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Abstract: Recent years have seen tremendous success in the design of novel drug molecules through
deep generative models. Nevertheless, existing methods only generate drug-like molecules, which
require additional structural optimization to be developed into actual drugs. In this study, a deep
learning method for generating target-specific ligands was proposed. This method is useful when the
dataset for target-specific ligands is limited. Deep learning methods can extract and learn features
(representations) in a data-driven way with little or no human participation. Generative pretraining
(GPT) was used to extract the contextual features of the molecule. Three different protein-encoding
methods were used to extract the physicochemical properties and amino acid information of the target
protein. Protein-encoding and molecular sequence information are combined to guide molecule
generation. Transfer learning was used to fine-tune the pretrained model to generate molecules with
better binding ability to the target protein. The model was validated using three different targets. The
docking results show that our model is capable of generating new molecules with higher docking
scores for the target proteins.

Keywords: drug discovery; de novo drug design; deep learning; transfer learning; molecule generation

1. Introduction

The discovery of protein-targeted drugs is a very laborious, time-consuming and
expensive process. Traditional methods such as high-throughput screening are inefficient
because the number of resources required is not balanced by the small number of hit
compounds. Conventionally, the identification of promising lead structures is achieved
by experimental high-throughput screening (HTS), but this is time-consuming and ex-
pensive [1-3]. A typical drug discovery cycle takes approximately 14 years [4] and costs
approximately 800 million dollars [5]. Another approach generates a large number of
molecules and then uses virtual screening (VS) to find new ligands with desired properties.
The ligands are typically sorted by their docking score to the receptor. However, this
approach is not stable and does not generate target-specific molecules. Therefore, it is im-
portant to overcome the limitations of conventional drug discovery methods with efficient,
cost-effective, and broad-spectrum computational alternatives [6]. With the development
of computer technology, drugs were modeled and refined using machine learning based
techniques. In recent years, artificial intelligence (AI) combined with computational chem-
istry offers a significantly more efficient alternative [7-10]. For example, the use of machine
learning-based techniques to predict the inhibitory activity of high-value compounds has
accelerated the identification of new drug candidates for COVID-19 [11]. At the same time,
deep learning has been successfully applied to generating small molecules [12].
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In 2006, Hinton et al. [13] officially proposed the concept of deep learning, which has
already been successfully applied in computer vision, natural language processing, and
some other fields [14-18]. In recent years, deep learning has been successfully applied
to molecule generation. There are increasing efforts to develop deep learning algorithms
that can automatically generate chemically valid molecular structures [19]. Similar to
natural language processing and social networks, molecules are represented as texts and
graphs [20-22]. Therefore, models for de novo molecular design are naturally applicable to
drug discovery. For example, Zhavoronkov et al. [23] proposed the GENTRL algorithm to
design potential molecules of DDR1 kinase inhibitors in just 21 days, significantly reducing
the development time and cost of new drugs. Meanwhile, neural network-based molecule
generators using a Variational Autoencoder (VAE) and a recurrent neural network (RNN)
have been proposed for de novo molecule generation. Character VAE uses kernel density
estimation to learn the relevant features of molecules. Then, a gradient-based search is
used to efficiently guide the search by learning continuous latent spaces on dimensions,
that optimize the specific properties of molecules. The molecule was decoded along a
random start point (objective function value of 18.06%) to the end point (objective function
value of 98.23%) using Gaussian interpolation [24]. Segler et al. attempted to pretrain the
RNN neural network model on a generic dataset and then apply the pretrained model to
a specific dataset through transfer learning to improve the prediction performance on a
small dataset. Using this strategy, the model reproduced 14% of 6051 test molecules against
Staphylococcus aureus and 28% of 1240 test molecules against Plasmodium falciparum
(malaria) [25].

Novel drugs with potential therapeutic interactions are essential in the molecule gen-
eration process. One of the strategies focused on the simplified molecular input line entry
system (SMILES) [26] that uses textual features to generate molecules. It is possible to
generate input vectors from molecular structures, but reversing these vectors is extremely
difficult, particularly because a single fingerprint represents multiple possible chemical
structures. Using deep generative models with SMILES strings as molecular representations
can help overcome this limitation. By converting molecular structures into texts, SMILES
can be easily processed by computers, which is convenient for chemists and easy to train
deep generative models [27,28]. Grechishnikova used the transformer architecture to con-
sider target-specific de novo drug design as a translation problem between the amino acid
“language” and the SMILES representation of the molecule [29]. However, approximately
30% of the generated molecules were found in the training dataset. Recently, Xu et al. [30]
attempted to combine VAE models with docking score to generate molecules. However,
this approach may result in a longer time to find the optimal molecule, thus prolonging
the overall generation process. Some methods incorporated structural features to generate
molecules. However, the limited quantity of known protein structures restricts the applica-
tion of structure-based prediction methods. Since some protein structures are unknown,
structural features rely on third-party computational tools that produce noise information
that impacts predictions. Cell growth, survival and differentiation are regulated by receptor
tyrosine kinases (RTKs) [31]. Among the known RTKSs, the epidermal growth factor receptor
has been widely studied. Overexpression of EGFR has been associated with aggressive
disease and poor prognosis in a number of tumor types (e.g., breast, lung, ovarian, prostate,
and squamous carcinoma of head and neck) [32,33]. However, there are few drugs targeting
EGFR. Existing methods face the problem of data scarcity in the development of drugs
against EGFR. As a critical sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays
an essential role in immune and vascular systems [34]. 5-HT receptors have high levels of
basal activity and are subject to regulation by lipids, but the structural basis for the lipid
regulation and basal activation of these receptors and the pan-agonism of 5-HT remains
unclear [35].

For drug discovery and development, predictions of small molecules binding to pro-
teins are especially useful for screening virtual libraries of drug-like molecules. Predicting
bound conformations and binding affinity is the purpose of molecular docking [36]. To
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avoid potentially harmful side effects and reduce costs, the pharmaceutical industry is
focusing on developing highly selective drugs using molecular modeling techniques [37,38].
Therefore, the process of molecular docking is crucial.

In this work, we pretrained a model based on GPT architecture on the MOSES dataset,
and SMILES was used to represent molecules. Protein encodings are used to represent
protein information. Transfer learning was applied to our model. We later applied the
method on three targets (EGFR, SIPR1 and HTR1A) to investigate the capability of the
PETrans to generate molecules with better binding ability to the target proteins. Our work
aims to use deep learning to achieve de novo drug design for a specific target protein. In
addition to drug repurposing, we provide new ideas for drug discovery.

In summary, our main contributions are: (i) adding protein-encoding information, such
as amino acid composition information, amino acid order information, and physicochemical
information, during the pretraining of the GPT model; (ii) generating molecules with
higher docking scores with similar structures to the known drugs by transfer learning;
(iii) generating novel molecules with high docking scores for three targets (corresponding
to EGFR, S1PR1 and HTR1A), and the drug potentials of the generated molecules are also
better than those of the known active compounds.

2. Results

To evaluate the generation performance of PETrans, we compared PETrans with
SBMolGen, a deep learning-based molecular generator. SBMolGen integrates a recurrent
neural network and Monte Carlo tree search [39]. We evaluated the general properties,
docking scores and similarity scores of the generated molecules. The similarity scores
measure the similarity between the generated molecules and the active compounds based
on the same scaffold. We also conducted experiments involving the incorporation of
protein secondary structure information and control of docking scores. To demonstrate the
binding of the generated molecules to the pockets of the target proteins, we constructed
binding models for ten molecules. In the following sections, we present our analysis of the
experimental results in detail.

2.1. Evaluation Properties of the Generated Molecules

QuickVina-W Score estimates the binding affinity between the generated molecules
and the protein pocket. The molecular docking mechanism between the generated molecules
and three targets was investigated by AutoDock Vina program. We used QuickVina-W [40]
to calculate the docking score for the protein and the generated molecules. QuickVina-W
is a new docking tool that is suitable for large search spaces, especially for blind docking.
In addition to the powerful scoring capabilities of AutoDock Vina, QVina-W incorporates
the accelerated search capabilities of QVina 2 to provide detailed searching for large search
spaces. QuickVina-W is faster than Quick Vina 2, and better than AutoDock Vina. Re-
searchers can screen ligand libraries virtually, quickly, and accurately without having to
define a target pocket in advance [40].

Quantitative Estimate of Drug-Likeness (QED) is a quantitative estimate of drug
similarity that measures the probability that a molecule is a potential drug candidate.

Synthetic Accessibility Score (SA score) is the synthetic accessibility score that repre-
sents the difficulty of drug synthesis. It was normalized to a score between 0 and 1, where
a higher score means that the molecule is easier to synthesize.

LogP stands for octanol-water partition coefficient and generally logP values between
—0.4 and 5.6 are a good candidate for the drug.

Molecular Weight (MW) is the sum of the atomic weights of molecules. Drug-like
molecules have molecular weights between 200 and 700 Da.

2.2. QuickVina-W Scores of the Generated Molecules

We randomly selected a set of 1350 molecules, equal in size to the transfer learning
dataset. None of the 1350 generated molecules were found in the transfer learning dataset.
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They also did not appear in the MOSES dataset. The ten molecules with the lowest docking
energy are shown in Figure 1. The binding models of the three molecules are shown in
Figure 2. The distributions of the docking scores of the generated molecules for EGFR,
S1PR1 and HTR1A are shown in Figure Al. Examples of molecules generated for other
targets are shown in Figures A2 and A3.

Docking Score: —9.8 Docking Score: —9.6

M&Q%‘Q
)‘ ' :

Docking Score: —9.6

Yoy

Docking Score: —9.5

-
=

Docking Score: —9.3 Docking Score: —9.3

Docking Score: —9.0 Docking Score: —8.9

Figure 1. Examples of molecules generated with PETrans against EGFR. Of the molecules generated,
those with the best QuickVina-W scores were shown. The colored sections represent different groups.
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Molecules Generated by PETrans Binding Models Generated with PyMOL Binding Models Generated with CB-dock2

Docking Score: —9.5

Figure 2. Binding model of the generated molecule. Positions of the generated molecules at the
binding sites of the target protein. Each molecule shows the molecular structure (left) and the docked
complex structure generated with PyMOL (middle) and CB-dock?2 (right), respectively.

We selected three generated molecules to demonstrate their binding models. The
binding models of the three molecules are shown in Figure 2. The left side of Figure 2 is the
structure of the generated molecules, and the docked complex structure was created by
PyMOL [41] (middle of Figure 2) and CB-Dock2 [42,43] (right side of Figure 2).

According to the docking results, the x, y, z centers are 23, 38, and 87, and the active
residues of the receptor were revealed as follows: LEU718, GLY719, SER720, GLY721,
VAL726, ALA743, ILE744, LYS745, MET766, CYS775, ARG776, LEU777, LEU788, THR790,
PRO794, PHE795, GLY796, CYS797, ASP800, TYR801, GLU804, ARG841, ASN842, LEU844,
THR854, ASP855, PHE856, LEU858, ASN996, TYR998, LEU1001, and MET1002(docking
score: —9.8 kcal/mol); LEU718, GLY719, GLY721, VAL726, ALA743, 1LE744, 1.YS745,
MET766, CYS775, ARG776, LEU777, LEU788, THR790, PHE795, GLY796, CYS797, ASP800,
TYR801, GLU804, ARG841, ASN842, LEU844, THR854, ASP855, PHE856, LEU858, ASN996,
TYR998, LEU1001, and MET1002(docking score: —9.6 kcal /mol); LEU718, GLY719, SER720,
GLY721, ALA722, VAL726, ALA743, ILE744, LYS745, MET766, CYS775, ARG776, LEU777,
LEU788, ILE789, THR790, GLN791, LEU792, MET793, PHE795, GLY796, CYS797, ARG841,
ASNS842, LEU844, THR854, ASP855, PHE856, and LEUS858 (docking score: —9.5 kcal/mol).

2.3. The Comparison of Properties

The mean values of the docking score, QED, SA score and LogP are shown in Table 1.
We selected three molecules from each of the three different sets to demonstrate their
docking scores and binding models. The results are shown in Figure 3. Overall, the
QuickVina-W scores of the generated molecules outperformed both the other methods
and the molecules in the transfer learning dataset, suggesting that PETrans can be able
to generate molecules with higher affinity for the target protein. It is also noteworthy
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that the molecules generated successfully by PETrans (QED, SA score, and LogP) showed
significantly better drug potential than the other methods, suggesting that the molecules
generated by PETrans are likely to be the correct drug candidates.

Transfer Learning Dataset

Docking Score: —9.2 Docking Score: —8.5 Docking Score: —8.3
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Figure 3. Three examples of molecules in different sets. The comparison of docking scores and
binding models of molecules in the transfer learning dataset, SBMolGen and PETrans.
2.4. Experimental Results with the Dictionary of Protein Secondary Structure (DSSP)

The dictionary of protein secondary structure (DSSP) is a powerful tool for under-
standing the structural features of proteins, and it has been widely used in a variety of
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applications, including protein folding, protein design, and drug design. The DSSP uses a
combination of algorithms and rules to predict the secondary structure of a protein based
on its amino acid sequence [44]. It takes into account the hydrogen bonding patterns
between the peptide bonds, as well as the geometry of the protein’s backbone.

Table 1. The comparison of the properties of the molecules in the transfer learning dataset and the
molecules generated by different methods.

Docking Score QED SA Score LogP
SBMolGen _7.416 + 0.36 0.509 + 0.01  323340.11  4.582+0.88
Transtffart];::tmmg ~7.493 + 0.46 0.415 + 0.03 2769+ 022  4.749 4+ 1.90
DUD-E —7.366 + 0.42 0.443 + 0.03 2747 +021  4.608 4+ 1.35
PETrans (without —7.689 + 0.60 04214003 29204048  5.185+2.82
transfer learning)
PETrans (Ours) —7.969 + 0.58 0452 +0.05  2.736 £0.57  4.567 & 4.17

We tried to use the PDB file of the target protein to add the structural information
of the protein with the DSSP. The results of the experiments are shown in Table 2. The
results of the experiments indicate that the incorporation of the DSSP does not significantly
enhance docking scores. However, it should be noted that the incorporation of the DSSP
may result in a decrease in the QED and SA scores of the generated molecules. Therefore,
protein sequences contain sufficient information to support this task.

Table 2. Experimental results with and without the DSSP.

Docking Score QED SA Score
PETrans (EGFR) —7.969 £ 0.58 0.452 £+ 0.05 2.736 £ 0.57
PETrans (EGFR) * —8.013 £ 0.60 0.422 +0.03 2.921 +0.49
PETrans (HTR1A) —8.589 £ 0.63 0.529 + 0.02 2971 £0.25
PETrans (HTR1A) * —8.599 £ 0.61 0.419 £+ 0.01 2.267 +0.14
PETrans (51PR1) —9.579 £ 0.64 0.459 £ 0.02 2.559 +0.13
PETrans (S1PR1) * —9.602 £ 0.60 0.458 + 0.02 2.561 £0.11

* stands for the result with the DSSP.

2.5. Experimental Results with Control of the Docking Score

As for ligand interactions, we introduced a docking score control in PETrans. The
results of the experiments are shown in Table 3. QuickVina-W was utilized as the docking
program, with the same docking parameters and docking files being applied consistently.
This ensured that the results were comparable. This resulted in an increase in the docking
scores of the molecules generated for EGFR and HTR1A, while the docking scores of
the molecules generated for SIPR1 decreased. It was observed that the introduction of
a docking score control resulted in a decrease in the validity ratio, novelty ratio, and
uniqueness ratio of the generated molecules to varying degrees. The ratio of available
molecules should be prioritized in molecule generation tasks. Therefore, this approach is
not suitable for our model.

Table 3. Experimental results with and without control of the docking score.

Docking Score Valid Ratio Novelty Ratio  Unique Ratio
PETrans (EGFR) —7.969 £ 0.58 0.998 1.0 0.953
PETrans (EGFR) * —8.153 £ 0.52 0.895 1.0 0.719
PETrans (HTR1A) —8.589 £ 0.63 0.982 1.0 0.979
PETrans (HTR1A) * —8.784 + 0.57 0.905 1.0 0.624
PETrans (S1PR1) —9.579 £ 0.64 0.959 1.0 0.880
PETrans (S1PR1) * —9.403 £ 0.52 0.815 1.0 0.420

* stands for the result with control of the docking score.
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2.6. The Distribution of the Docking Scores

We compared the physicochemical properties of the generated molecules to those
of the known active and decoy compounds. Each molecule was docked three times and
the optimal docking score was selected. Regarding the distribution of docking scores, the
docking scores of the 1350 generated molecules showed a good improvement compared to
the transfer learning dataset. The minimum calculated docking score was —9.8 kcal/mol.
The maximum calculated docking score was —5.9 kcal/mol and the average score was
—7.93 kcal/mol. The distribution of docking scores of the generated molecules and the
transfer learning dataset are shown in Figure 4. The distributions of the docking scores
of the generated molecules for SIPR1 and HTR1A are shown in Figures A4 and A5, re-
spectively. As can be seen in Figure 4b, the molecules generated by PETrans have better
docking scores compared to the known active compounds in the transfer learning dataset
and the known active and decoy compounds for EGFR from the enhanced directory of
useful decoys (DUD-E) [45].

generated molecules
—— DUD-E dataset
transfer learning dataset
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Figure 4. The distribution of docking scores. (a) The distribution of docking scores of the gener-
ated molecules; (b) the distribution of docking scores of the generated molecules and the transfer
learning dataset.

2.7. Shifting Distributions of Properties during Transfer Learning

We compare the distributions of four molecular properties of the generated molecules
with the transfer learning dataset and the DUD-E dataset (Figure 5). See Figures A6 and A7
for the distributions of the SA scores and the QED scores of the generated molecules for
other targets. The average QED of the generated molecules is 0.452 % 0.05, the average
LogP is 4.567 4= 4.17 and the average SA is 2.736 £ 0.57.

2.8. Molecular Similarities between the Generated Molecules and the Known Active Compounds

To confirm the novelty of the generated molecules, we calculated the molecular
similarity between the generated molecules and the known active compounds. The Morgan
fingerprint and similarity scores (Tanimoto score) were calculated using RDKit. The
similarity scores ranged from 0 to 1, with scores close to 1 indicating a higher similarity.
The similarity distribution of generated molecules is shown in Figure 6. Five pairs of
molecules with similarity scores and docking scores are shown in Figure 7. This shows
that our model can generate novel compounds similar to the active compounds but with a
higher docking score.
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Figure 5. Chemical property distributions for the transfer learning dataset and the generated set
of molecules. Wasserstein-1 distances from the transfer learning dataset are given in parentheses.
Parameters: MW, LogP, QED, and SA.
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Figure 6. Similarity distribution of generated molecules and known active compounds. Distribution
of closest similarity values between the generated compound and the known active compound.
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Figure 7. Five pairs of molecules with similarity scores and docking scores. The Tanimoto scores of
the known active compounds (left) and the generated molecules (right) are shown above the arrows.
The docking scores are shown below the molecular structure.

3. Discussion

The number of drug-like compounds in the chemical space is estimated to be 1023-10°,
making it computationally impossible to fully explore the vast chemical space. Efficient
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extraction of novel lead compounds from such a large chemical space is a real challenge
in drug discovery [46]. Previous studies have successfully evaluated high-throughput
screening and virtual screening for large chemical libraries with various filters. With
the rapid development of machine learning techniques, quantitative structure activity
relationships (QSAR) have become an indispensable virtual screening filter to efficiently
and reliably evaluate various physicochemical and pharmacological properties. However,
the traditional approach tends to search molecules with desired properties from existing
chemical libraries [2,47].

The aim of de novo drug design is to produce a drug that can inhibit the target protein
and has balanced physicochemical properties. The limited availability of the small datasets
for many tasks can often result in overfitting of powerful models, such as neural networks.
Transfer learning is a technique that can address this issue by learning general features in a
larger dataset that may also be relevant for a second task with a smaller dataset. The goal
of transfer learning is to leverage the knowledge gained from the larger dataset to improve
the performance of the model on the smaller dataset. Other methods, such as multi-task
learning, also have limitations. While multi-task learning may improve performance on
one or two tasks, it may also negatively impact the performance on other tasks. In contrast,
transfer learning does not need to balance between tasks, and the primary focus is on
the target task. Therefore, transfer learning is used to fine-tune the pretrained model to
generate molecules with better binding ability to the target protein.

In this work, we developed a method to design novel molecules for target protein
using deep learning. The model used protein encoding and transfer learning to gener-
ate novel molecules with better docking scores. Protein encoding is used to extract the
physicochemical properties and amino acid information of the target protein. GPT was
used to extract the contextual features of the molecule. The model was validated using
three target proteins (EGFR, S1PR1 and HTR1A). To test the performance of the model, we
performed experiments and compared them with SBMolGen (Table 1). The docking results
showed that our model can generate novel molecules with higher docking scores for the
target proteins.

There are also some limitations with our model, such as the inability to include docking
simulations in the generation process. Including docking simulations in the generation
process would allow for the generation of molecules based on the binding affinity and
conformation of the target protein. In addition, only the docking score, QED score, SA
score, and LogP were used in this study. The inhibitor constant (Ki), cannot be calculated at
this stage. In future endeavors, we plan to incorporate docking simulations into molecule
generation models. We will also introduce the inhibitor constant (Ki) in our future work to
evaluate the experimental and theoretical results.

4. Materials and Methods
4.1. Datasets
4.1.1. The Drug Dataset (Pretrain)

In this work, we used MOSES [48] as a benchmark dataset. MOSES consists of 1.9 mil-
lion lead-like molecules from the ZINC dataset with a molecular weight of 250-350 Da, a
number of rotatable bonds of less than 7, and an XlogP of less than 3.5 [48]. Additionally, the
molecules in the MOSES dataset are small enough to allow further ADMET optimization of
the generated molecules [49]. The MOSES dataset is primarily designed to represent lead-
like molecules and presents a distribution of molecules with desirable drug-like properties.
For pretraining, we split the MOSES dataset into the training set and the test set at a ratio
of 9:1.

4.1.2. Target Protein and Active Compounds (Transfer Learning)

Before molecular generation, we prepared EGFR, SIPR1 and HTR1A as target proteins
with PDB IDs of 2RGP, 7VIH and 7E2X. The structure of three targets was obtained from the
Protein Data Bank (PDB) [50]. In addition, the activate compounds dataset corresponding
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Protein Data Bank

to three targets were extracted from ExCAPE-DB [51] for transfer learning. This dataset
comprises over 70 million SAR data points from publicly available databases (PubChem
and ChEMBL) including structure, target information and activity annotations [51]. In
transfer learning, we used the same ratio to split the known active compound datasets.

4.2. Model Architecture

The architecture of PETrans is divided into three modules: a pretraining module, a
transfer learning module, and a docking module. The architecture of PETrans is shown
in Figure 8. The protein-encoding process is shown in Figure 9. The core idea of PETrans
is to learn the probability distribution of atoms and bond types based on already existing
active compounds.
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Figure 8. The architecture of PETrans, which consists of three main modules, the pretraining module,

the transfer learning module, and the drug-target docking module.
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Figure 9. The process of protein encoding. Conversion of protein sequences of different lengths into
fixed-length vectors.

The proposed process of de novo molecule generation is described in detail in the
following sections. In Section 4.2.1, we first introduce the pretrained model, explaining the
modules included in our model. Section 4.2.2 describes the protein preparation and protein
encoding of the target protein. Finally, in Section 4.2.3, we describe the basic parameter
settings for the experiments.

4.2.1. The Pretrained Model

The workflow of this study is shown in Figure 8. The protein encoding consists of
pseudo amino acid composition (pseAAC), the autocorrelation descriptor (AD), and the
conjoint triad (CT). We transform the protein sequences into a 512-dimensional vector
by protein encoding. Additionally, then forward them to the SMILES. In certain tasks,
such as lead optimization, chemists intend to generate molecules that contain a specific
scaffold while achieving the desired property values. So, we used RDkit [52] to calculate
the molecular properties and to extract Bemis—Murcko scaffolds [53]. The specific scaffolds
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are selected to generate molecules targeting the specific target. Each token of the scaffold is
mapped to a 256-dimensional vector, using the same embedding layer as SMILES.

The GPT architecture uses a multi-layer Transformer decoder, which is a variant of the
transformer [54]. Multi-headed self-attention operations are used in this model, followed
by position-wise feedforward layers. This produces an output distribution over target
tokens as follows:

hg = UW, + W, M
hy = trans former(h;_1)Vi € [1,n] )
P(u) = softmax (hntT) ©)]

where U = (u_y,..., u_1) is the context vector of tokens, 1 is the number of layers, W, is
the token embedding matrix, and W), is the position embedding matrix.

Self-attention involves three sets of vectors, the query vector, the key vector and the
value vector. The weights of the value vectors can be queried using query vectors. Firstly,
they are sent through a dot product. A SoftMax function is applied to these vector weights
in order to scale the dot products by the dimensionality of the vectors. Each value vector is
multiplied by its weight and then summed. A weight matrix is used in each decoder block
to calculate the query, key, and value vectors for each token. The attention is expressed by
the following equation [55]:

QK™
Vi

We chose MolGPT [56] as the basic GPT model. The model is essentially a mini
version of the generative pretraining transformer (GPT) model with only approximately
6 M parameters [56].

To keep track of the input sequence, the model assigns a position value to each token.
Segment tokens are provided to distinguish between scaffold and SMILES tokens. Segment
tokens indicate whether a particular input is a scaffold or a SMILES molecule, which helps
the model distinguish between them. All SMILES tokens in a molecule are mapped from
an embedding layer to a 256-dimensional vector. Similarly, a separately trained embedding
layer is used to map position tokens and segment tokens to vectors. As input to the model,
these embeddings are added to a vector as SMILES token embeddings, position token
embeddings, and segment token embeddings.

A molecule is generated by giving the model a start token and sequentially predicting
the next token. The starting token is determined using weighted random selection from a
list of tokens that appear first in the training set. These tokens are weighted according to
the frequency of their occurrence at the first position of the SMILES strings. In the next step,
the protein encoding and scaffolds as well as a starting token for the sample of molecules
are provided to the model.

Attention(Q, K, V) = softmax( )\% 4)

4.2.2. Protein Preparation and Encoding

Protein preparation. In this study, EGFR, S1IPR1 and HTR1A were used as the target
proteins [32,34,35]. The crystal structure of the protein was downloaded and used from the
RCSB Protein Data Bank (PDB) dataset. We used AutoDockTools [57] to add hydrogens,
compute Gasteiger charges and merge the non-polar hydrogens. Then, the PDB file was
converted to pdbqt format. The SMILES was converted to pdbqt format using the program
Openbabel [58]. Gasteiger partial charge calculation approach was used to calculate the
partial charges of the atoms. Then, we created a 3D grid box for docking.

Selection and extraction of features. We want to fully extract features from protein
sequences. Therefore, protein coding methods must include local features, global features,
and physicochemical features. PseAAC, AD and CT were used to convert protein sequence
into vector and then we integrated three feature extraction methods.
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Pseudo amino acid composition (PseAAC) [59] can represent both amino acid compo-
sition and amino acid order information. In bioinformatics, it is widely used for protein site
prediction, protein subcellular localization prediction, protein structure class prediction,
and protein subcellular prediction [60-62].

The feature vector of PseAAC is:

T
X = [x1,X2, -+ ,X19,X20, X2041, " * , X204¢] (€ <S) 5)

where S represents the length of the protein sequence, and the calculation equation of the
first 20 elements and the latter € element in the vector are as:

N R 1<u<?20
Ezzglfi+0‘2;:19jl( < p < 20)

_ By
Z?Elf,-mz;:l 6;” (21 Sp<20+ ‘C')

Xy =

(6)

where f; is the frequency of occurrence of the number of amino acids in the normalized
protein, 6; is the correlation coefficient of the sequences in the j-th layer, and « is the
weighting coefficient.

The autocorrelation descriptor (AD) [63] can obtain the physicochemical information
contained in the protein sequence. Shen et al. [64] proposed the conjoint triad (CT) method
to extract information from protein sequences based on the physicochemical properties
of dipoles and volumes [60]. First, 20 amino acids are classified into seven classes based
on dipoles and side chain volumes. Considering the interaction between an amino acid
and its neighboring amino acids, three contiguous amino acids are considered as one unit,
resulting in 7 x 7 x 7 = 343 triad types.

_ fi—min{fi, fo,- - faast oL,
4i = max{fy, f2,- -, faa3} =2

where f; is the frequency of occurrence of each triad. d; is the 343-dimensional feature vector.

. ,343 @)

4.2.3. Experimental Setup

The pertained model consists of stacked decoder blocks, including a masked self-
attention layer and a fully connected neural network. Each self-attention layer returns a
vector of size 256 as input to the fully connected network. The hidden layer of the neural
network returns a vector of size 1024, which is activated by the GELU activation layer. The
final layer of the fully connected neural network returns a vector of size 256 as input to the
next decoder block.

Each model was trained using the Adam optimizer for 10 epochs with a learning rate
of 6 x 10~%. During generation, the network was provided with a starting token (randomly
selected from a list of the first numerator tokens in the training set) and scaffold. An
NVIDIA 3090 GPU was used to train and test the models. Most of the models converged
after 10 epochs and showed the best performance.

Openbabel was used for generating the 3D structure of the compounds. The hydrogen
was added with the -h option and the 3D structure of the molecule was created with
the —gen3d option. In the AutoDock Vina program, the grid parameters were set as
44 x 49 x 57 A3 (each for X, y, z dimension, respectively), and 19.496, 35.001, 89.270 (each
for x, y, z centers) for the EGFR. For target S1IPR1, their corresponding gird parameters
were 75 x 75 x 75 A3 and 120.713, 118.886, 131.755. The same is true for target HTR1A.
The grid parameters were 75 x 75 x 75 A% and 93.496, 92.635, 76.821.

5. Conclusions

In this study, a new method was developed to design novel molecules for the target
protein using deep learning. The model utilized protein encoding and transfer learning
to generate novel molecules with high docking scores. The model was validated against
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three targets (EGFR, S1PR1 and HTR1A). Transfer learning was used to improve the
docking scores of the generated molecules. Analysis of the docking scores revealed that
the molecules were selective against the active site of the targets. In general, the generated
molecules showed better docking scores and broader chemical space distribution than the
known active compounds based on the results of an evaluation with three target proteins.
In the future, we will introduce docking simulations and the inhibitor constant (Ki) in
our work.
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Figure A3. Example of generated molecules for target HTR1A.
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Distributions of the Docking Scores of the Generated Molecules for S1PR1

0.5

0.4

Density
o
(99]

0.2

0.1

0.0
-12 -11 -10 -9 -8 -7

Figure A4. Distributions of the docking scores of the generated molecules for S1IPR1.
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Figure A5. Distributions of the docking scores of the generated molecules for HTR1A.
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