. The ABRM fibers can be madeto contract
actively by cholinergic nerve stimulation or by the external application of ACh [147]. The
catch state is established only after the removal of ACh, producing the maximum tension.
This indicates that the development of ACh-induced tension to the maximum tension is the
necessary prerequisite for the establishment of the catch state [148]. In bivalve mollusks,
catch muscles such as the ABRM show an increased demand for energy during the first
hours of recovery after valve closure, which is met by the activation of glycolysis [12,149].

Mollusks’ typical responses to hypoxia area variation in CHAT activity in all the
ganglia and peripheral (branchial) nerves [104] (Figure 3). Cholinergic innervation has
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been characterized in ciliary bands of echinoderms, annelids, and mollusks [76,150]. In
M. edulis, ACh is a modulator of the frontal cilia, with this effect being concentration-
dependent [151,152]. In different groups of invertebrates, ACh decreases the ciliary beat
frequency and increases closures [76]. The receptors to ACh involved in the ciliary move-
ment in the gill plates have been found in scallop gills [36]. Due to the fact that bivalve
mollusks’ gillshavethe highest exposure to the surrounding environment, the exceptionally
high expression of nAChR genes in the gill may be an adaptation providing rapid response
to dynamic environmental conditions [140].

Very little is known about the effect of chronic hypoxia on cholinergic transmission in
the nervous system of invertebrates. Scallops (Az. farreri) exposed to long-term (12 h) anox-
iashoweda significant increase in CHAT-lir in motor neurons of the visceral ganglion, as
well as the involvement of neurons of the cerebral and pedal ganglia in the anoxia response
(this did not show histochemical activity in the control) [104] (Figure 3). The mechanisms
and functional consequences of the hypoxia-induced increase in the ACh synthesis enzyme
in bivalves’ ganglia have not been elucidated. In recent studies, a significant increase in the
production of CHAT has been recorded from the gills of the bivalve mollusks Tapes decussa-
tus and T. laeta living in habitats with higher temperature and salinity and lower dissolved
oxygen levels. The authors [153] assume thisto be an adaptive compensatory response for
preventing the disruption of gill function. Previously, experiments on vertebrates showed
that a 10 min complete ischemia (bilateral occlusion of the carotid artery in mice) caused
choline (Ch) accumulation [154]. The major source of Ch accumulation during ischemia
arises from the hydrolysis of Ch-containing phospholipids and phospholipid Ch-derived
intermediates, with the contribution of ACh hydrolysis being small [155]. In the cholinergic
neurons, the phospholipids containing Ch represent a large source of Ch that can potentially
be used for ACh synthesis [156]. Neurons in mollusks contain large amounts of phospho-
lipids [157]. Phospholipids such as phosphatidylethanolamine and phosphatidylcholine,
exhibiting neurotrophic and neuroprotective effects, have been identified in mussels M.
edulis [158]. Earlier, it was shown that Ch confers brain protection against ischemic stroke
in mammals [159]. These data suggest that an increase in CHAT immunoreactivity in the
scallop ganglia after long-termanoxia may be caused by an increase in the Ch levels, and is
a conserved mechanism for protecting cells from hypoxia.

4. Nitric Oxide

Nitric oxide (NO) is an evolutionarily ancient, diffusible, gaseous low-molecular-
weight signaling molecule occurring in all major groups of organisms, and a common
regulator of metabolism [160–163] It is involved in many physiological functions, in-
cluding cellular signaling in the nervous system, the regulation of vascular tone, re-
sponses to hypoxia, and nonspecific immune responses in both vertebrates and inver-
tebrates [46,161,162,164–166]. NO is synthesized in cells from L-arginine and O2 by nitric
oxide synthase (NOS), and acts as a nonspecific neurotransmitter and neuromodulator
in the central and peripheral nervous systems. NO synthesis requires molecular oxygen
and, therefore, its cellular production can be altered by hypoxia [133]. In mammals, NOS
exists in three distinct isoforms: neuronal (nNOS, type I), endothelial (eNOS, type III), and
inducible (iNOS, type II) [167].

NOS in mollusks shows a strong similarity with vertebrate nNOS in structure, with
nNOS and iNOS in biochemical characteristics, and with iNOS in immunological fea-
tures [168,169]. All the NOS forms require reduced nicotinamide adenine dinucleotide
phosphate (NADPH) as an essential cofactor (an electron donor). Both NOS and NADPH-d
are capable of transferring electrons from NADPH to tetrazolium salts and converting
them into water-insoluble dark blue formazan crystals. The activity of NADPH-diaphorase
(NADPH-d), a NADPH-dependent oxido-reductase, was shown to colocalize with nNOS
immunostaining [170,171]. Positive NADPH-d staining has been successfully used as a
marker for NOS in the CNS of both vertebrates [170,172] and invertebrates, including
mollusks [173–177]. Furthermore, NOS-immunoreactivity has been recorded from different
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invertebrate phyla by the use of antibodies specific for the mammalian enzyme [162,176,178]
(NADPH-d/NOS activity has been detected in the CNS, in peripheral tissues, and in hemo-
cytes of marine invertebrates including mollusks [45,46,162,174,179–184] (Figure 2). In the
hypoxia-tolerant mollusks C. grayanus and Modioluskurilensis, the NADPH-d/NOS activity
in the CNS in control and hypoxia was significantly higher than in the hypoxia-sensitive
species [104,177,181]. The increase in the NO level in invertebrate nerve cells under the
effects of various environmental factors has been discussed in recent years [45,46,177,185].
The synthesis of NO is followed by its rapid diffusion within neurons and in adjacent
cells [186]. Since the generation of NO occurs together with its release, a balanced NOS
activity is a crucial step in the control of NO-mediated signaling [187]. Moreover, excessive
NO release may lead to apoptosis, and exerts direct cytotoxic effects [186–188]. One of the
ways to measure the detrimental effects of hypoxia in mollusks is to assess the severity
of changes in the structure of nerve cells viaan ultrastructural examination. Higher mor-
phological stability was found in NO-positive CNS neurons in hypoxia-tolerant mollusk
species [189]. The hypoxia-tolerant bivalve species (oysters or clams) have a greater mito-
chondrial tolerance to hypoxia stress compared to hypoxia-sensitive species [24]. Mytilids
belong to the group of marine invertebrates outstandingly tolerant to hypoxia and anoxia,
endowed with specialized “anaerobic mitochondria” that can alternate between the use
of oxygen (O2) and endogenous fumarate as the electron acceptor for anaerobic ATP
production [46,190].

The survival strategy of these mollusks under hypoxia conditions is to reduce the
total ATP uptake by switching to anaerobic metabolic pathways, or through metabolic
depression [12,191–193]. NO plays a key role in reducing the metabolic rate in both verte-
brates and invertebrates exposed to hypoxia [12,191–193]. To date, NO has been recognized
as a potent mitochondrial regulator in vertebrate and invertebrate cells, where it reduces
the oxygen affinity of cytochrome-c-oxidase (CytOx), the terminal electron acceptor of the
mitochondrial electron transport chain [46,194,195]. NO binding to the enzyme is reversible
and competitive with oxygen, and therefore depends on the cellular oxygen concentra-
tion [194,196]. Under nanomolar concentrations of oxygen in cells and reduced internal
oxygen partial pressure (pO2) conditions, NO completely inhibits CytOx activity and, hence,
mitochondrial and tissue respiration. It is also involved in switching neurons from aerobic
respiration to glycolysis under conditions of reduced intracellular oxygen concentrations, a
process that minimizes the production of reactive oxygen species [184,195].

NO also plays an important rolein improving the perfusion of hypoxic invertebrate
tissues [46,184]. In mollusks, hypoxia increases the NO production in certain ganglia [104]
(Figure 3) and in gill tissues [184]. The gills are the main organs of respiration in bivalves,
where big hemolymphatic vessels run through the gill branches and filaments and connect
the heart with the major tissues and organs. The local NO-dependent regulatory mecha-
nisms that provide adequate blood flow in hemolymph vessels depending on the animal’s
mode of life and habitat conditionshave been identified relatively recently in the gills of
hypoxia-tolerant mollusks [46]. In mussels (M. edulis) inhabiting the intertidal zone under
hypoxic conditions, NO is also generated in the muscle cells surrounding the hemolymph
vessels of gill filaments. There, it functions as a hypoxic messenger and local vasodilator
causing the blood vessels to dilate, which facilitates hemolymph flow and gas exchange at
low pO2, and functionally stabilizes the rates of whole animal respiration [46]. In M. edulis,
pO2-dependent NO generation is a key mechanism inwithstanding rapid environmental
O2 fluctuations during low tide [46], when fast metabolic adjustments upon shell closure
arerequired [184]. Unlike mussels, the infaunal clam Arctica islandica is a hypoxia-adapted
species that actively regulates hemolymph and shell water pO2 at low levels (<5 kPa)
through intermittent ventilation [197,198]. Obviously, there is no need for Ar. islandica to
perform rapid adjustments of tissue oxygenation by NO-induced dilation of blood vessels.
The NO formation itself remains constant under normoxia and hypoxia in the Ar. islandica
gills. However, the active adjustment of mean internal pO2 to <5 kPa in these animals
in vivo [197,198] appears to promote a stable NO concentrationin body fluids and tissues,
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and the lowering of mitochondrial respiration by NO-induced CytOx inhibition during
self-induced burrowing and shell closure [184]. Thus, when the internal pO2 of tissues
and hemolymph in Ar. islandica drops to values of ≤10 kPa during frequent burrowing
periods or >24 h of shell-closure, accumulating NO may indeed diffuse from hemocytes
into tissues and cells, reduce the oxygen binding at complex IV of the mitochondrial res-
piratory chain, and reducemetabolic rate [184]. Controlled metabolic shut down and a
tiered reduction inelectron transport system (ETS) activities, including CytOx, may prevent
significant reactive oxygen species’ (ROS) formation during hypoxic and anoxic transgres-
sion [46]. An ancient mechanism for controlling the respiratory electron transport under
conditions of variable environmental oxygenation, typical of hypoxia-tolerant organisms
inhabiting coastal marine environments (e.g., intertidal and subtidal habitats), has been
developed [12,22]. In the hypoxia-sensitive, mobile scallop Az. farreri, the uNOS-lir level in
the CNS increases only slightly with hypoxia. This contrasts with the NO-ergic activity in
the ganglia [177], muscle cells, and hemolymph vessels of gill filaments in mytilids under
both control and hypoxicconditions [46]. The significant differences in NO expression
between the bivalve species may be related to their different modes of life and strategies of
ecological adaptation [184].

In contrast to slow-moving mollusk species, scallops are less adapted to hypoxia
owing to the high-energy cost of movement [120,199]. In the case of moderate hypoxia,
scallops increase their respiratory and heart rates to maintain aerobic metabolism, which
leads to an acceleration of hemolymph circulation [27,120]. However, in severe hypoxia,
although the heart rate (HR) is largely increased, the blood flow volume (FV) in tissues
drops, which causes the constriction of blood vessels. Thismeans that the circulatory
regulation in these mollusks has failed, and functional damage becomes inevitable. It is
likely that the scallops’ lower tolerance to hypoxia, as compared to that in hypoxia-tolerant
mollusks, may be associated with a relatively low level of NO, and with the specific features
of the organization and functioning of NO-dependent regulatory mechanisms that can
affect the dynamics of blood flow.

5. Hypoxia Inducible Factor-1α

The hypoxia inducible factor-1 (HIF-1) belongs to a family of highly conserved tran-
scription factors that act as main regulators of oxygen homeostasis and theadaptive re-
sponse to hypoxia [200–203]. HIF-1 regulates the expression of many genes involved in
oxygen metabolism in response to hypoxic conditions [200,202,204–206]. HIF-1 consists of
two subunits, α and β [200–202,207,208]. HIF-1β is constitutively expressed, without any
effect of the oxygen level on its expression.

The protein level of HIF-1α is highly regulated by oxygen tension [209]. The activ-
ity of HIF-1 is primarily determined by the expression of the subunit HIF-1α, but not
that of HIF-1β. Under normoxia, HIF-1α is selectively degraded, while HIF-1β persists.
During hypoxia, HIF-1α is stabilized, translocates to the nucleus, binds to HIF-1β, and ini-
tiates transcription [210–212], which triggers the expression of hypoxia-related genes [213]
(Figure 4).

The HIF-1-mediated system of oxygen-dependent signaling has also been identified
in marine invertebrates [23,47–58,214–216], including several bivalve species such as Cras-
sostrea virginica [215], Cr. gigas [216], M. galloprovincialis [50], the gastropods Nassarius
siquijorensis and N. conoidalis [217], the small abalone Haliotis diversicolor [218], and the clam
Cyclina sinensis [219]. The molecular characterization of HIF-1α partial coding sequences
from various invertebrates (nematodes, oysters, and shrimp) and humans has shown a
significant similarity of the sequences and the conserved key functional domains with the
previously described isoforms from vertebrates and invertebrates. This also suggests the
conserved critical role of these genes in the evolution of the oxygen-sensing pathway and
homeostasis throughout the animal kingdom [50,220].
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As in mammals, the HIF-1α of marine invertebrates is detected in multiple tissues, but
its relative expression varies between different tissues [23,49,215,221]. The expression of
the HIF-1α gene at both molecular transcription and protein levels indicates that various
tissues within the same species may exhibit different hypoxic tolerances or oxygen de-
mands, whereas the hypoxia intensity, as well as its duration, may affect HIF-1 in different
ways [203,215,219].

The differences in HIF-1α transcript level after hypoxia exposure between various
tissues in invertebrates may evincethe demand for a greater physiological response in
certain tissues during adaptation to hypoxic conditions. In mobile crustaceans, the hypoxia
exposure results in physiological or behavioral changes, such as an increased ventilation
frequency and cardiac output [11,49,219,222]. Therefore, the marked upregulation of HIF-
1α transcript levels in the heart of mantis shrimp (Oratosquilla oratoria) may reflect an
HIF-induced enhancement of cardiovascular system functions, such as angiogenesis and
vasodilation, to achieve efficient oxygen transport for providing survival under chronic
hypoxia [49,223,224]. These results suggest that the upregulation of HIF-1α transcript
levels in the two hypoxia-sensitive organs, the heart and the cerebral ganglion, is an
important component of adaptation to chronic hypoxia in mantis shrimp and other marine
invertebrates [49].

In many bivalves under normoxia, HIF-1α transcript levels were higher in the gills
than in other tissues [215,219], most likely because the gill is a vital organ involved in
oxygen detection and gas exchange [219,225]. Furthermore, the gills perform the important
function of regulation in the progress of osmotic pressure adjustment, acid balance, and
detoxification [226,227].

Under hypoxia, HIF-1α transcript levels areincreased in all tissues [29,228] and are
particularly high in the gills of Cr. virginica [215], H. diversicolor [218], Cy. sinensis [219], M.



Int. J. Mol. Sci. 2023, 24, 1202 13 of 22

galloprovincialis [50], N. siquijorensis, N. conoidalis [217] and Ruditapes philippinarum [14]. The
transcript levels of HIF-1α mRNA in different tissues of mollusks significantly differedin
time during hypoxia [219]. Thus, in the small abalone H. diversicolor exposed to hypoxia
(2.0 mg/L DO at 25 ◦C) stress, the HIF-1α expression was upregulated in gills at 4, 24, and
96 h, and in hemocytes at 24 and 96 h [218]. In Cy. sinensis, the transcript level declined
continuously after 12 h hypoxia [219].

The nervous system is an important component of the organism that requires oxygen.
In mammals, HIF-1α plays a crucial role in protecting neurons from hypoxic/ischemic
stroke. In the invertebrate nervous system, the function of HIF-1α is poorly understood [49].
In hypoxia-sensitive scallops (Mizuhopecten yessoensis) exposed to hypoxia, HIF-1α expres-
sion appears primarily in the nuclei of neurons of the cerebral ganglia [229]. The high
sensitivity of these bivalve ganglia to hypoxia has been confirmed experimentally [230],
with their involvement in respiratory metabolism also shown [231,232]. After 4 h of anoxia,
the number of HIF-1α immunopositive neurons in the visceral ganglion sharply increases.
The ganglion is an integrative center in mollusks that is involved in the respiration regu-
lation, controls motor behavior, and plays a major role in metabolic processes and in the
escape behavior under extreme conditions [233]. The expression of the HIF-1α factor in
the cerebral and visceral ganglia controlling the critical functions in scallops is probably
associated with the involvement of this factor in the adaptation of neurons to hypoxia.

An increase in the HIF-1α content in the mammalian brain correlates with neuroprotec-
tive reactions, and prevents or reduces damage in moderate hypoxia/ischemia [234–236].
In the case of chronic and severe hypoxia, the expression of HIF-1α in the rat brain is
reduced due to an increase in the rate of its degradation, which correlates with a decrease
in the function of the mitochondria and apoptosis of neurons [237]. An increase in the
HIF-1α expressionin neurons’ nuclei causes the activation of the genetic apparatus and
primarily genes, which triggers a cascade of neuroprotective mechanisms that protect
neurons, macro- and microglia, and the endothelium of brain vessels from damage caused
by oxygen starvation [234–236]. In the mammalian brain, these mechanisms induce rapid
and adequate responses to hypoxia through stimulation of the respiratory and vasomotor
centers, and lead to the induction of genes necessary to provide the energy metabolism
of cells [238,239].

The role of HIF-1α in the CNS of marine invertebrates in the formation of hypoxia tol-
erance has not been extensively studied. Currently, there are data on the HIF-1α expression
in the brain of mantis shrimp (O. oratoria) during adaptation to chronic hypoxia caused
by the anthropogenic pollution of the habitat [49]. Furthermore, HIF-1α-immunoreactive
neurons that are involved in behavioral and metabolic reactions to hypoxia have been
identified in the CNS of nematodes, Caenorhabditis elegans [240]. In scallops, anoxia has a
pronounced effect on the activity of HIF-1, significantly increasing the expression of its
regulatory oxygen-sensitive subunit HIF-1α in the ganglia neurons that control critical
functions of the organism, which can provide the development of compensatory processes
in hypoxia. This is confirmed by the results of a study on the metabolism and activity of
oxidant enzymes in scallops [27,241].

6. Conclusions

The issue of adaptation to oxygen deficiency and its role in diseases has been studied
for many decades using models of animals with different resistances to hypoxia. Despite
the recent advance in invertebrate neuroendocrinology, very little is known about the
neurohormonal regulation of this process in marine bivalves. Marine mollusks’ tolerance
to hypoxia is provided by the integration of various signaling systems whose activation
causes changes in the expression of neurotransmitters such as DA, 5-HT, CHAT, and NO.
Their activity varies significantly between species living in different conditions and having
different survival strategies, which indicates the different roles that they play in mollusks
with different tolerances to hypoxia. Of particular interest are the dynamics of activity of
5-HT, uNOS, and the HIF-1α transcription factor in the ganglia, branchial nerves, and gills,
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which probably reflect their key roles in the regulation of gas exchange and cardioregulation
in marine mollusks exposed to hypoxia. Data on the topography and dynamics of CHAT
activity in hypoxia-sensitive scallops indicate a possible neuroprotective role of choline,
which may be one of the mechanisms responsible for protecting nerve cells from hypoxia
in mollusks. However, further studies are required to obtain physiological evidence of the
involvement of DA, 5-HT, CHAT, NO, and HIF-1α in providing hypoxia tolerance.
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