
Citation: Di-Iacovo, N.; Pieroni, S.;

Piobbico, D.; Castelli, M.; Scopetti, D.;

Ferracchiato, S.; Della-Fazia, M.A.;

Servillo, G. Liver Regeneration and

Immunity: A Tale to Tell. Int. J. Mol.

Sci. 2023, 24, 1176. https://doi.org/

10.3390/ijms24021176

Academic Editor: Gianfranco Alpini

Received: 2 December 2022

Revised: 28 December 2022

Accepted: 30 December 2022

Published: 7 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Liver Regeneration and Immunity: A Tale to Tell
Nicola Di-Iacovo 1 , Stefania Pieroni 1 , Danilo Piobbico 1, Marilena Castelli 1, Damiano Scopetti 1 ,
Simona Ferracchiato 1, Maria Agnese Della-Fazia 1,*,† and Giuseppe Servillo 1,2,*,†

1 Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
2 Centro Universitario di Ricerca sulla Genomica Funzionale (C.U.R.Ge.F.), University of Perugia,

06123 Perugia, Italy
* Correspondence: mariaagnese.dellafazia@unipg.it (M.A.D.-F.); giuseppe.servillo@unipg.it (G.S.)
† These authors contributed equally to this work.

Abstract: The physiological importance of the liver is demonstrated by its unique and essential
ability to regenerate following extensive injuries affecting its function. By regenerating, the liver
reacts to hepatic damage and thus enables homeostasis to be restored. The aim of this review
is to add new findings that integrate the regenerative pathway to the current knowledge. An
optimal regeneration is achieved through the integration of two main pathways: IL-6/JAK/STAT3,
which promotes hepatocyte proliferation, and PI3K/PDK1/Akt, which in turn enhances cell growth.
Proliferation and cell growth are events that must be balanced during the three phases of the
regenerative process: initiation, proliferation and termination. Achieving the correct liver/body
weight ratio is ensured by several pathways as extracellular matrix signalling, apoptosis through
caspase-3 activation, and molecules including transforming growth factor-beta, and cyclic adenosine
monophosphate. The actors involved in the regenerative process are numerous and many of them
are also pivotal players in both the immune and non-immune inflammatory process, that is observed
in the early stages of hepatic regeneration. Balance of Th17/Treg is important in liver inflammatory
process outcomes. Knowledge of liver regeneration will allow a more detailed characterisation of the
molecular mechanisms that are crucial in the interplay between proliferation and inflammation.

Keywords: liver regeneration; hepatocytes proliferation; hepatocytes growth; IL-6; HGF; IL-17;
Th17/Treg; MoMφ

1. Introduction

The liver is one of most important organs responsible for monitoring homeostasis in
the mammalian body. It is involved in physiological processes such as: bile production,
plasma protein synthesis, nutrient absorption and detoxification, immunity and vitamin
storage [1–5]. Moreover, it is fundamental in metabolic regulation of carbohydrate, protein,
and lipid homeostasis [6]. The liver is also the central immunological organ, able to activate
the immune system in response to the circulating antigens [7]. Not surprisingly, the cellular
immune component in the liver is very large, both lymphoid (e.g., Natural Killer) and
myeloid (e.g., Kupffer cells) [8,9]. In this regard, it is clear that the structural and functional
integrity of the liver must always be guaranteed. The ratio of liver to body weight must be
constant over time and it is known to be approximately 2% [10]. Many authors assume that
to keep a proper liver size there are very peculiar molecules, such as bile acids, which act as
sensor of the hepatostat control system [11,12]. Therefore, it is clear how the various insults
that liver suffers -mechanical, metabolic or biological- can lead to the loss of homeostasis
and can undermine health.

The maintenance of homeostasis is guaranteed by a perfect coordination of the immune
system. Several immune cells in the liver detect antigens and, as sensors, trigger the
immune response. Among the parenchymal cells of the liver there are hepatocytes and
cholangiocytes, while the hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells
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(LSECs) are the non-parenchymal counterpart [13]. Nevertheless, a continued exposure
to microbial antigens from the gastrointestinal tract exposes the liver to the risk of an
over-activated immune response. Evidence of hepatic tolerance was published as early as
1969 [14]. The liver has the task of ensuring on the one hand the activation of the immune
system and on the other the triggering of tolerance mechanisms. The perfect balance of
these processes guarantees physiological homeostasis. Indeed, it has to be considered the
central role played by liver in glucose and lipids metabolism.Mass loss in liver regeneration
is accompanied by hypoglycaemia and transient fat accumulation that indicates a possible
role to promote and control liver regeneration [15,16].

This review analyses the main mechanism that is triggered in the liver during severe
stress: liver regeneration (LR). The main objective of this review will be to introduce
alternative molecular pathways that complement those already known in the field of liver
regeneration. Precise coordination of these processes enables the liver to respond optimally
to the stimuli it perceives.

2. Liver Injuries

When the liver is severely compromised, homeostasis is lost. It could be affected by
distinct injuries that determine acute and chronic liver diseases.

2.1. Acute Liver Disease

Following rapid and unexpected hepatic damage, the acute liver injury can occur if
the liver fails to react. Acute damage is characterised by an increase in infiltrating and
activated neutrophils, oxidative stress and massive liver cell death [17,18].

An excessive hepatocyte loss results in tissue degeneration leading to acute liver
failure (ALF). There are many different causes of ALF, and the most common cause is
drug-induced liver injuries (DILI) [19]. An adverse reaction during liver metabolic function
in biotransformation of xenobiotics is the main cause of DILI [20]. In developed countries,
the main cause of ALF is paracetamol overdose—in approximately 55% of cases—while
it is almost completely absent in Asia and Africa [21,22]. In addition, the causes of acute
liver failure include viral hepatitis (e.g., HAV, HBV, HEV, HBV co-infection with HDV,
CMV, Epstein-Barr virus, HIV), which can lead to long-term damage, and hepatic ischemia,
which may occur followed by reperfusion after liver resection surgery [23–25]. Fortunately,
most frequently, the reparative process that is triggered after the initiation of liver injuries
is resolutive [26].

2.2. Chronic Liver Diseases

When a damage affects the liver for more than six months, it is defined as chronic liver
diseases (CLDs). Clinically, CLDs undergo a process of liver damage and regeneration,
which leads to progressive fibrosis that can degenerate into cirrhosis [27,28]. The outbreak
and progression of chronic liver disease includes several different causes, such as virus
infections, environmental and genetic factors [29,30]. The main causes of CLDs include:
hepatitis B (HBV) and C (HCV) viruses, alcohol consumption and obesity [31,32]. From
an immunological point of view, chronic liver diseases are characterised by a constant
activation of infiltrating cells and hepatic stellate cells (HSCs), which induce liver damage
and fibrous tissue insertions.

Fibrosis is dynamic process. During the connective tissue accumulation, the extracel-
lular matrix is continuously degraded and remodelled in a finely regulated process that
may culminate in cirrhosis or in the restoration of normal liver organisation and function.
Even when cirrhosis has also become visible, remodelling can allow partial recovery [33,34].
The onset of cirrhosis is one of the most common etiological factors for hepatocellular
carcinoma [35]. In order to preserve its integrity, the liver responds to injury by attempting
to resolve it through the liver regeneration process [36].
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3. Liver Regeneration

Approximately 80% of the liver mass consists of hepatocytes, which guarantee its
perfect functioning. The hepatocytes are normally in a quiescent state (G0 phase), but they
re-enter cell cycle following various types of perturbation [37]. Partial hepatectomy (PH) is
the most common approach to study liver regeneration, as an in vivo experimental model
of proliferation in rats, mice and also zebrafish [38–40].

Liver regeneration is the re-establishment of structural or physiological integrity,
which was previously lost. In the framework of the liver, it is actually a compensating
enlargement by the residual tissue. After PH, the liver is restored by the residual hepa-
tocytes, without activation of a progenitor cell [41]. Nevertheless, bone marrow cells can
generate approximately 20% of endothelial and non-parenchymal cells during liver mass
restoring [42]. Liver regeneration occurs through the interaction of different molecular
pathways. Several factors affect the final success. Following PH, the amount of excised
liver determines the activation of different proliferative pathways. When the resection
affects 1/3 of the liver, the hepatocytes quickly react by expanding their volume, initiating
hypertrophy. Instead, if the resection affects 2/3 of the mass, the hepatocytes enter the S
phase, proliferate and induce hyperplasia [43]. A third mechanism is triggered if the PH
affects 80–90% of the liver and it has been well characterized in both mouse and zebrafish.
Hepatocytes in this case are not enough to restore the liver, so biliary epithelial cells are
activated and converted into functioning hepatocytes [44–46].

4. Liver Regeneration Step by Step

The regenerative process can be illustrated mainly in three phases: initiation, prolif-
eration and termination (Figure 1). Liver regeneration has been extensively studied over
the years. The players involved in it are really several and the interactions between the
different pathways involved during the three phases need further investigation. In the
following section, we will explore new insights and alternative pathways complementing
the classic ones.

4.1. Initiation Phase

The initiation phase involves molecules characteristic of innate immunity. In a normal
liver, the hepatocytes are in G0, the resting phase of the cell cycle. It is important to have a
trigger to enter the cycle (G1 phase) and replicate. The response achieved after PH has been
described to be similar to the wound healing repair process, with slight modifications [47].
No conclusive evidence is available to support the initiation of the response in the LR. In
this stage, part of the activation of the cascade is certainly related to early hemodynamic
alterations in the quantity and quality of portal vein flow. Consequently, the portal volume
increases, generating shear stress. To compensate, the hepatic arterial buffer response
(HABR) is implemented, which, through vasodilation, reduces arterial flow [48,49]. An
additional potential candidate could be lipopolysaccharide (LPS), which is commonly
released by the degradation of intestinal bacteria [50]. LPS as part of the molecular patterns
associated with pathogens (PAMPs) is recognized by Toll-like receptors (TLRs), but there
is no evidence that TLRs are involved in the initiation phase, while it is dependent on the
activation of the shared intracellular cascade. Specifically, a knock-out (KO) mouse model
for one or several TLRs do not result in altered priming, while the lack of MyD88—an
adapter for intracellular signalling of TLRs—results in impaired LR [51,52]. Following
the priming, Kupffer cells significantly produce two key cytokines at this stage: tumour
necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). TNF-α and IL-6 production is
mediated by the activation of the nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB) [50]. In addition, hepatocytes express the TNF receptor 1 (TNFR1) and
are able to self-activate in autocrine or paracrine mode [53]. NF-κB binds the promoter of
IL-6, controlling its production and secretion [54]. Hepatocytes interacting with Kupffer
cells, become responsive to the proliferative stimuli and contribute to the regenerative
process progression [55]. Without the priming phase, the following reaction to growth
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factors would not be achievable [56]. Notch and beta-catenin translocation to the nucleus
that already occurs 5–15 min after PH, or the activation of the transcription factors NF-κB
and Activator Protein 1 (AP-1) which takes place within 30 min were observed during the
initiation phase [57] (Figure 1).
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Figure 1. Schematic overview of liver regeneration. LR outlined in three phases: initiation, prolifer-
ation and termination. In the initiation phase different PAMPs trigger regenerative process by in-
teracting with TLRs exposed on Kupffer cells membrane. TNF-α and IL-6 produced by Kupffer cells 
activates the NF-κB pathway in hepatocytes making them responsive to the proliferative signalling 
and forthcoming to G0/G1 transition. Once IL-6 determined the activation of proliferation, acting 
on JAK/STAT3 pathway, hepatocytes enter the G1 phase and growth factors signalling ensures their 
progression in the cell cycle. Kupffer cells and sinusoidal cells sustain hepatocytes growth by pro-
ducing respectively HGF acting through c-met receptor and EGF. EGFR ligands other than EGF 
(FGF, VEGF, PDGF and others) act as signal modulators. Growth factors binding to their specific 
receptors lead to cell growth mainly through the PI3K/PDK1/AKT pathway. The termination phase 
takes place when the original weight of the liver is reached and results from inhibition of prolifera-
tion and growth, and apoptosis induction. The mTOR pathway controls protein translation and to-
gether with TGF-β induces hepatocyte expansion inhibition. Apoptosis cooperates with other inhib-
itory signals, allowing the correct attainment of liver mass. The hepatostat is responsible for the 
perfect integration of such processes leading liver structural and functional recovery. ECM deposi-
tion is a transitory and reversible condition of the regenerative response that arises during the pro-
liferative phase and leads to fibrosis. ECM accumulation requires its rapid and continuous degra-
dation and remodelling to ensure resolution, avoiding cirrhosis outcome and/or liver failure. 
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Figure 1. Schematic overview of liver regeneration. LR outlined in three phases: initiation, prolif-
eration and termination. In the initiation phase different PAMPs trigger regenerative process by
interacting with TLRs exposed on Kupffer cells membrane. TNF-α and IL-6 produced by Kupffer cells
activates the NF-κB pathway in hepatocytes making them responsive to the proliferative signalling
and forthcoming to G0/G1 transition. Once IL-6 determined the activation of proliferation, acting
on JAK/STAT3 pathway, hepatocytes enter the G1 phase and growth factors signalling ensures
their progression in the cell cycle. Kupffer cells and sinusoidal cells sustain hepatocytes growth by
producing respectively HGF acting through c-met receptor and EGF. EGFR ligands other than EGF
(FGF, VEGF, PDGF and others) act as signal modulators. Growth factors binding to their specific
receptors lead to cell growth mainly through the PI3K/PDK1/AKT pathway. The termination phase
takes place when the original weight of the liver is reached and results from inhibition of proliferation
and growth, and apoptosis induction. The mTOR pathway controls protein translation and together
with TGF-β induces hepatocyte expansion inhibition. Apoptosis cooperates with other inhibitory
signals, allowing the correct attainment of liver mass. The hepatostat is responsible for the perfect
integration of such processes leading liver structural and functional recovery. ECM deposition is a
transitory and reversible condition of the regenerative response that arises during the proliferative
phase and leads to fibrosis. ECM accumulation requires its rapid and continuous degradation and
remodelling to ensure resolution, avoiding cirrhosis outcome and/or liver failure.
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4.2. Proliferation Phase

The increase of IL-6 occurring at the beginning of liver regeneration determines the
activation of proliferation, acting on Janus kinase (JAK) and inducing phosphorylation on
the signal transducer and activator of transcription 3 (STAT3) [58]. Hepatocytes enter in the
G1 phase, and the signalling mediated by the growth factors ensures their progression in
the cell cycle. The main actors in this scenario are the hepatocyte growth factor (HGF) and
the specific ligands of the epidermal growth factor receptor (EGFR). Mitogenic signalling
activated by these factors induces significant growth in hepatocytes.

In addition to the mentioned factors, other important signalling molecules contribute
to the growth pathway. These are accessory molecules, which act as modulators of EGFR
signalling and include: fibroblast growth factor (FGF), vascular endothelial growth factor
(VEGF), platelet derived growth factor (PDGF), insulin, bile acids and norepinephrine [59].
The transforming growth factor alpha (TGF-α), is also involved in liver regeneration stim-
ulating DNA synthesis in hepatocytes [60]. Through the c-met receptor, HGF-dependent
signals are activated, while the activation of the other players of the LR depend on
EGFR [61,62]. In this way, EGF pathway is not restricted by a single ligand, but the
other replaces the lack of one [63]. In summary, the tyrosine kinases receptors EGFR and
c-met are the two main pathways to activate the signal cascade that leads to the LR process.
Although the two pathways do not show common pathways, they compensate mutually
for the lack of the other one by implementing a successful LR. When the signal cascade is
simultaneously interrupted in both pathways, the result is hepatic failure [64] (Figure 1).

4.3. Termination Phase

The termination phase takes place when the original weight of the liver is reached,
which results in the homeostasis restoration. The hepatostat allows a perfect integration of
processes that leads to the ending of LR and the recovery of liver function. The terminating
phase is still largely unexplained. The sequence of control events that restrains proliferation
and triggered growth is still being explored.

The liver/body weight ratio is a fundamental parameter for the correct and com-
plete liver mass restoring [65]. In this respect, it has been seen that transplanting from a
donor animal with a smaller liver to the receiver, entails a re-organisation that allows the
transplanted liver to reach the weight of the recipient [66]. Several sources suggest that
the proper functioning of the hepatostat is provided by mammalian target of rapamycin
(mTOR), demonstrating that, post PH, the rapamycin induced inhibition of mTOR is able
to block DNA replication [67,68]. The mTOR pathway controls protein translation, and
thus regulates cell growth by integrating different components such as hormones, growth
factors, metabolic requirements, energy demand and nutrients [69]. As early as the end
of the 1980s, the transforming growth factor-beta (TGF-β) was assumed to play a role
in complete regenerative process. Specifically, TGF-β can form a complex with activin
and acts as a constitutive antagonist in cell growth signalling. In addition, serum levels
of TGF-β are elevated throughout the entire LR and in vitro induces hepatocyte growth
inhibition [70,71] (Figure 1).

The signalling related to the extracellular matrix is another important pathway in this
phase. A murine model providing hepatocytes lacking for the integrin-linked kinase (ILK)
shows an incomplete termination of the LR. The liver of the ILK KO murine model shows a
higher mass than the wild type mouse [72].

In this context, there should also be a remark about apoptosis, which is generally
crucial in physiological regulation, and has relevance in the liver. It has already been noted
that in a few minutes after PH there is an increase in IL-6 and HGF levels, which protect
the hepatocytes from programmed cell death in the first few days. Furthermore, in vivo,
apoptosis does not activate during at least the first three days after PH. The activation of
caspase 3, which reports the apoptotic reaction, actually occurs after 72 h, simultaneously
with the reduction in proliferation. Apoptosis would serve as a brake to the LR, thus
allowing the correct attainment of complete liver mass (Figure 1).
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Beyond the pathways mentioned, other accessory molecules are known to play a well-
defined role into the regenerative process. First requiring further consideration is cyclic
adenosine monophosphate (cAMP) [73]. The cAMP signalling pathway controls several
genes involved in the process of gluconeogenesis, including: tyrosine aminotransferase
(TAT), cAMP-dependent kinase (PKA), CRE-binding protein (CREB), CRE modulator
(CREM), CBP/p300, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase
(G6Pase) [74–77]. Since one of the multiple functions of the liver is the distribution of
glucose to the whole body, the control of the gluconeogenesis during regenerative phases is
extremely important. Specifically, low concentrations of glucagon stimulate DNA synthesis,
whereas the opposite effect occurs when concentrations are too high. The levels of cAMP
increase considerably after PH, but its role in proliferation is still controversial. Indeed,
depending on the concentration of cAMP, there is stimulation or suppression of hepatocyte
proliferation [78]. Signalling of cAMP is active throughout the LR process, but its control in
proliferation occurs at two points: stimulation of the G0/G1 transition and inhibition near
the G1/S phase [79,80]. Hepatocyte odd protein shutting (HOPS), controlled by cAMP, is
involved in the early phases of LR. HOPS is a nucleocytoplasmic protein that contributes
to the control of cell proliferation by regulating protein synthesis [81]. cAMP regulates
the nuclear export of HOPS in normal and regenerating hepatocytes. In cAMP-treated
mice, HOPS was detected in the nucleus at 15 min after treatment, while at 60 min, it
was fully exported into the cytoplasm. At 90 and 120 min after cAMP treatment HOPS
progressively moved back to the nucleus, showing a distribution pattern similar to normal
hepatocytes [82]. An interesting and unusual control on post-PH hepatocyte proliferation
is played by the glycoprotein CD44, known to bind the hyaluronic acid. The CD44 isoforms
containing the exon v6 are modulated during LR, making it a candidate as a possible
regulator of hepatocyte proliferation [83].

Another attractive cell source for implementing liver regeneration lies in haematopoi-
etic stem cells. It has been known for several years that these stem cells are able to improve
liver parameters following damage. However, it is still not entirely clear how these cells
can significantly contribute to the regenerative process. Certainly, from a therapeutic point
of view, haematopoietic stem cells are showing significant progress in several clinical trials,
with efficacy varying depending on the amount of liver that has been compromised [84–86].

5. Molecular Mechanisms of Liver Regeneration

Liver regeneration is the product of tight networking between multiple pathways, but
surely the two processes that must be modulated involve cell proliferation and cell growth.
They can be defined as two sides of the same coin. Specifically, the IL-6/JAK/STAT-3
pathway is involved in proliferation, while PI3K/PDK1/AKT is responsible for cell growth
(Figure 1).

5.1. Hepatocytes Proliferation

The IL-6/JAK/STAT3 signalling pathway has been well characterised. Specifically,
IL-6 produced by the Kupffer cells binds its IL-6 receptor α (IL-6R α), which forms a
hetero-hexameric complex with IL-6 receptor-β (gp130). At this step, JAK proteins bind
the Box1-2 domains on intracellular gp130. This event mediates the phosphorylation of
various tyrosine residues, including those at the C-terminal that serve as binding site for
STAT3. STAT3 binds to gp130 and undergoes phosphorylation by JAK to the tyrosine
in position 705 (Tyr705), allowing the dimerization of STAT3. Dimeric STAT3 is able to
translocate to the nucleus and, after DNA-binding activates the transcription of the target
genes, triggers LR [58,87]. Post-translational modifications are also responsible on the
negative regulation of STAT3. Specifically, the phosphorylation of serine-727 promotes the
de-phosphorylation of Tyr705, de facto inactivating STAT3 [88]. Experiments performed
in IL-6−/− and TNF-α−/− mice indicate that both those cytokines are significant triggers
of LR. The transgenic mice displayed an erroneous proliferative response already in the
early stages. IL-6−/− mice show reduced DNA synthesis, which correlates with a missed
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STAT3 activation and results in reduced expression of the target genes: AP-1, Myc and
cyclin D1 [89,90]. To confirm, the STAT3 KO murine model shows a similar phenotype with
a marked reduction in hepatocyte proliferation [91]. Furthermore, when STAT3−/− mice
are injected with IL-6 before PH, a normal proliferation and the restoration of function is
achieved, highlighting the importance of this cytokine [89]. Considering these results, it
is clear that IL-6 plays a primary role in the LR, being directly involved in the activation
of STAT3 through gp130 and thus mediates proliferation. Similarly, the KO mice for the
TNF-α receptor show an improper activation of NF-κB after PH, which does not allow
the production of IL-6 [92]. The KO murine models provide incontrovertible proof of
the relevance of these molecules for a successful liver regeneration. In addition to the
IL-6/JAK/STAT3 pathway, there are several effectors that enhance mitogenic signalling in
hepatocyte proliferation, such as guanylyl cyclase domain containing 1 (GUCD1), which is
strongly up-regulated in the first hours after PH [93,94]. The reduction in GUCD1 levels is
guaranteed by NEDD4-mediated neddylation, that promotes proteasomal degradation [82].
As well as the bile acids, in appropriate concentrations, also promote cell proliferation, via
the farnesoid X receptor (FXR) [95]; or even the Insulin-like Growth Factor 1 (IGF-1), up-
regulating HGF and down-regulating TGF-β, contributes to enhanced mitogenic action [96].
These molecules participate in this process, highlighting redundancy as crucial to ensure
proper liver regeneration.

5.2. Hepatocytes Growth

The regenerative process is given by the integration of several signals and different
pathways. Neither strictly essential molecule has yet been identified, and even if the
aforementioned KO models lead to an inaccurate result, LR is still initiated. Hepatocyte
growth is a complementary mechanism to the proliferation. This arises in the initial phases
after PH, when hepatocytes increase in volume and are bi-nucleated [43]. In STAT3−/−

mice, after PH, the hepatocytes volume was significantly increased compared to the wild
type mice. In addition, a marked phosphorylation of AKT was also observed [58]. Many
studies have amply demonstrated that the PI3K/PDK1/AKT pathway is mainly leading to
cell growth [97,98]. Phosphatidylinositol 3 kinase (PI3K) is a lipidic kinase that promotes
phosphorylation on 3-OH position of phosphatidylinositol 4,5-bis phosphate (PIP3) [99].
The signalling cascade begins with stimulation of the tyrosine kinase receptors (RTKs)
which activate in PI3K [100]. Not surprisingly, the most common ligands of RTKs are: HGF,
IL-6, TNF-α, TGF-α and EGF [101–103]. The phosphatidylinositol-(3,4,5)-trisphosphate
(PIP3) production activates 3-phosphoinosistide-dependent kinase 1 (PDK1), which in turn
phosphorylates and activates AKT [104]. A negative regulator of the process is the phos-
phatase and tensin homolog (PTEN), which leads to dephosphorylation of PIP3, inhibiting
the signalling cascade [105]. This pathway controls several physiological processes, because
PDK1 is responsible for the activation of Protein kinase C ζ (PKCζ), inducing mitogenesis,
cellular survival and protein synthesis [106]. AKT activation is obtained by phosphoryla-
tion of threonine-308 in the kinase-region and serine-473 in the hydrophobic domain. Both
phosphorylation events provide full activation and the correct functioning of AKT in liver
regeneration [107,108]. Certainly, the mTOR1 complex (mTORC1) is the main target of AKT,
which regulates protein synthesis, depending on nutrient availability and in response to
growth factors [109]. Active mTORC1 promotes protein translation by phosphorylating 4E
binding protein 1 (4EBP1), preventing binding with eukaryotic translation initiation factor
4E (eIF4E). The unbound factor initiates the translation of proteins involved in growth and
cell division, such as cyclin D and c-myc [110,111]. The relevance of AKT signalling has
been confirmed in experiments with PDK1−/− mice, in which AKT phosphorylation is
reduced and the regenerative process is incomplete [112].

Hepatocytes are clearly the main players in proliferative and growth pathways. Some-
times when the availability of hepatocytes is reduced or otherwise insufficient to support
the damage response, alternative pathways exist [113]. In this context, the second cellular
component of the liver parenchyma, the cholangiocytes, takes over. Indeed, several models
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have confirmed that, in the case of impaired hepatocyte regeneration, a response is estab-
lished that significantly increases the percentage of hepatocytes derived from cholangio-
cytes, which enables the regenerative process to be correctly completed [114]. The intrinsic
plasticity that hepatocytes and cholangiocytes display facilitates the trans-differentiation
process, so that one cell type can make up for the lack of the other and vice versa [115–117].

5.3. IL-17: A Balancer in Liver Regeneration

In recent years, novel molecules involved in LR have been identified, which provide
a contribution to the final resolution. Among these, interleukin-17 (IL-17) is certainly the
most prominent. The IL-17A, hereinafter IL-17, is the most characterised member of the
IL-17 family. This cytokine binds to the receptor for IL-17A (IL-17RA), which dimerizes
with IL-17RC, triggering the IL-17 signalling [118]. The activation of this pathway recruits
the protein adaptor ACT1, which leads to the activation of relevant pathways such as
NF-κB and mitogen-activated protein kinases (MAPK) [119,120]. The cells identified as the
first producers of IL-17 are CD4+ Th17. Specifically, Th17 differentiate from naive T cells
when influenced by TGF-β, IL-6 and IL-21, which amplify Th17 and induce the expression
of the receptor for IL-23 (IL-23R). At this step, IL-23 binds to its receptor and allows the
stabilization of the phenotype Th17, which will produce IL-17 [121]. The function of Th17
is offset by regulatory CD4+ T cells (Treg). The presence or absence of inflammation may
or may not favour differentiation towards one cell type or the other. Moreover, immune
homeostasis also depends on the balance of Th17/Treg and thus on the regulation of the
corresponding pathways [122–124]. However, Th17s are not the only cells that produce
IL-17. In response to different stimuli, other immune cells can produce IL-17, such as γδ
T cells, CD8+ T cells and natural killer (NK) cells [125,126]. The pro-inflammatory role of
IL-17 is demonstrated in both acute and chronic inflammation. In addition, the activity of
IL-17 often requires synergy with other immune molecules. In particular, cooperating with
TNF-α, IL-17 induces a massive production of IL-6 and IL-8 in the hepatocytes, which leads
to the activation of pro-inflammatory genes [127,128]. The IL-6-promoted inflammatory
environment includes neutrophils recruitment and activation of fibroblasts followed by
hepatic fibrosis [129–131]. IL-17 acts on liver cell types other than hepatocytes. Kupffer
cells express IL-17R when stimulated by IL-17 and increase their immunological activity
and produce other pro-inflammatory cytokines [132].

In the last decade, several research groups have investigated the role of IL-17 in
liver. By using IL-17 KO murine model it has been possible to identify the involvement of
cytokine in liver regeneration after PH. IL-17−/− mice, although showing a final recovery
similar to their wild type mice, had a reduced proliferative activation at 72 h and 5 days
after PH. In particular, using specific proliferative markers such as Ki-67 and BrdU, IL-
17−/− hepatocytes exhibit a proliferative latency compared to the wild type hepatocytes.
In addition, cyclin D1, a key molecule in the progression from G1 to S phase, was reduced
in IL-17 KO respect to wild type mice, confirming an impairing of cell cycle progression
in IL-17 deficiency [133]. As mentioned above, γδ T cells are one of the producers of
IL-17. During the first hours after PH, the γδ T cells increase in number and return to
baseline after about 6 h, suggesting an involvement in the LR. Specifically, TCRδ-KO
mice show a marked reduction in regenerative process, demonstrating that γδ T cells play
a critical role in LR [134]. The role of IL-17 in LR has also been studied in IL-17R KO
murine model. Serum analysis of these transgenic mice showed a reduced concentration
of IL-6 compared to controls. IL-6 is crucial in activating STAT3, which controls the gene
expression of early genes involved in the priming of residual hepatocytes, whereby in
IL-17R−/− mice the regeneration is delayed. The concentration of cyclin D1 in the IL-17R
KO models is reduced, explaining the proliferative delay of the hepatocytes. The altered
priming of the hepatocytes after PH is related to the slow G1/S transition in IL-17R KO
murine model [135]. Interestingly, regulatory genes such as C/EBPβ and A20 are under
the control of IL-17R signalling [136]. The gene expression profile, especially in A20, shows
a significant reduction in the KO murine model compared to wild type mice, that reaches



Int. J. Mol. Sci. 2023, 24, 1176 9 of 20

the peak at 48 h after PH [135]. A20 is a novel identified molecule, which is induced during
liver regeneration [137]. A20 regulates IL-6/STAT3 signalling, reducing inflammation and
promoting cell proliferation. Its function is performed by down-regulating suppressor of
cytokine signalling 3 (SOCS3), which stimulates the activation of STAT3 and thus promotes
mitogenesis. In addition, A20 inhibits NF-κB signalling, reducing the activation of pro-
inflammatory genes and promoting regeneration [138] (Figure 2).
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Figure 2. IL-17 impact in liver regeneration IL-17 is mainly produced by Th17 - from naïve T cells
differentiation upon TGF-β, IL-6 and IL-21 stimulation - and γδ T cells. Inflammatory environment
induced by injury sustains Th17 population and controls the balance between Th17 and their coun-
teracting Treg cells to preserve immune homeostasis. Upon injury γδ T cells increase in number
to sustain IL-17 levels. IL-17 acts on hepatocyte inducing massive production of IL-6 and IL-8 to
trigger pro-inflammatory genes activation. IL-17 induced Kupffer cells produce pro-inflammatory
cytokines. IL-17 signalling controls C/EBPβ and A20 regulating in turn IL-6/STAT3 and NF-κB
signalling. In proliferating environment high level of IL-17 interferes with NKs activation inducing
IL-4-mediated proliferation; reduced IL-17 levels at termination phase promote IFN-γ production by
NKs reactivation, inducing apoptosis in hepatocytes and interrupting regenerating process.

An interesting feature of IL-17 is that it may also be involved in the termination
phase of the liver mass restoring. Considering the very great number of antigens reaching
the liver, it is simple to expect high levels of Natural Killer T (NKT) cells in situ [139].
When active, NKTs promote the production of interferon-gamma (IFN-γ), which induces
apoptosis in hepatocytes, interrupting liver regeneration [140]. High levels of IL-17 interfere
with the NKTs activation, which producing IL-4, stimulates proliferation and allows the
liver to reach the ideal mass. At the same time, low levels of IL-17 promote the final
phase of LR, stimulating the apoptotic process [134]. Evidences that apoptosis could be
involved in ending the proliferation in the restored liver opened up new fields of study.
Certainly, involved in the LR, but not well characterised is another cytokine: IL-22. In the
regenerating liver, γδT cells are the main producers of IL-22. This cytokine is able to induce
in vitro hepatocytes proliferation [141]. In addition, IL-22-mediated signalling includes the
JAK/STAT pathway, which provides up-regulation of numerous pro-regenerative genes,
such as TNF-α and IL-6, which are essential in LR [142].

The role of IL-17 and immunosuppression is very controversial. Certainly IL-17 is
functional in promoting the inflammatory state and autoimmunity, but a protective role
in inflammatory dysfunction of the digestive system has also been reported. The role of
IL-17 would also appear to be related to the cell type with which it interacts. X. Han et al.
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report that IL-17 increases immunosuppression in the presence of mesenchymal stem cells,
while J. Tian et al. show that IL-17 can downregulate the suppressive capacity of olfactory
ecto-mesenchymal stem cells [143,144]. The topic is certainly very fascinating, but requires
further study and investigation in order to formulate new hypotheses.

6. Recruitment of Immune Cells in Response to Liver Damage: The Balancing Process

The regenerative process occurs not only as a result of loss of liver parenchyma, as
after PH, but also as a consequence of exposure to exogenous and/or endogenous agents,
such as alcohol and hepatitis B or C viruses, which induce the death of hepatocytes. In the
blood or skin there is a constant cell turnover, while in the liver the rate is very low and at
homeostasis almost all hepatocytes (approximately 98%) are in a quiescent state. The liver
response after injury can be described in consecutive phases, starting with the homeostatic
state, followed by inflammation, which could lead regeneration or fibrosis. Ultimately,
the regression and resolution phase may occur. Different cell types are recruited during
these phases, with a large prevalence of immune cells. At homeostatic stage in the liver,
the hepatocytes are in a quiescent state, and there is no activation of any cell type. Liver
regeneration is activated when damage is detected. One of the first processes to be activated
is inflammation. In fact, damaged hepatocytes are recognised by leukocytes, which help to
accentuate the inflammatory state [145]. Kupffer cells play a primary role in the activation
of the inflammatory cascade through IL-6 and TNF-α [146,147]. In this phase, the liver
objective is to replace the damaged epithelium mainly by increasing the proliferation
of hepatocytes, but also by activating the ductal progenitors. Sinusoidal cells support
the generation of mitogenic signals such as HGF and Wingless-Type MMTV Integration
Site Family Member 2 (WNT2), which allow the expansion of hepatocytes [148]. On the
other hand, tissue repair, takes place by means of extracellular matrix (ECM) deposition.
The cells responsible for the production of ECM are myofibroblasts and in the liver their
precursors, stellate cells. HSCs, activated by macrophages secreting TGF-β and TNF-α,
are cells with great replication capacity and express high levels of collagen and tissue
inhibitors of metalloproteinases (TIMPs) [149]. As a result of the inflammatory response,
bone marrow-recruited monocytes can also differentiate into myofibrocytes and contribute
to regeneration [150].

Damage-induced ECM deposition is a transitory phase of the regenerative response,
and successful healing requires its subsequent clearance [151]. Thus, a Th1 type immune
response is established, which avoids scarring by the production of IL-12 and IFN-γ,
opposing the increased levels of TGF-β [152]. Fibrosis is the third level that occurs as a
result of excessive accumulation of ECM, which leads to scarring of the liver and loss of
function [153]. This phase is extremely critical and must be finely controlled because there is
a risk of reaching a tipping point, where the process becomes irreversible and homeostasis
of the liver will no longer be guaranteed. Ductal progenitors proliferate exponentially
and at the same time the recruitment of monocytes increases, which differentiate into
macrophages secreting TGF-β and thrombospondin-1 [154]. A poor balance between TIMPs
and matrix metalloproteinases (MMPs) causes the over-accumulation of ECM. Specifically,
metalloproteinases degrade the deposited collagen fibres, making fibrosis a reversible
process. However, it can happen that activated myofibroblasts produce many TIMPs, which
inhibit the action of MMPs, promoting the ECM accumulation [155,156]. Macrophages
also require balancing, in particular monocyte-derived macrophages (MoMφs). Hepatic
MoMφs are divided into two main subsets according to expression levels of Ly6C marker:
Ly6Chigh and Ly6Clow monocytes [157–159]. Ly6C high MoMφs represent the dominant
population in the early post-damage phases, producing IL-6, IL-1β and TGF-β as pro-
inflammatory action is required [160]. To achieve the resolution, after the epithelial damage
has been repaired, it is essential to switch the Ly6C high monocytes to Ly6C low. The
latter are characterised by an anti-inflammatory phenotype that includes the production
of IL-10 and several MMPs, which allows the resolution of fibrosis and the recovery of
homeostasis [161,162]. The macrophage switch is determined more by the phagocytosis of
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apoptotic hepatocytes by STAT3/IL-10/IL-6 signalling pathway [161,163]. In the context of
fibrosis an immune response of type Th2 is involved, where inflammatory environment
is enhanced by an increase of IL-4 and IL-13 and myofibroblasts deposit an excessive
extracellular matrix [164,165].

In the duality of regeneration and fibrosis, LSECs are strongly influenced by the stimuli
released by the surrounding microenvironment. In particular, in the regeneration phase they
express markers such as CXCR7 and CXCR4, which induce the repopulation of hepatocytes,
while in the case of fibrosis they express CXCR4 in great amount, which promotes the
secretion of profibrotic cytokines [166]. The last phase of this cycle is the regression of
fibrosis and resolution of the damage, which brings the liver to its physiological condition.
During regression phase, different cell types are recruited into the tissue, such as dendritic
cells (DCs), macrophages and NKs. Their role is to restore the status quo before the
fibrotic state development and allow the resolution. DCs through the secretion of MMPs,
specifically MMP9, degrade the deposited ECM, preventing the scar formation [167,168]. In
this phase, the inactivation of myofibroblasts and their subsequent elimination is essential.
This function is carried out by the NKs, who preferably kill the MICA-ligand expressing
senescent HSCs, through recognition by NKG2D receptor. In addition, the expression of the
NKp46 ligand on myofibroblasts may also trigger cytotoxic activity mediated by NK cells,
reducing liver fibrosis [169–171]. The role played by γδ T cells remains controversial, on
one side the cytotoxicity against HSC induces a protective role, on the other the production
of IL-17A gives a harmful effect [172,173] (Figure 3).
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Figure 3. Immune cells engagement in liver regeneration. Hepatic damage induces regeneration,
fibrosis and finally implies regression to achieve resolution. Tissue repair takes place by means
of ECM deposition. HSCs derived myofibroblasts are primarily responsible for the production of
ECM through TIMPs secretion. Secondly, inflammatory background induces bone marrow-recruited
monocytes to differentiate into myofibrocytes. LSECs contributes to repair producing pro-fibrotic
cytokines. Excessive deposition of ECM induces fibrosis that, if out of control, leads to a tipping point
making irreversible ECM accumulation and resulting in liver failure. Monocyte-derived macrophages
contribute to ECM accumulation by secreting TGF-β and thrombospondin-1. The two main subsets
of hepatic macrophages (MoMφs) are classified according to Ly6C expression. Ly6Chigh MoMφs
produce pro-inflammatory IL-6, IL-1β and TGF-β in the early phases, to switch to Ly6Clow anti-
inflammatory phenotype producing IL-10 and several MMPs, allowing for ECM remodelling and
the recovery of homeostasis. DCs through the secretion of MMPs, degrade the deposited ECM,
preventing the scar formation and making fibrosis a reversible process. NKs carried out inactivation
of myofibroblasts and their subsequent elimination. Inflammatory background engages Th1 and Th2
immune response to balance ECM deposition and remodelling.
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Characterisation of γδ T cells over the next few years will make it possible to gain new
insights into their function as a bridge between innate and acquired immunity. Moreover,
the action of these would also appear to be strongly influenced by the microbiota [174].
Recently, an axis of interaction between the liver and the gut microbiota has been well
defined. In particular, it is known how both support and control various functions for
the other. Such as the mechanism of bile production, in which both are involved through
feedback mechanisms. However, the regulatory mechanism that the microbiota would
have on the liver regeneration process itself is not well known. In chronic diseases, it is
known that tissue degeneration leads to or is driven by an increased inflammatory state, in
which the gut microbiota may be one of the main modulators. In the event of destruction
of the intestinal barrier, microorganisms or their toxins can easily reach the liver, via the
portal vein, dramatically affecting its functions. Undoubtedly, the identification of the
interaction between the immunological component in the liver-intestine axis will bring new
revelations in the coming years that may also favour therapeutic approaches [175–179].

7. Conclusions

The study of liver regeneration is clinically relevant to investigate liver transplantation
or hepatocarcinoma in human, it also provides a powerful model for studying in vivo the
pathways of proliferation and growth. The successful process is guaranteed by the inte-
gration of different mechanisms, from the action of specific molecules to well-established
timescales. Curiously, the LR is like the Staircase of San Patrizio in Umbria (Italy). The two
stairways, up and down, do not cross each other, albeit in acoustic communication, but
both serve to reach the same place/target. Likewise, during liver mass restoring, cell prolif-
eration and growth are on one side, sustained by pro-inflammatory immunity, while the
remodelling process helped by anti-inflammatory measures is on the other; the equilibrium
retains and preserves the physiology and liver function, thus guaranteeing the homeostasis
of the organism. The early phases of the regeneration process have certainly been better
characterised and it is true that “a good beginning is half the battle”, but in this specific
case the terminal phase is equally important. Indeed, the ending of regeneration by the
hepatostat after basal values have been restored is a critical point. One of the inhibitory
signals could be the activation of the apoptosis process, which would stop cell division
and growth. Indeed, to the well-known molecules involved, such as IL-6 and TNF-α,
IL-17 undoubtedly covered an important and strategic role in LR. This cytokine is present
throughout the regenerative cycle. Effectively, it has been seen as important as contributing
to proliferative triggering in the early stages. However, IL-17 role in termination phase is
still poorly explored. At this stage, the reduction of IL-17 levels would allow NKT cells
to produce INF-γ, thus promoting apoptosis. In the future, the characterisation of IL-17
will be essential. This cytokine is definitely a mediator of inflammation, and its synergetic
action with other stimuli makes it crucial in those processes where the action of several
mediators is required, such as liver regeneration.

A further contribution in recent years has been made by the development of new
in vitro devices, which are proving to be a valid alternative for in vivo research and allow
faster characterisation of cell interactions in different biological contexts. These include
approaches of both 2D and 3D culture devices, which exploit innovative biomaterials
with different properties depending on the type of application. For instance, the use
of polymer replicas, such as polycarbonate (PC) or polydimethylsiloxane (PDMS), to
which extracellular matrix proteins such as collagen or laminin can be implemented,
making the device ideal for studying cellular organisation and differentiation or assessing
shear stresses or vascularisation [180–184]. Even more recent are organ-on-a-chip devices,
which interest not only the liver, but also other organs and tissues such as heart and
kidney [185]. Among the biochips in the hepatic field, we find specific devices for the
characterisation of pathological conditions such as NAFLD [186–188] or ALD [189–191], but
also sophisticated microfabricated platforms that allow the assessment of cellular spatial
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location in accordance with different metabolic levels, which are created ad hoc by applying
microfluidics [192].
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