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Abstract: The rate at which obesity is becoming an epidemic in many countries is alarming. Obese 

individuals have a high risk of developing elevated intraocular pressure and glaucoma. 

Additionally, glaucoma is a disease of epidemic proportions. It is characterized by 

neurodegeneration and neuroinflammation with optic neuropathy and the death of retinal ganglion 

cells (RGC). On the other hand, there is growing interest in microbiome dysbiosis, particularly in 

the gut, which has been widely acknowledged to play a prominent role in the etiology of metabolic 

illnesses such as obesity. Recently, studies have begun to highlight the fact that microbiome 

dysbiosis could play a critical role in the onset and progression of several neurodegenerative 

diseases, as well as in the development and progression of several ocular disorders. In obese 

individuals, gut microbiome dysbiosis can induce endotoxemia and systemic inflammation by 

causing intestinal barrier malfunction. As a result, bacteria and their metabolites could be delivered 

via the bloodstream or mesenteric lymphatic vessels to ocular regions at the level of the retina and 

optic nerve, causing tissue degeneration and neuroinflammation. Nowadays, there is preliminary 

evidence for the existence of brain and intraocular microbiomes. The altered microbiome of the gut 

could perturb the resident brain–ocular microbiome ecosystem which, in turn, could exacerbate the 

local inflammation. All these processes, finally, could lead to the death of RGC and 

neurodegeneration. The purpose of this literature review is to explore the recent evidence on the 

role of gut microbiome dysbiosis and related inflammation as common mechanisms underlying 

obesity and glaucoma. 
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1. Introduction 

The prevalence of obesity has nearly tripled in the last thirty years, largely as a result 

of people becoming less active and eating unhealthier diets [1]. Obesity affects people of 

all ages, races, and socioeconomic backgrounds [1,2]. Obesity has far-reaching 

consequences, and it is well established that it negatively affects the cardiovascular and 

metabolic systems [3,4]. A wide spectrum of harmful outcomes is associated with obesity 

[5]; coronary heart disease, type 2 diabetes mellitus, high blood pressure, stroke, abnormal 

lipid profiles, osteoarthritis, and sleep apnea are only some of the diseases that include 

obesity as a risk factor [5,6]. In addition, there is evidence linking obesity to a slew of 

malignancies [5,7]. On the other hand, the possible effects of obesity on the development 

of eye diseases are less thoroughly studied. A clinical study has shown a detrimental 

connection between obesity and visual acuity, but the ocular circumstances underlying 

this association and its consequences are not well understood [8]. Among several eye 
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diseases, obesity has been linked to glaucoma [9,10], which is another disease of epidemic 

proportions [11]. Globally, it was predicted that the number of glaucomatous patients is 

expected to rise to around 110 million by 2040 [11]. Glaucoma is characterized by 

permanent damage to the optic nerve, which can lead to blindness, and it is the primary 

worldwide cause of irreversible blindness [11,12]. The advancement of the disease is 

irreversible but can be slowed by treatment; consequently, it is essential to identify risk 

factors connected with the condition to facilitate earlier discovery [13]. 

There is growing interest in microbiome dysbiosis, particularly in the gut, which has 

been widely acknowledged to play a role in the etiology of metabolic illnesses such as 

obesity [14,15] and chronic liver diseases [15–17]. On the other hand, there is increasing 

evidence that microbiome dysbiosis plays a critical role in the onset and progression of 

several degenerative diseases of the central nervous system [18] and the retina [19–21], as 

well as in the development and progression of several ocular diseases [22–24]. Obesity is 

a complex condition associated with an increase in a number of inflammatory markers, 

resulting in chronic low-grade inflammation [25]. Dysbiosis of the gut microbiome was 

linked to low-grade inflammation in obese individuals [26,27]. In addition, several ocular 

illnesses are related to neuroinflammation [28,29], and accumulating evidence suggests 

neuroinflammation is a crucial component in glaucoma [30,31], but the exact functions 

remain unknown. Maintaining intestinal homeostasis and inhibiting inflammatory 

processes requires dynamic interactions between the gut microbiome and the host’s 

immune system. Gut dysbiosis can dysregulate immune responses by causing intestinal 

barrier malfunction, resulting in the translocation of bacteria through the epithelial 

barrier, and causing systemic inflammation predominantly through the generation of 

proinflammatory cytokines and modifications of lymphocyte populations. This 

inflammation may lead to tissue degeneration, hence promoting the emergence of 

numerous illnesses, including eye diseases. As a result of bacterial translocation, bacteria 

and their metabolites are delivered via the bloodstream or mesenteric lymphatic vessels 

to ocular regions at the level of the retina and optic nerve, causing tissue degeneration and 

neuroinflammation. There is now preliminary evidence for the existence of a brain and 

intraocular microbiome [32,33]. The dysbiosis of the gut could influence the resident 

brain–ocular microbiome ecosystem which, in turn, could exacerbate the local 

inflammation. All these processes, finally, could lead to the death of RGC and 

neurodegeneration. The purpose of this literature review is to explore the recent evidence 

on the role of gut microbiome dysbiosis and related inflammation as common 

mechanisms underlying obesity and glaucoma. 

2. Glaucoma: Intraocular Pressure/Ocular Hypertension and Relationship  

with Obesity 

Although the etiopathogenesis of glaucoma is not well understood, the primary risk 

factor for glaucomatous optic neuropathy is elevated intraocular pressure (IOP > 21 

mmHg), which seems to be linked to the death of retinal ganglion cells (RGCs) in both 

acute closed-angle glaucoma, in which there is a sudden increase in IOP, and primary 

open-angle glaucoma, in which the increase in IOP occurs more gradually over the years 

[11,12]. Elevated IOP over time causes optic nerve damage and vision loss [11,12]. 

Treatment with medication or surgery to reduce IOP appears to slow the progression of 

the disease [34]. The IOP in glaucoma patients is caused by a combination of factors, 

including increased resistance to aqueous drainage through the trabecular meshwork 

(primary open-angle glaucoma) and iris obstruction of the drainage pathway (primary 

closed-angle glaucoma) [35]. While IOP is reduced, progressive damage may still be 

present in certain people with glaucoma. Increased IOP is only one factor in the 

development of glaucoma; other factors include neuroinflammation [30,31], decreased 

ocular blood flow [36,37], ocular vascular dysregulation [36,38], and changes in systemic 

blood pressure [39,40]. The elevation of IOP, along with other vascular abnormalities, such 

as hypertension and atherosclerosis, is linked to obesity [9,41]. Glaucoma may be affected 
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by metabolic health status and obesity [9,41–45]. In several clinical studies, it has been 

shown that a high body mass index (BMI) correlates with decreased choroidal perfusion, 

decreased ocular blood flow, higher orbital fat, and higher IOP; all these factors may 

negatively contribute to glaucoma development [10,46–49]. The majority of 

epidemiological studies have focused on the connection between obesity and IOP, or 

ocular hypertension. Various studies have revealed an independent cross-sectional 

connection between obesity and ocular hypertension using population-based data [47,50–

60]. A high BMI was found to be a significant risk factor for glaucoma in the Gangnam 

Eye Study [61], and a link between high BMI and high IOP was found in the 2008–2010 

Korea National Health and Nutrition Examination Survey [62]. In a recent and large 

clinical study of over 40,000 Korean subjects, it was seen that the obesity index is the best 

indicator for further increases in IOP in the ocular hypertension group [52]. Obese adults 

exhibit higher open-angle glaucoma risk, according to a Taiwanese study using two 

databases and matched cohorts [63]. In another study on the Korean population, Jung et 

al. [9] came to a comparable result that obesity and metabolic health status are strongly 

related to increased open-angle glaucoma (OAG) risk. A similar causal relationship 

between obesity and OAG was described by Lin et al. [50] in a recent two-sample 

Mendelian randomized investigation carried out in China. In prospective population 

research that included people from Spain and Portugal, it was recently discovered that 

half of those with OAG and ocular hypertension were overweight or obese [64]. A recent 

cross-sectional study in Italian children showed that high IOP affects 12.5% of 8-year-old 

schoolchildren and appears to be associated with high blood pressure related to a high 

BMI [65]. The conventional view assumes that the higher red cell aggregation, hematocrit, 

and hemoglobin levels in fat people cause their blood to be more viscous [66]. An increase 

in IOP may occur as a result of the increased resistance to the outflow of aqueous humor 

from the eye caused by the afflux reduction [67]. Vascular dysregulation and vasospasms 

can be caused by obesity and atherosclerosis of the arteries; they participate in blood flow 

distribution to the optic nerve head, retina, and choroid [68,69]. A reduction in blood flow 

to the optic nerve can render the nerves more susceptible to harm from an increase in IOP 

[70,71]. 

3. Microbiome Dysbiosis at the Intersection of Obesity and Glaucoma 

3.1. Role of Dysbiosis in Obesity Development 

3.1.1. Gut Dysbiosis 

Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia 

are the most common microbial phyla found in the gut [72,73]. These microorganisms 

play an essential role in nutrient absorption, energy regulation, and the health of the 

mucosal barrier [74–76]. Dysbiosis in the gut microbiome has been linked to metabolic 

diseases such as obesity [14,15] and chronic liver diseases [15–17]. Changes in the 

microbiome may influence energy balance and dysregulate immunological responses in 

obese individuals by inducing intestinal barrier dysfunction, leading to the translocation 

of bacteria across the epithelial barrier and triggering systemic inflammation [14,15]. 

Initially, changes in the Firmicutes and Bacteroidetes phyla were observed in obese animals 

[77–79]. The first studies with obese mouse models showed a decrease in Bacteroidetes and 

an increase in Firmicutes [77]. Other studies in leptin-deficient mice corroborate the higher 

proportion of Firmicutes to Bacteroidetes in the gut microbiome [78,79]. One study found 

no change in this variable in obese animals, while another found a decreased 

Firmicutes/Bacteroidetes ratio [80]. Several phyla of gut microbes have been linked to an 

altered ratio in obese individuals. There is substantial evidence that the human gut 

microbiome differs significantly between people who are obese and healthy controls 

[77,81–83]. There is some consensus that people with obesity and type 2 diabetes have 

higher levels of gut Firmicutes and lower levels of Bacteroidetes [84]. The introduction of 

solid food and infant formula has a significant impact on the composition of the gut 
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microbiota in early life [85–87]. Obesity in infants was associated with a predominance of 

Firmicutes and a subsequent dominance of Bacteroidetes in the infant’s gut microbiome [87], 

a finding that is consistent with studies on adults [75,88–90]. Some specific bacteria species 

are linked to a higher susceptibility to developing obesity. Blautia wexleri, Clostridium 

bolteae, Flavonifractor plautii, and Ruminococcus obeum are more common species found in 

obese patients than in nonobese patients [88]. Obese people may also have an increase in 

the bacterial species Eubacterium rectale, Clostridium coccoides, Lactobacillus reuteri, Akkerma-

nia muciniphila, Clostridium histolyticum, and Staphylococcus aureus [89]. In another study, 

Firmicutes, Fusobacteria, Proteobacteria, Mollicutes, and Lactobacillus reuteri were found in 

higher numbers in obese people, while Verrucomicrobia (Akkermansia muciniphila), Faecali-

bacterium prausnitzii, Bacteroidetes, Methanobrevibacter smithii, and Lactobacillus plantarum 

and paracasei were found in lower numbers [91]. Palmas et al. [92] confirmed that the num-

ber of certain bacterial taxa from the family Enterobacteriaceae, which are known to have 

endotoxic activity, was higher in the obese group than in the normal weight control group. 

A higher ratio of Firmicutes to Bacteroidetes has been linked to obesity, according to the 

majority of clinical studies, but other studies have failed to find a connection between the 

two and even found evidence of the contrary. However, there may be methodological 

differences attributed to these divergent findings. Schwiertz et al. [93] found that the pro-

portion of the genus Bacteroides was found to be higher in overweight volunteers than in 

lean and obese volunteers, and the ratio of Firmicutes to Bacteroidetes shifted in favor of 

Bacteroidetes in these groups. Weight loss did not alter the ratio of Bacteroides to Firmicutes 

in the human stomach, as found by Duncan et al. [94]. Furthermore, another study found 

no statistically significant differences in the ratio of Firmicutes to Bacteroidetes between 

obese and normal-weight adults [95] or children [96]. In addition, a recent meta-analysis 

has shown that neither the proportion of Firmicutes nor Bacteroidetes nor their individual 

abundances differentiates healthy human microbiomes from those of people who are 

overweight or obese [97]. At any rate, the abundance of the phyla Firmicutes and Bac-

teroidetes may vary greatly from one population to the next, but this variation may be ex-

plained by other factors, such as differences in diet, exercise, food additives and toxins, 

antibiotic use, and overall level of physical exertion, as well as methodological differences 

between studies. Gut microbiome dysbiosis could contribute to the proliferation of path-

ogenic bacteria and vice versa. For example, mice fed with a low-fiber diet experienced 

more degradation of the mucus layer by Akkermansia, and consequently increasing sus-

ceptibility to the gut pathogens Citrobacter rodentium, Clostridioides difficile, and Salmonella 

typhimurium [98,99]. Studies have shown that individuals infected with H. pylori tend to 

be overweight [100] and have a higher BMI compared to the general population, although 

this association was not detected in another study [100]. Conversely, overweight people 

were at greater risk of contracting H. pylori [101]. According to two studies conducted on 

the Chinese population, the prevalence of H. pylori infection was higher in obese people 

than in nonobese people [102,103]. Another study found that subjects with H. pylori infec-

tion and those aged less than 50 years have an increased risk of being obese (BMI ≥ 30) 

compared to those without this type of infection. However, other researchers have found 

conflicting results when examining the link between H. pylori infection and the onset of 

obesity [104–108]. Nevertheless, a recent meta-analysis found that H. pylori infection is 

associated with an increased risk of developing obesity [101]. 
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3.1.2. Oral Dysbiosis 

Even though gut bacteria are the primary focus of several investigations, the mouth 

cavity is a possible seeding ground for all gastrointestinal bacteria [109]. The oral micro-

biome is a part of the gut microbiome family and several oral species are found in the 

intestine [110]. There is increasing data that show a link between some oral bacterial taxa 

and weight increase and obesity [111,112]. While some research has found no association 

between BMI and oral microbiota composition [113,114], other research has found signif-

icant differences [111,115,116]. So, there may be a correlation between periodontal disease 

and excess weight. The prevalence and abundance of periodontal infections including 

Tannerella forsythia and Selenomonas noxia have been reported to rise in obese adults [117]. 

Periodontal disease and abscesses are dominated by Prevotella species, and they are fre-

quently linked to mucosal inflammation [118]. Similar to what we found in saliva, 

Prevotella in the stomach has been demonstrated to be inversely related to a child’s BMI 

and fat mass [119]. Other investigations of adolescents and adults have linked Prevotella 

to aging and proinflammatory cytokines, which is consistent with observations that obe-

sity is related to low-grade inflammation [120]. Raju et al. [121] found, in a study of 483 

boys and 417 girls, differences in bacterial diversity and abundance that correlated not 

only with BMI but also with gender. There are multiple processes by which weight gain 

may affect the oral microbiota or vice versa. As with gut Firmicutes, many hypothesize 

that oral bacteria could contribute to systemic metabolic changes. Specified oral taxa may 

contribute to shifting energy expenditure by aiding insulin resistance by raising tumor 

necrosis factor-alpha (TNF-) and lipopolysaccharide levels. Additionally, the oral micro-

biome may contribute to taste perception and hunger regulation [116,122]. 

3.2. Role of Microbiome Dysbiosis in Glaucoma Development 

3.2.1. Gut Dysbiosis 

As aforementioned, several studies have reported that obesity has a positive correla-

tion with increased IOP and an increased risk of developing glaucoma 

[46,49,51,52,65,123,124]. In young adults in particular, obesity could be a potential risk 

factor for glaucoma [63]. On the other hand, the gut microbiome is now being recognized 

as a potential environmental factor in the development of multiple neurodegenerative 

diseases and also ocular disorders [125–128]. The gut microbiome has been shown to in-

fluence both the blood–brain barrier (BBB) and brain function [129,130]. Increased intesti-

nal permeability caused by gut dysbiosis allows for the accumulation of microbiome and 

metabolites in the central nervous system [131,132]. Glaucoma is a multifactorial neuro-

degenerative disease characterized by the death of retinal ganglion cells (RGCs). Biologi-

cal mechanisms similar to those proposed for glaucoma and other neurodegenerative dis-

eases involve the loss of particular nerves and the deposition of protein aggregates in spe-

cific anatomical areas [133–136]. Given that glaucoma and other neurodegenerative dis-

eases have similar immune and neurodegenerative factors, the progressive neurodegen-

eration in glaucoma could be caused by microbial communication between the gut and 

the eye. As with studies on obese individuals, some studies have investigated the associ-

ation between specific bacterial phyla present in the gut and the risk of developing several 

eye diseases; for example, dry eye, autoimmune uveitis, and age-related macular degen-

eration have all been linked to an increased Firmicutes/Bacteroidetes ratio as found in 

animal models [125–127]. However, there are few studies that have investigated the asso-

ciation between gut microbiome dysbiosis and glaucoma. For example, DBA/2J mice, an 

animal model of glaucoma that normally develops elevated IOP and glaucoma by 6–8 

months of age, do not show any signs of glaucomatous neural degeneration at 12 months 

of age when raised in a germ-free environment [137] while DBA/2J mice that have been 

maintained in a specific pathogen-free environment have been shown to suffer from a 

progressive loss of RGCs and axons, with percentages of 25% and 50%, respectively, at 8–

10 months and 12 months of age [137]. In the glaucomatous rat model, the 
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Firmicutes/Bacteroidetes ratio, the Verrucomicrobia phylum, and some bacterial genera 

(Romboutsia, Akkermansia) were drastically elevated compared to the control, and this 

was inversely correlated with RGCs [128]. 

When comparing patients with primary open-angle glaucoma (POAG) to healthy 

controls, Gong et al. [138] discovered that the microbial composition of their guts varied: 

Prevotellaceae, Enterobacteriaceae, and Escherichia coli increased in abundance in POAG 

patients compared to healthy controls, whereas Megamonas and Bacteroides plebeius de-

creased significantly. Intriguingly, mean visual acuity and the visual field mean defect 

(VF-MD) had a negative correlation with Blautia, while the visual field mean defect (VF-

MD), which reflects axonal loss within the optic nerve, had a positive correlation with 

Streptococcus [138]. In addition, they found that the change in gut microbial species led 

to a variation in circulating metabolites in POAG and linked these taxa to specific metab-

olites that may play a role in glaucoma pathogenesis [138]. 

A clinical study involving POAG patients compared with the healthy controls found 

that two variants of mitochondrial DNA (m.15784T>C and m.16390G>A) in the DNA 

pools are associated with the composition of the gut microbiota [139]. Particularly, the 

variant m.15784T>C was associated with Firmicutes members, while the variant 

m.16390G>A was linked with Proteobacteria members [140]. In POAG, increased mtDNA 

deletion correlates with fewer mitochondria per cell and increased cell death [141]. Pa-

tients with POAG show a range of mitochondrial abnormalities, and oxidative stress may 

cause glaucoma-related apoptosis by damaging mitochondria [142]. Metabolites pro-

duced by intestinal flora are the mediators of gut microbiota–host interactions. Blood and 

eye fluid samples from glaucomatous patients have been analyzed in metabolic studies, 

and unique metabolic phenotypes have been identified [138,143–149]. As for dysbiosis in 

obesity, a possible link between glaucoma and Helicobacter pylori was also highlighted by 

some research groups [14,101,106]. Kountouras et al. [150] in the year 2000 discovered a 

correlation between glaucoma and the gut microbiome by finding that 88% of 281 glau-

coma patients had a gastric H. pylori infection compared to 47% of controls. The results of 

subsequent investigations that included serology and/or breath testing were inconclusive 

[151], but two meta-analyses generally indicated evidence of a connection between active 

H. pylori infection and POAG [152,153]. It has been theorized that H. pylori infection exac-

erbates glaucoma by increasing systemic inflammation, vasoactive and reactive oxygen 

species [154], and antibody-dependent responses to cross-reactive ocular antigens [155]. 

Reactive oxygen species and inflammatory cytokines migrate from the gastric mucosa to 

the optic disc or trabecular meshwork and H. pylori IgG antibodies may cross-react with 

ocular tissues [156]. The eradication of H. pylori infection has been shown to reduce IOP 

[157] and enhance visual fields [158] in limited studies of POAG patients [159]. Further 

research on gut microbiota in POAG has interpreted the correlation with H. pylori infec-

tion as evidence that intestinal dysbiosis is a risk factor for both disorders [160], although 

it is still unknown if the two diseases are causally linked or if the observed association is 

due to shared susceptibility. 

3.2.2. Oral Dysbiosis 

A greater number of oral bacterial organisms (e.g., Streptococci) and poorer oral 

health (fewer teeth) were found in patients with glaucoma compared to healthy controls 

in studies that investigated a possible relationship between the oral microbiome and glau-

coma [161,162]. Pasquale et al. [163], using data from the health professionals’ follow up, 

found that losing teeth in the two years before a glaucoma diagnosis was related to a 1.45-

fold greater risk of POAG. If tooth loss was followed by periodontal disease with bone 

loss during the same period, the multivariate relative risk (MVRR) increased to 1.85 [163]. 

Therefore, oral dysbiosis of the microbiome may initiate and/or worsen glaucomatous pa-

thology, as shown by clinical data [163]. Yoon et al. [164] found a significant oral depletion 

of Lactococcus, while Faecalibacterium was enriched in glaucomatous patients compared to 

healthy controls. 
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3.2.3. Ocular Dysbiosis 

The vitreous and aqueous humors contain a variety of organic and inorganic com-

pounds that provide an ideal habitat for microbial growth [165]. For example, Propionibac-

terium acnes was discovered in the granuloma of the retina in patients with ocular sar-

coidosis, suggesting that P. acnes may be linked to sarcoid uveitis [166,167]. Despite the 

fact that H. pylori are an obligatory colonizer of stomach mucosa [168], one investigation 

revealed H. pylori coccoid forms in trabecular and iris specimens from POAG patients 

[156]. In the year 2021, the existence of a resident brain microbiome was hypothesized 

[32]; moreover, there is preliminary evidence of intraocular microbiome and disease-spe-

cific microbial signatures in eyes affected by senile cataracts, age-related macular degen-

eration, and glaucoma [33]. Although the presence of intraocular microbiota in healthy 

eyes has yet to be confirmed by others, the findings of Deng et al. [33] suggest that the 

commensal microbiome is a part of the retinal ecosystem and may alter the intraocular 

microenvironment and regulate the retinal immune response directly in retinal degener-

ation. Disease-specific alterations in the composition of the microbiome found within the 

eye hint at a possible selection mechanism operating along the gut–eye axis [33]. The in-

teraction between neurons and immune cells, as well as the retinal pigment epithelium 

and immune cells, is crucial to the suppression of the immune response in the retina [169] 

and also in glaucoma disease [170,171]. Hence, neuronal and retinal pigment epithelium 

degeneration may alter the immune suppressive property, resulting in new ocular or 

brain microbiota. 

Together, the aforementioned studies provide support for the involvement of an al-

tered microbiome (in general, a community composed of more Firmicutes and fewer Bac-

teroidetes) in the pathogenesis of obesity and glaucoma (Figure 1). However, additional 

work is required to further elucidate this association. 

 

Figure 1. Dysbiosis in obese and glaucomatous individuals is characterized by a decrease in total 

bacterial diversity and richness, as well as, in general, by a shift toward a community composed of 

more Firmicutes and fewer Bacteroidetes. Created with BioRender.com (accessed on 23 December 

2022) and modified with Microsoft PowerPoint. 

3.3. Inflammation Mediated by Microbiome Dysbiosis in Obesity 
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Changes in the inflammatory profile, including chronic low-grade systemic inflam-

mation, occur in conjunction with obesity and fat storage [172–174]. Inflammatory mech-

anisms contribute to the formation and progression of insulin resistance [175,176]. Adi-

pose tissue inflammation may begin with the production of inflammatory mediators, 

which then leads to macrophage infiltration, which in turn exacerbates inflammation 

[177]. Both resident and invading macrophages in adipose tissue can become activated, 

starting off a chain reaction that ultimately results in the production of many proinflam-

matory cytokines [178]. 

Several pieces of evidence showed that obese individuals have a high level of endo-

toxins in the blood, which is related to higher proinflammatory cytokines such as TNF- 

and IL-6 in adipocytes [179]. Compared to lean individuals, the levels of LPS were shown 

to be 20% higher in individuals with obesity or glucose intolerance and 125% higher in 

those with type 2 diabetes [180]. A study in vivo showed that injecting LPS into genetically 

identical male mice for four weeks caused a weight increase equivalent to that observed 

in animals fed a high-fat diet [181]. 

Gut microbiome dysbiosis has been proposed as a pathogenic mechanism at the base 

of metabolic endotoxemia and related inflammation in obesity disease [181]. Intestinal 

homeostasis and the suppression of inflammation depend on the dynamic interactions 

between the gut microbiome and the host immune system [182]. The intestinal epithelium 

serves as a biochemical and physiological barrier between the host and foreign antigens 

such as those found in food, commensals, infections, and toxins. The gut microbiome 

plays a crucial role in inflammatory signaling by producing a wide variety of metabolites, 

including LPS, which mediate communication between the gut epithelium and immune 

cells [26]. The mutualistic bacteria of the gut microbiome protect the host from pathogens 

by using a variety of mechanisms, such as nutrient competition, altering environmental 

conditions, modulating immune cell maturation (immune-mediated resistance), and pro-

ducing metabolites with growth-limiting or bactericidal effects [183]. Nonetheless, com-

mensal bacteria can turn pathogenic after mucosal translocation or under certain condi-

tions (such as immunodeficiency) [184]. 

The altered gut microbiome leads to an increase in gut permeability and systemic 

levels of bacterial products such as LPS [185]. LPS generated from the outer cell membrane 

of gram-negative bacteria is believed to trigger the inflammatory processes linked to the 

formation of obesity and insulin resistance [185,186]. LPS can traverse the gastrointestinal 

mucosa through leaky intestinal tight junctions or by infiltrating chylomicrons, the lipo-

proteins responsible for the absorption of dietary triglycerides and cholesterol from the 

intestine to the plasma [186,187]. Excessive fat consumption causes a rise in chylomicrons 

in the colon during the postprandial period, which promotes LPS penetration into the 

circulation [188]. In patients with type 2 diabetes, impaired lipoprotein metabolism re-

duces LPS catabolism and may exacerbate endotoxemia-related inflammation [189]. When 

LPS reaches the systemic circulation, it infiltrates organs such as the liver and adipose 

tissue, causing an innate immune response [185,186]. Specifically, LPS binds the plasma 

LPS-binding protein, which activates the macrophage plasma-membrane-located CD14 

receptor protein [186,190]. This complex, in turn, binds the toll-like receptor 4 (TLR4), a 

pattern recognition receptor (PRR), on the surface of macrophages, which activates the 

production of genes encoding various inflammatory effectors, including nuclear factor B 

(NF-B) and activator protein 1 (AP-1) [190,191]. NF-kB is recruited to the nucleus, where 

it stimulates the transcription of proinflammatory cytokines such as interleukin-6 (IL-6), 

TNF-, interleukin-1 beta (IL-1), inducible nitric oxide synthase (iNOS), and cyclooxy-

genase 2. (COX-2) [192]. LPS also regulates the nucleotide oligomerization domain 

(NOD)-like receptors found on macrophages and dendritic cells, which work in conjunc-

tion with TLRs to induce NF-B. Moreover, LPS recruits other effector molecules, such as 

the nucleotide-binding domain leucine-rich repeat-containing (NLR) protein, adaptor 

protein ASC, and caspase-1, which are components of the inflammasome, a multiprotein 

oligomer that activates the innate immune system [193]. 
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As aforementioned, endotoxin-induced inflammation is highly associated with the 

immunological response mediated by TLRs. TLRs have been linked to the persistent in-

flammation that characterizes metabolic syndrome and obesity [172,174]. TLR4 is one of 

the best-studied TLR members, which has been shown to identify both LPS and heat shock 

proteins (HSP), triggering immunological responses to these external and endogenous lig-

ands, respectively [194–196]. TLR4 is expressed by adipocytes, and its activation leads to 

the production of proinflammatory cytokines and an intense immune response, both of 

which may play a role in the etiology of obesity [197]. Improved TLR4 mRNA expression 

was seen in the adipose tissue of obese db/db mice, suggesting a possible role for TLR4 

signaling in both obesity and inflammation [198]. Conversely, the knockout of TLR4 in-

hibits the development of obesity-related illnesses [199–201] and lowers weight gain in 

young mice fed a high-fat diet [202]. Inflammation and insulin resistance, caused by obe-

sity, is reduced in TLR4-/- mice by preventing insulin signal transduction and nitric oxide 

generation [203]. Moreover, animals lacking TLR4 were protected against insulin re-

sistance generated by a high-fat diet [204]. In an ex vivo study, Renovato-Martins et al. 

[205] demonstrated that the conditioned medium derived from obese adipose tissue in-

duces inflammation in preadipocytes via increased TLR4 signaling and ROS production, 

thereby creating a paracrine loop that promotes the differentiation of preadipocytes into 

adipocytes with a proinflammatory profile. High levels of circulating free fatty acids 

(FFAs) are associated with obesity and have been demonstrated to induce insulin re-

sistance via many proinflammatory pathways [174,206–208]. The levels of FFAs in the 

blood of obese patients were substantially higher than those of lean subjects [209]. In-

creased TLR4 signaling in adipose tissue, liver, and macrophages was reported in mice by 

Shi et al. [204] in response to the elevation of FFA levels. The stimulation of TLR4 expres-

sion on macrophages, adipocytes, and adipose tissue by FFAs leads to an increase in the 

release of several inflammatory mediators [204,210,211]. Research in humans confirms the 

elevated TLR activation, seen in animal studies, in both adipose tissue and peripheral 

monocytes from obese individuals. Muscle samples from obese patients showed higher 

levels of TLR4 expression and NF-kB activity, leading to higher levels of proinflammatory 

IL-6 release, compared to biopsies from lean subjects [209]. Omental fat tissue has signifi-

cantly higher mRNA expression of TLR1, TLR2, TLR4, and TLR6 [212]. Ahmad et al. [213] 

discovered significantly higher expression levels of TLR2 and TLR4 in peripheral blood 

mononuclear cells and subcutaneous adipose tissue of obese and overweight people in 

comparison to lean controls. When comparing peripheral monocytes from obese and 

healthy controls, Mraz et al. [214] found significantly higher levels of TLR4 expression. 

Similarly, Vitseva et al. [210] found an elevated level of TLR4 mRNA expression in adipo-

cytes isolated from human subcutaneous abdominal fat from obese people, together with 

elevated NF-B activity and the release of IL-6 and TNF-. Instead, Catalán et al. [215] 

found higher TLR4 mRNA expression in visceral adipose tissue, but not subcutaneous 

adipose tissue, in normoglycemic obese people compared to lean controls. Flow cytome-

try analysis showed that TNF- production was significantly increased in obese groups 

compared to nonobese patients. Nonetheless, the analysis did not reveal an increase in 

TLR2 or TLR4 expression [216]. In addition, two studies found that some TLR4 polymor-

phism is linked to a higher probability of developing obesity and metabolic disorders, and 

this is proof that supports the key role of TLR4 in these diseases [217,218]. Sharif et al. 

[219] found that the TLR4 D299G/T399I haplotype polymorphism elevates the risk of in-

sulin resistance by elevating TLR4 protein expression in obese subjects. 

3.4. Inflammation Mediated by Microbiome Dysbiosis in Glaucoma Pathogenesis 

Human retinal ganglion cells, retinal nerve fiber layer thickness, and choroidal thick-

ness can all be significantly altered by obesity [220–222]. Several pieces of evidence 

showed that glaucomatous eyes have increased protein levels of proinflammatory cyto-

kines, macrophage infiltration of the optic nerve [223,224], and intense inflammatory 

staining in the optic nerve head, which can damage the optic axon [225,226]. Patients with 
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glaucoma not only have aberrant circulating antibodies but also altered T-cell repertoires 

[227]. TNF- is upregulated in glaucoma [228], and the recruitment of immune cells in 

response to active TNF- receptor 1 causes inflammation, the loss of oligodendrocytes, 

the activation of enzymes that induce oxidative stress, and ultimately the death of RGCs 

[229]. The complement components, autoantibodies, and other inflammatory markers 

have all been found to be elevated in the blood, aqueous humor, and vitreous of glauco-

matous patients [230–233]. Hence, the abnormal inflammatory findings in glaucoma are 

consistent with the hypothesis that the inflammatory balance is dysregulated toward a 

proinflammatory phenotype [229]. 

Obesity is correlated with gut dysbiosis and an increased risk of developing glau-

coma [46,49,51,52,63,65,123,124]. On the other hand, gut microbiome dysbiosis appears to 

play a crucial role in the development of several ocular diseases [234–236] and glaucoma 

[137]. Dysbiosis and the consequent impairment of gut permeability result in an increase 

in gut-derived toxins in the systemic circulation, producing metabolic endotoxemia. The 

translocation of microorganisms and metabolites from the gut into the circulatory system 

and other tissues has been linked to the onset of autoimmune and neurodegenerative dis-

orders [237,238]. Retinal degenerative diseases may be the outcome of gut microbial 

dysbiosis, which causes a low-grade systemic inflammation [239,240]. By modifying the 

systemic immune system and/or influencing the ocular microenvironment, microbial 

dysbiosis could have a role in the onset and progression of inflammatory eye disorders 

[20,241], including glaucoma [242]. 

In vivo studies in animal models of glaucoma found that the blood–retina barrier 

(BRB) is altered [243,244] and that monocytes can actively extravasate across the leaked 

BRB and passively enter the eye [245,246]. Additionally, in humans, the significant infil-

tration of monocytes into the optic nerve head has been demonstrated in glaucoma [224]. 

Gut microbiome dysbiosis (including that of the oral cavity) could induce a state of 

endotoxemia where higher access to metabolites and nonbeneficial bacteria from the sys-

temic environment could, in turn, alter the brain, retinal, and ocular barriers [247–250]. 

The alteration of these barriers, in turn, could allow an increased influx of inflammatory 

metabolites and bacteria into the ocular regions at the retinal and optic nerve level, which 

could contribute to local inflammation (neuroinflammation) which has a prominent role 

in glaucoma pathogenesis [31]. The gut microbiome has been shown to influence both the 

blood–brain barrier (BBB) and brain function [129,130]. Increased intestinal permeability 

caused by gut dysbiosis allows microbes and metabolites to accumulate in the central 

nervous system [131,132]. The author Link [32], in his work, postulated the existence of a 

resident brain microbiome, and Deng et al. [33] found evidence of intraocular microbiota 

and ocular-disease-specific microbial signatures in eyes affected by senile cataracts, age-

related macular degeneration, and glaucoma, in which the alteration of the blood–ocular 

barrier (BOB) seems to be involved. In response to endotoxemia, the brain–ocular micro-

biome ecosystem may be altered, which would exacerbate the local inflammation. More-

over, the ocular microbiome could modulate the retinal immune response directly by ac-

tivating TLRs or indirectly by releasing various metabolites in the degenerating retina 

[170,171]. 
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Inflammation caused by endotoxins is closely associated with the immunological re-

sponse mediated by TLRs. TLR expression was upregulated in both retinal microglia and 

astrocytes [251] and has been linked to the pathophysiology of the degeneration of RGCs 

in glaucoma and other ocular disorders [252–256]. Results from in vivo investigations sug-

gested that blocking TLR4 signaling could be a useful strategy for treating glaucoma [257–

261]. Zinkernagel et al. [262] showed that a peripheral injection of bacterial LPS induced 

axonal degeneration and neuronal reduction in two distinct glaucoma animal models. 

This result was likely attributable to TLR4 overexpression, complement activation, and 

injury to the retina and optic nerve microglia; consequently, the bacterial activation of 

axonal microglia promotes neurodegeneration [262]. TLR4, which is expressed by RGCs 

and other retinal cells, responds to a variety of endogenous ligands, which can be found 

in the AH and vitreous humor (VH) of individuals with retinal ischemia disorders and 

glaucoma [263–266]. TLR4 suppression strategies were tested in animal models of retinal 

damage to corroborate the deleterious roles of TLR4 in RGC mortality. RGC survival is 

improved in a model of optic nerve trauma by inhibiting TLR4 with inhibitors or knock-

outs [257,261]. Further, silencing TLR4 inhibits the proinflammatory response triggered 

by amyloid through the inhibition of NF-kB activation in RGCs [267]. TLR activation can 

also occur via self-components, as seen in autoimmune diseases [268,269]. Heat shock pro-

teins (HSPs) are a type of nonpathogenic ligand that TLRs can recognize [268,269]. An 

analysis of TLR presence in human glaucoma donor eyes also revealed that HSPs and 

oxidative stress can stimulate immune activity in rat retinal microglia and astrocytes in 

vitro via glial TLR signaling [270,271]. Increased TLR expression was observed after incu-

bating cells with HSP60 and -70 and then subjecting them to radical stress [272,273]. TLR2, 

TLR3, and TLR4 were detected by immunohistochemistry on both rat retinal microglia 

and astrocytes in vitro, with TLR3 being more abundant on astrocytes and TLR2 and TLR4 

being more abundant on microglial cells [272,273]. Mass spectrometry showed an upreg-

ulation of TLR4 in the retinae of glaucomatous donor eyes [274]. Additionally, proteomic 

and immunohistochemical analyses revealed an upregulation of TLRs in the glaucoma-

tous human retina [271]. 

There are several single-nucleotide polymorphisms that have been linked to an in-

creased risk of glaucoma because of their potential to affect inflammation [275]. As for 

obesity, several TLR4 polymorphisms are linked to a higher probability of developing 

glaucoma, and this is proof that supports the key role of TLR4 in the pathogenesis of this 

disease. The relationship between TLR4 polymorphisms and glaucoma has been the sub-

ject of numerous case-control investigations over the past few decades, but the results 

have been conflicting in some cases [154,276–283]. Suh et al. [283] showed that TLR4 pol-

ymorphisms are not necessarily linked to normal tension glaucoma (NTG) pathogenesis 

in the South Korean population. Takano et al. [282] found that some variations in the TLR4 

gene were linked to an increased risk of POAG and NTG. Two recently discovered vari-

ants of TLR4, rs4986790 A/G and rs4986791 C/T, were found to significantly elevate the 

risk of POAG in a Mexican population [277]. However, Mousa et al. [280] did not find any 

link between rs4986791 C/T and POAG in a study on the Saudi population with a much 

smaller sample size. Evidence suggests that these functional polymorphisms promote 

apoptosis in hepatic stellate cells by decreasing Bcl-2 [284,285], although the roles of these 

mutations are controversially discussed for various diseases. The polymorphisms 

rs4986790 A/G and rs4986791 C/T were therefore proposed to promote RGC apoptosis 

[277]. Rs4986790 A/G and rs4986791 C/T polymorphisms do not interfere with the LPS 

binding property of TLR4, as shown by a structural protein study using crystallography 

[286]. The mutations may affect TLR4’s response to damage-associated molecular pattern 

molecules (DAMPs) [264–266,287]. In a Japanese population, POAG was linked to TLR4 

polymorphisms rs7037117 [282]. Of interest, rs7037117 also showed a strong correlation 

to NTG [154]. 
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In summary (Figure 2), obesity is correlated with gut dysbiosis, and the obese indi-

vidual has a high risk of developing elevated IOP and glaucoma. In a gut dysbiotic sce-

nario, the systemic spread of proinflammatory metabolites and bacteria through the leaky 

gut could induce systemic inflammation, where TLR4 activation plays a prominent role, 

and could alter the retinal and ocular barriers (BBB, BRB, and BOB), resulting in increased 

access to metabolites and nonbeneficial bacteria in the ocular regions at the retinal and 

optic nerve level. This event, in turn, could contribute to local inflammation (neuroinflam-

mation). Moreover, the dysbiosis of the gut microbiome could influence the resident 

brain–ocular microbiome, which, in turn, could exacerbate the local inflammation. All 

these processes led to the death of RGC and neurodegeneration. 

 

Figure 2. Microbiome dysbiosis and related inflammation: pathological mechanisms underlying 

obesity and glaucoma. BBB: blood–brain barrier; BRB: blood–retinal barrier; BOB: blood–ocular bar-

rier; IOP: intraocular pressure; RGC: retinal ganglion cells; TLR4: toll-like receptor 4. Created with 

BioRender.com (accessed on 23 December 2022). 
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4. Potential Therapies for Obesity and Glaucoma 

Surely, diet has a fundamental role in the control and prevention of chronic low-

grade inflammation in obese individuals [288,289]. Adipose tissue is an endocrine organ 

that, according to substantial research, plays a crucial role in the homeostasis of immunity 

[290]. Obesity, a condition of chronic low-grade inflammation, is caused by an excess of 

nutrients [288,289]. Thus, optimal nutrition plays a crucial role in immunity. The variety, 

composition, and metabolic activity of the gut microbiome are strongly correlated with 

dietary habits and nutrient consumption [291]. Additionally, dietary variations alter the 

composition and activity of the gut microbiome, which may help to reduce obesity [291]. 

In addition to the diet, exercise is known to stabilize the progression of obesity and alter 

the composition of the gut microbiota by increasing microbial diversity, which may con-

tribute to weight loss, obesity-related pathologies, and gastrointestinal disorders 

[292,293]. Moreover, exercise is regarded as an effective nonpharmaceutical therapy for 

reducing inflammatory signaling pathways [294]. Numerous therapeutic approaches to 

reduce dysbiosis are now being studied, and some of them concern the use of probiotics 

(Figure 3). Results from animal research indicate that probiotics can enhance intestinal 

permeability and the metabolic and inflammatory state [295,296]. Lactobacillus and 

Bifidobacterium species are the most widely proposed probiotics for obesity. These species 

have modest levels of pathogenicity and antibiotic gene resistance [297]. Evidence sug-

gests that lactobacilli can inhibit TNF- expression, which in turn lowers chronic inflam-

mation and may be useful in the treatment of neurological disease [298]. It has been shown 

that L. plantarum TN8 can reduce proinflammatory IL-12, IFN-, and TNF- levels while 

increasing anti-inflammatory IL-10 levels in diet-induced obese mice [299]. Adipose tissue 

proinflammatory cytokines were downregulated, and fat storage was severely impacted 

by L. gasseri SBT2055 supplementation in mice [300]. The effects of L. curvatus HY7601 and 

L. plantarum KY1032 were investigated in diet-induced obese mice by Park et al. [301]. 

Supplementation with either probiotic resulted in less fat being stored and a lower BMI. 

In addition, the authors found that adipose tissue proinflammatory genes (IL-1, TNF-, 

IL6, and monocyte chemotactic protein-1) were suppressed [301]. In obese and type 2 di-

abetic mice, Saccharomyces boulardii administration for one month decreased body weight, 

hepatic steatosis, fat mass, and inflammation, and altered the composition of the gut mi-

crobiota (increasing Bacteroidetes and decreasing Firmicutes, Proteobacteria) [302]. The mod-

ulation of cytokines such as IL-6 and TNF- was observed in Bifidobacterium lactis HN019-

treated patients with metabolic syndrome in addition to a decrease in weight gain [303]. 

L. reuteri V3401 supplementation in individuals with metabolic syndrome reduced IL-6 

and soluble vascular cell adhesion molecule 1 and increased the amount of Verrucomicrobia 

[304]. Results from animal models of obesity showed that treatment with Akkermansia mu-

ciniphila reduced insulin sensitivity, fat deposition, and weight gain [305]. A. muciniphila 

supplementation reduces hepatic steatosis and intestinal permeability [306]. Amuc 1100, 

a protein isolated from the outer membrane of A. muciniphila, has been shown to interact 

with TLRs [307]. Similar positive effects to those of A. muciniphila were recently discovered 

in Dysosmobacter welbionis [308]. Live D. welbionis J115T supplementation reduced weight 

gain, insulin resistance, and inflammation in white adipose tissue in mice [308]. Bacteroides 

thetaiotaomicron has shown substantial efficacy in preclinical models of inflammatory 

bowel illness, protecting against weight loss and histological alterations in the colon and 

inflammatory markers [309]. Faecalibacterium prausnitziiand had beneficial effects on intes-

tinal epithelial barrier impairment in a chronic low-grade inflammation murine model 

[310]. Oral administration of Parabacteroides goldsteinii bacteria to mice fed a high-fat diet 

significantly reduced weight gain and obesity-associated metabolic abnormalities [311]. 

In addition to probiotics, prebiotics have been proposed as possible ways to reduce 

inflammation, especially in preclinical models [312], and the impact of antiobesity drugs 

on microbiota composition and inflammation has been the subject of current research. 

Additionally, research has shown that bariatric surgery reduces obesity-related comor-

bidities [313] and chronic low-grade inflammation [314]. Comparing the gut microbiota 
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of obese and lean individuals revealed a larger proportion of Firmicutes and a lower pro-

portion of Bacteroidetes in obese individuals, whereas the opposite profile was observed in 

those who underwent one-year diet therapy and a gastric bypass [315]. The malabsorption 

status following bariatric surgery, changes in the metabolism of bile acids, changes in 

stomach pH, and changes in the metabolism of hormones result in alterations in the gut 

microbiota [316]. 

Several promising therapies, such as fecal microbiome transplantation and phage 

(bacteriophage) therapies, are currently being investigated. Transplants from lean donors 

have been shown to increase insulin sensitivity in individuals with metabolic syndrome 

and decrease persistent low-grade inflammation, according to preliminary trials [317,318]. 

Using phage (bacteriophages) therapy to target the microbiota of the gastrointestinal tract 

as a treatment for obesity is a novel approach [319–321]. Bacteriophages are viruses that 

infect bacteria by attaching to distinct binding sites on the cell surface [319,320]. Unlike 

broad-spectrum antibiotics, each phage exclusively kills a particular type of bacterium 

[319,320]. This allows for the treatment of obesity by targeting only the harmful bacteria 

in the stomach while allowing the beneficial bacteria to thrive [321,322]. The novel study 

by Federici et al. [323] suggests that phage therapy can be utilized to treat not only intes-

tinal bowel diseases but also diseases such as obesity, in which the gut microbiota plays 

an important role. 

Another modality to prevent or possibly treat obesity and glaucoma is to intervene 

directly with drugs capable of reducing inflammation or regulating proteins/genes that 

are key components of the proinflammatory mechanisms underlying the two pathologies, 

such as TLR4. Sibutramine has proven to be more effective at suppressing the expression 

of flagellum-encoding genes, which have been linked to inflammation [324]. Otherwise, 

liraglutide has been shown to reduce inflammation by regulating gene expression in both 

intestinal immune cells and peripheral blood mononuclear cells [325]. Given its involve-

ment in multiple inflammatory and fibrotic processes with different etiologies, TLR4 is an 

appealing therapeutic target. The lack of TLR4 signaling ameliorated the insulin and glu-

cose signaling abnormalities associated with obesity [204,326]. In addition, TLR4 is recog-

nized as a critical pathogenic molecule in autoimmunity and inflammation [327]. It is in-

teresting to note that numerous different TLR4 antagonists are currently being tested in 

clinical studies for a wide range of inflammatory illnesses. Anti-TLR4 antibodies are now 

being tested in phase II studies for the treatment of rheumatoid arthritis, while the TLR4 

inhibitor JKB-121 is being tested for the treatment of nonalcoholic steatohepatitis [328]. 

Studies using acute liver injury models have shown that TLR4 antagonists can decrease 

TLR4 signaling, the subsequent inflammatory cascade, and liver injury in vivo [329]. Find-

ings by Moser et al. [330] demonstrated a strong protective impact of TLR4 inhibition 

(TLR4 inhibitor TAK-242) in obesity-mediated outcomes involving the inflammation of 

microglia. Matsunaga et al. [331] found that the anti-inflammatory activity of the small-

molecule TAK-242 is mediated by binding preferentially to the intracellular toll-interleu-

kin-1 receptor (TIR) homology domain of TLR4, blocking the protein’s ability to link to its 

adapter molecules. 

As far as the inflammation in glaucoma is concerned, Xu et al. [259] found that 

wogonin, a methylated flavone [332], protected RGCs’ survival and reduced neuroinflam-

mation in the retina following crush injury to the optic nerve via the blockade of the TLR4-

NF-B pathways. Hepatic steatosis is significantly related to visceral fat and obesity . As 

a result of de novo lipogenesis dysregulation, the quantity of FFA molecules rises in he-

patic steatosis, triggering oxidative stress [333–335]. Fibrosis of the eye, liver, kidney, and 

skin is characterized by an increase in the expression of extracellular matrix (ECM) pro-

teins and a decrease in ECM degradation, and it is well known that TGF-2 is a master 

regulator in these processes [333,334]. Eye, liver, kidney, and skin fibrosis are all charac-

terized by an increase in the expression of extracellular matrix (ECM) proteins and a de-

crease in ECM degradation, and it is well recognized that the TGF-β is a master regulator 

in these processes [336]. Patients with POAG have elevated levels of TGF-2 in their AH 
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[337]. Elevated IOP is brought on by an accumulation of TGF-2 at the trabecular mesh-

work (TM), which increases aqueous outflow resistance and promotes ECM synthesis by 

fibroblasts [338–341]. In the last few decades, TLR4 signaling for fibroblasts has been hy-

pothesized. Recently, Sharma et al. [342] showed that the modulation of TGF2-induced 

ECM production performed by a selective TLR4 inhibitor decreases elevated IOP and 

hence might reduce hypertensive glaucoma. These findings suggest a new and realistic 

method for treating glaucoma. 

 

Figure 3. Potential therapies for obesity and glaucoma. Obesity is correlated with gut dysbiosis, and 

obese individuals have a high risk of developing elevated IOP and glaucoma. Gut dysbiosis could 

induce systemic inflammation, which is involved in the progression of obesity pathogenesis and 

various diseases affecting the eye. Promising preventive or therapeutic approaches for both obesity 

and glaucoma could involve rebalancing microbiome dysbiosis, which is one of the triggers of in-

flammation in both diseases or directly intervening with anti-inflammatory drugs. RGC: retinal gan-

glion cell. Created with BioRender.com (accessed on 23 December 2022). 

5. Conclusions 

Several studies have shown that obese patients have a higher risk of developing ele-

vated intraocular pressure and glaucoma. On the other hand, microbiome dysbiosis has 

been widely acknowledged to play a role in the etiology of obesity. Research on the link 

between eye diseases and the gut microbiome has gained attention recently. The role of 

the microbiome is gradually emerging. 
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Our review provides evidence that dysbiosis of the gut microbiome and related in-

flammation are shared pathological mechanisms involved in the development of obesity 

and glaucoma. Several investigations have demonstrated that gut dysbiosis influences en-

ergy balance and dysregulates immunological responses in obese individuals, with a 

change in intestinal permeability that may promote metabolic endotoxemia. If proinflam-

matory metabolites and bacteria can enter the bloodstream via a leaky gut, they can trig-

ger systemic inflammation, in which TLR4 activation plays a key role. This, in turn, can 

disrupt the blood–brain barrier, the blood–retinal barrier, and the blood–ocular barrier, 

allowing more metabolites and nonbeneficial bacteria to enter the retina and optic nerve. 

Such events, successively, could contribute to local inflammation (neuroinflammation). 

Evidence such as this suggests that the alteration in the gut microbiome may have an effect 

on the microbes normally found in the brain and eye, perhaps enhancing any inflamma-

tion that may already be present. All of these factors could contribute to retinal ganglion 

cell loss and subsequent neurodegeneration in glaucoma disease. 

Therefore, according to the data explained in this review, beneficial preventive or 

therapeutic approaches for both obesity and glaucoma may involve rebalancing microbi-

ome dysbiosis, which is one of the trigger causes of inflammation, or directly intervening 

with anti-inflammatory drugs that can regulate key components (such as TLR4) of the 

proinflammatory processes underlying both diseases. Nevertheless, obesity and glau-

coma are multifaceted illnesses in which dysbiosis and associated inflammation are not 

the only pathogenic causes; hence, the link between gut microbiome dysbiosis, obesity, 

and glaucoma should be the topic of future research. 
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