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Abstract: Hemodynamic disturbance, a rise in neutrophil-to-lymphocyte ratio (NLR) and release
of inflammatory cytokines into blood, is a bad prognostic indicator in severe COVID-19 and other
diseases involving cytokine storm syndrome (CSS). The purpose of this study was to explore if
zymosan, a known stimulator of the innate immune system, could reproduce these changes in pigs.
Pigs were instrumented for hemodynamic analysis and, after i.v. administration of zymosan, serial
blood samples were taken to measure blood cell changes, cytokine gene transcription in PBMC
and blood levels of inflammatory cytokines, using qPCR and ELISA. Zymosan bolus (0.1 mg/kg)
elicited transient hemodynamic disturbance within minutes without detectable cytokine or blood
cell changes. In contrast, infusion of 1 mg/kg zymosan triggered maximal pulmonary hypertension
with tachycardia, lasting for 30 min. This was followed by a transient granulopenia and then, up to
6 h, major granulocytosis, resulting in a 3–4-fold increase in NLR. These changes were paralleled
by massive transcription and/or rise in IL-6, TNF-alpha, CCL-2, CXCL-10, and IL-1RA in blood.
There was significant correlation between lymphopenia and IL-6 gene expression. We conclude that
the presented model may enable mechanistic studies on late-stage COVID-19 and CSS, as well as
streamlined drug testing against these conditions.

Keywords: cytokine storm; pulmonary hypertension; systemic inflammation; inflammatory cytokines;
cytokine storm; chemokines; white blood cells; granulocytes; lymphocytes; pigs; animal models; IL-6;
IL-1beta

1. Introduction

The cytokine storm syndrome (CSS), a hyper-inflammation characterized by abnor-
mally high levels of proinflammatory cytokines and other immune mediators in blood,
is known to be a major contributor to the death of patients with severe COVID-19 [1–17].
Among others, high serum IL-6 and IL-1RA levels were found as independent risk factors
for mortality from COVID-19 [18–23]. CSS is, however, not the only sign of bad prognosis
in late-stage COVID-19. Another one is the association of neutrophilia with lymphope-
nia, manifested in a rise in neutrophil/lymphocyte ratio (NLR) [24,25], and yet another
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is hemodynamic instability, including pulmonary hypertension [26–28] and/or systemic
hypotension [29,30]. These symptoms can also arise in COVID-19 independent CSS [24–28];
thus, they are manifestations of the immune derangement, rather than direct consequences
of the infection with SARS-CoV-2 virus.

A key piece of background information that provided rationale for this study was
the fact that the hemodynamic derangement and WBC differential changes are also char-
acteristic features of the pigs’ response to i.v.-administered nanoparticles [31–35]. The
experimental setup, referred to as porcine complement (C) activation-related pseudoallergy
(CARPA) model, has been used for the screening of nanoparticulate drugs (nanomedicines)
for potential immune reactivity, manifested in infusion reactions [31–35]. The model utilizes
zymosan, a strong activator of the innate immune system, as a highly reproducible positive
control. Notably, zymosan’s robust pulmonary hypertensive and systemic hypotensive
effects are observed essentially in all pigs regardless of whether they are responsive or not
to the tested nanomedicines [32–34]. In the model, i.v. administration of a tiny amount
of reactogenic nanoparticles induces prominent hemodynamic changes within minutes,
including pulmonary hypertension, systemic hypotension, rise in heart rate, fall of cardiac
output and ECG alterations. These transient changes may be associated with granulopenia,
followed by reactive granulocytosis with or without thrombocytopenia, and skin alter-
ations, such as flushing or a rash [31–35]. The above changes are easily measurable and
are highly reproducible in different pigs, making the model uniquely useful for preclinical
testing of acute allergic reactivity of nanoparticulate drugs or, in other words, the risk of
anaphylactoid reactions [31–35]. This effect of zymosan in pigs, taken together with its
capability to induce proinflammatory cytokines in murine models [36,37] and cultured hu-
man peripheral blood mononuclear cells (PBMCs) [38], led to the hypothesis that zymosan
could be used to induce the above triad of prognostic endpoints of CSS in pigs, so that
the use of the model can be extended to studying the mechanism and drug sensitivity of
severe COVID-19 and other diseases involving CSS. Accordingly, the goal of the present
experiments was to test if the adverse hemodynamic and hematological effects of zymosan
could be associated with inflammatory cytokine release in pigs; if yes, the goal was to
optimize the model to allow streamlined drug testing against CSS in severe COVID-19 and
other diseases.

We observed that zymosan infusion triggered an acute pulmonary hypertension,
followed by a prolonged and markedly increased neutrophil-to-lymphocyte ratio (NLR) in
parallel with massive rise in IL-6, TNF-alpha, CCL-2, CXCL-10, and IL-1RA expression in
blood, resembling COVID-19 associated severe cytokine storm syndrome.

2. Results
2.1. Early Hemodynamic, Hematological, and Immune Mediator Changes Caused by Low-Dose
Bolus Injection of Zymosan

As the first step in pursuing the hypothesis delineated in the introduction, we repro-
duced the robust hemodynamic changes caused by a single bolus injection of 0.1 mg/kg
zymosan in pigs. As shown in Figure 1, the cardiopulmonary reaction starts with a sudden
rise in pulmonary arterial pressure (PAP) (A), fall of systemic arterial pressure (SAP) (C)
and massive release of thromboxane B2 (TXB2) (G) exactly paralleling the PAP. The heart
rate (HR, E) and blood cells (B, D, F) showed no major changes, although a small, statis-
tically significant decline of granulocyte count was detectable (D). The SAP returned to
baseline within 10 min, while it took longer for PAP and HR (up to 30 min, not shown) to
return to near normal levels.
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Figure 1. Physiological changes caused by bolus injection of 0.1 mg/kg zymosan in pigs. In (A,C,F) 
the PAP, SAP and HR were continuously recorded, and the coinciding values were averaged (±SEM) 
in four animals every minute over 10 min both before and after the zymosan injection. Zymosan 
administration is marked with red arrow. Blood white blood cell count (B), granulocytes (D) and 
lymphocytes (F) were counted in a coulter counter at 10 min after zymosan injection and were re-
lated to their respective baseline, i.e., the last blood collection before the zymosan injection (0 min). 
TXB2 increased 4-fold within a minute after zymosan administration (G). G/L means cell number × 
106/L, * p < 0.05 relative to respective baselines (0 min), determined using paired t-test. 

2.2. Extended Follow-Up of Hemodynamic, Hematological, and Immune Mediator Changes 
Caused by High Dose Zymosan Infusion 

Due to a lack of major neutrophilia, the mentioned symptom of late-stage COVID-19 
that we were trying to identify, we increased the administered dose of zymosan 10-fold 
and gave it in infusion, rather than bolus. Because the hemodynamic monitoring is inva-
sive, this experiment had to be terminated after 6.5 h (390 min) observation period. Figure 
2 shows the hemodynamic changes after initiation of the zymosan infusion. Interestingly, 
the infusion was associated with maximal rise in PAP; after completing it, however, the 
pulmonary pressure normalized within 20 min. The SAP showed major fall during infu-
sion and then slow return to normal in 1 of 4 animals; this is a measure that has proven to 
be very variable in all previous CARPA studies [39–44]. The heart rate and exhaled CO2, 

Figure 1. Physiological changes caused by bolus injection of 0.1 mg/kg zymosan in pigs. In (A,C,F)
the PAP, SAP and HR were continuously recorded, and the coinciding values were averaged (±SEM)
in four animals every minute over 10 min both before and after the zymosan injection. Zymosan
administration is marked with red arrow. Blood white blood cell count (B), granulocytes (D) and
lymphocytes (E) were counted in a coulter counter at 10 min after zymosan injection and were related
to their respective baseline, i.e., the last blood collection before the zymosan injection (0 min). TXB2
increased 4-fold within a minute after zymosan administration (G). G/L means cell number × 106/L,
* p < 0.05 relative to respective baselines (0 min), determined using paired t-test.

2.2. Extended Follow-Up of Hemodynamic, Hematological, and Immune Mediator Changes Caused
by High Dose Zymosan Infusion

Due to a lack of major neutrophilia, the mentioned symptom of late-stage COVID-19
that we were trying to identify, we increased the administered dose of zymosan 10-fold and
gave it in infusion, rather than bolus. Because the hemodynamic monitoring is invasive,
this experiment had to be terminated after 6.5 h (390 min) observation period. Figure 2
shows the hemodynamic changes after initiation of the zymosan infusion. Interestingly,
the infusion was associated with maximal rise in PAP; after completing it, however, the
pulmonary pressure normalized within 20 min. The SAP showed major fall during infusion
and then slow return to normal in 1 of 4 animals; this is a measure that has proven to be
very variable in all previous CARPA studies [39–44]. The heart rate and exhaled CO2, an
indicator of pulmonary function, showed no significant differences. These data imply an
immediate cardiovascular effect of zymosan, which can be explained with immediate TXA2
release with entailing pulmonary vasoconstriction.
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Figure 2. Physiological changes caused by infusion of 1.0 mg/kg zymosan in pigs. PAP (A), SAP (B),
HR (C) and exhaled CO2 (D) were continuously recorded up to 6.5 h, and the coinciding values at the
indicated time points were averaged (±SEM) in four animals. Here, we show the blood pressure on
absolute (mmHg) scale without the flat pre-injection background (Figure 1). The red arrow indicates
zymosan administration. * p < 0.05 relative to respective baselines (0 min), determined using paired
t-test.

Of particular importance regarding the hypothesis of this study, the blood cell changes
did show the expected granulocytosis with lymphopenia, between about 1 and 6 h after
starting the 30 min infusion. This effect is shown in Figure 3, together with data from five
more pigs, which were not subjected to invasive blood pressure recording and, thus, were
not sacrificed after 6.5 h. These animals were subjected to blood withdrawals for blood
cell counting and cytokine analysis for up to 15 days, the results of which are presented
below. The lack of significant changes in SAP, HR and exhaled CO2 suggests that these
processes, in case of slow access of zymosan to blood, may be independent of pulmonary
hypertension.
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Figure 3. White blood cell count (A), platelet count (B), granulocyte % (C), RBC count (D), lympho-
cyte % (E), hemoglobin levels (F) at different sampling times. Zymosan administration is marked 
with red arrow. Until 390 min, the data have been merged from the 2nd (n = 4 pigs) and 3rd phase 
(n = 5 pigs) of the study, and their overlapping excludes a pro-inflammatory influence of hemody-
namic monitoring (surgery). Kruskal–Wallis test with Dunn’s multiple comparisons post-hoc test, 
compared to respective baseline (0’) controls, * p < 0.05 vs. 0’; ** p < 0.01 vs. 0’; *** p < 0.001 vs. 0’. 

Regarding the cytokine changes, the PCR assay showed significant expression of 
CCL-2 (Figure 4A), CXCL10 (B), IL-1RA (C) and IL-6 mRNAs in close parallelism with the 

Figure 3. White blood cell count (A), platelet count (B), granulocyte % (C), RBC count (D), lympho-
cyte % (E), hemoglobin levels (F) at different sampling times. Zymosan administration is marked
with red arrow. Until 390 min, the data have been merged from the 2nd (n = 4 pigs) and 3rd phase
(n = 5 pigs) of the study, and their overlapping excludes a pro-inflammatory influence of hemody-
namic monitoring (surgery). Kruskal–Wallis test with Dunn’s multiple comparisons post-hoc test,
compared to respective baseline (0’) controls, * p < 0.05 vs. 0’; ** p < 0.01 vs. 0’; *** p < 0.001 vs. 0’.



Int. J. Mol. Sci. 2023, 24, 1138 6 of 18

2.3. Long-Term Follow-Up of Hematological, TXB2 and Cytokine Changes Caused by High Dose
Zymosan Infusion

As shown in Figure 3, we observed a significant drop in WBC count around 1 h after
the start of zymosan infusion (Figure 3A), which did not involve changes in neutrophil
granulocyte/lymphocyte ratio (NLR, about 4/6) (Figure 3C,E). However, thenceforwards,
while the WBC count returned to normal in about 3–4 h (Figure 3A), the NLR gradually rose
up to 7/3, near 3–4-fold relative to the baseline ratio. In absence of absolute (total) increase
or decrease in WBC count at the peak of NLR (Figure 3A,C,E), the above changes imply
a relative leukocytosis with absolute lymphopenia, a shift in WBC differential in favor of
the innate, nonspecific versus the acquired, specific antimicrobial immune response. The
platelet count did not change over time (Figure 3B), and we did not measure consistent
trends in RBC counts or blood hemoglobin levels either, although the numbers showed
significant rises relative to baseline on some days (Figure 3D,F).

Regarding the cytokine changes, the PCR assay showed significant expression of
CCL-2 (Figure 4A), CXCL10 (B), IL-1RA (C) and IL-6 mRNAs in close parallelism with
the changes in WBC differential, with peaks in the 90–270 min range. The relative mRNA
expressions decreased in the above order, while in terms of speed, IL-6 mRNA had faster
rise than those of the other 3 cytokines (peaking at already 90–110 min vs. 130–150 min).
We also detected significant increases in IL-6 gene transcription in 2 of 5 animals on day 8
and 10, again (Figure 4D).
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Figure 4. Gene expression of CCL2 (A), CXCL10 (B), IL-1RA (C) and IL-6 (D) were assessed from
PBMCs isolated at different sampling times and normalized to 18S rRNA. Zymosan administration is
marked with red arrow. Data are expressed as fold expression relative to a baseline control sample
(0 min). Kruskal–Wallis test with Dunn’s multiple comparisons post-hoc test, compared to respective
baseline (0’) controls, * p < 0.05 vs. 0’; ** p < 0.01 vs. 0’; *** p < 0.001 vs. 0’.
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The cytokine protein assays performed for IL-6 and others (whose mRNA expression
were not analyzed, i.e., TNF-alpha, IL-8 and IL-1beta) confirmed the early expression of
IL-6 but showed the production of TNF-α to be even faster and more intense, peaking
about 30 min earlier at about 10-fold higher concentration than IL-6 (Figure 5A,B). The
concentrations of IL-8 and IL-1beta tended to be increased in some animals after day 10,
with substantial individual variation (Figure 5C,D).
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Figure 5. Serum TNF-alfa (A), IL-6 (B), IL-8 (C) and IL-1B (D) levels at different sampling times
(ELISA). Zymosan administration is marked with red arrow. ANOVA, with Dunnett’s multiple
comparison test, compared to respective baseline (0’) controls, * p < 0.05 vs. 0’; ** p < 0.01 vs. 0’;
*** p < 0.001 vs. 0’; **** p < 0.0001 vs. 0’.

Comparing the kinetics of NLR changes with cytokine transcription or translation
revealed overlays with all cytokines analyzed (Figure 6A–F), except IL-8 and IL-1beta,
which did not show changes in the 30–270 min period (Figure 5C,D). Figure 6A–F also
shows that the rise in NLR, which reflects a shift in cellular immune response towards
innate defense, started after about 1 h and peaked at 5h (blue line in Figure 6A–F). The
cytokines whose early rises and peaks consistently preceded these changes of NLR were
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TNF-α and IL-6 (Figure 6A–C). In fact, for IL-6, we could show highly significant correlation
between lymphopenia and IL-6 mRNA expression (Figure 7). Nevertheless, it would be
premature to point to certain cytokines versus others as sole or most significant contributors
to the blood cell changes, since there were also overlaps between the changes in NLR and
expression of CCL2, IL-1RA and CXCL-10 genes (Figure 6D–F). Notably, we do not know
the individual contribution of different cytokines to the blood cell changes. Thus, what can
certainly be stated is that cytokine production correlated with the rise in NLR, which is
consistent with the coincidence of NLR rise and CSS in severe COVID-19.
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3. Discussion
3.1. The Structure and Immune Effects of Zymosan

To help understand how a short infusion of yeast microparticles (zymosan) can repro-
duce three key manifestations of end-stage COVID-19 within 6 h, we summarize here the
unique features of zymosan. It is extracted from the membrane of Saccharomyces cerevisiae
and consists of mannosylated cell wall proteins and highly branched beta-glucans. The
latter are D-glucose polymers linked by 1,3- and 1,6-beta-glycosidic-bonds. Zymosan is
widely used in immunological studies as a powerful stimulator of innate humoral and
cellular immunity. The chemical structures (Figure 8a–d) reveal little about zymosan’s
real-life appearance (Figure 8e–i), i.e., 2–4 µm bean-shaped microparticles covered by knobs
or bulges with extensions reminiscent of truncated bacterial pili [45,46].
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Figure 8. Various illustrations of zymosan. Panels (a–d) are chemical, graphical, and 3D-steric
presentation of structure, (e) is an artistic visualization and (f–i) are electron microscopic and scanning
electron microscopic images of zymosan. The corona in (f) is with a fluorescent dye conjugated to
zymosan, and (g) is a zymosan particle undergoing phagocytosis, where the green fluorescing “claws”
are macrophage pseudopods embracing the particle as first step of phagocytosis. The insert (i) is a
particle zoomed in from (h). Free pictures from the internet and modified reproductions of figures in
Ref. [47] with permission.
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Zymosan was described as a potent activator of the complement system 81 years
ago [48] and has been used for modeling phagocytosis [46]. Similarly to Toll-like receptor
(TLR)-4 mediated LPS stimulation of NF-kB in immune cells, zymosan stimulates the
production of inflammatory cytokines via Toll-like receptors TLR-2 and TLR-6 [49,50]. Fur-
thermore, zymosan activates another transmembrane signaling receptor, Dectin-1 [51–53],
which collaborates with TLR-2 in NF-kB mediated cytokine production [54,55]. Due to all
these redundant pro-inflammatory stimuli, zymosan has been used in many inflammatory
disease models in mice and rats, as listed in Table 1.

Table 1. Murine models of inflammatory diseases using zymosan as inflammation inducer.

Animal Disease Reference

mouse

irritable bowel syndrome [56]

T-cell-mediated autoimmune response [57]

allergy [58]

systemic inflammation [59,60]

arthritis [61]

sepsis [62]

air pouch model of inflammation [63]

multiple organ dysfunction syndrome (MODS) [64]

septic shock [36]

rat

peritonitis [65]

arthritis [66,67]

air pouch model of inflammation [68]

chronic pelvic pain syndrome [69]

systemic inflammatory response syndrome (SIRS) [70]

peritonitis [71]

non-septic shock [72]

3.2. Current Animal Models of CSS

Despite substantial efforts to develop effective pharmacotherapy against severe
COVID-19, the standard of care today is based on traditional antibiotic and anti-inflammatory
agents and some monoclonal antibodies, whose success is limited [73–76]. One contributing
reason for the shortage of new, more specific, and effective drugs is the lack of an appropri-
ate, widely accessible animal model of COVID-19 or CSS. Natural and genetically modified
species used to model different aspects of COVID-19 include mice, ferrets, cats, dogs, pigs,
and non-human primates [77–81]. The models described for CSS include the Staphylococcal
superantigen mutant model in rabbits [82], the hemolytic transfusion model in mice [83],
and the reactions of dogs to anti-CD28 mAb [84], primates to simian immunodeficiency
virus [85], or pigs to a virulent African swine fever virus [86], yet another porcine model
utilized LPS to induce CSS along with ARDS [87]. However, none of these models can
recapitulate the sustained immunopathology of patients with severe COVID-19 or CSS.
Moreover, the use of gene-modified animals and high-containment BSL3+ facility in the
case of infectious virus are difficult to implement for high throughput drug testing in the
pharmaceutical industry.

3.3. Molecular and Cellular Mechanisms of Zymosan’s Multiple Effects

As to why it is possible in pigs to reproduce three unfavorable disease markers in
severe COVID-19 with zymosan, a likely answer is that zymosan is a very strong, multi-
valent stimulator of the innate immune system, a condition that also prevails in late stage
COVID-19. Pigs, just as calves, sheep, goats, and some other species, are very sensitive to
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innate immune stimulation [88]. These species have pulmonary intravascular macrophages
(PIM cells) in their lungs’ microcirculation, which firmly attach to the capillary endothelium
via junction-like intercellular adhesion plaques [88]. The highly phagocytic and intense
secretory PIM cells with direct access to blood are also close to the smooth muscle cell layer
of blood vessels, making these animals’ pulmonary arteries highly sensitive to the vasoac-
tive mediators liberated upon encounter with, and phagocytic uptake of nanoparticles.
These include TXA2, a strong vasoconstrictor eicosanoid, which is the prime suspect in the
hemodynamic changes caused by i.v. nanoparticles in pigs [88]. Zymosan can stimulate
these macrophages via three independent pathways: one is via the anaphylatoxin (C3a,
C5a) receptors, another is via TLR-2/6, and the third one is the Dectin-1 receptors [88].
These redundant activation pathways explain the high inter-animal reproducibility of
hemodynamic changes caused by zymosan. Zymosan’s exertion of its vasoactivity and
pro-inflammatory cytokine-inducing effects via cells exposed to plasma is supported by
the finding that the kinetics of liberation of TXB2 and inflammatory cytokines in an in vitro
peripheral blood mononuclear cell model of CSS [38] is very similar to those seen in pigs,
namely immediate production of TXB2 and slower release of cytokines on a time scale of
hours [38].

Regarding the lymphopenia and its correlation with IL-6 gene expression (Figure 7),
IL-6 is known to upregulate the pro-apoptotic Fas, resulting in the loss of mature lym-
phocytes [89]. High levels of IL-6 might also reduce lymphocyte count through inhibition
of lymphopoiesis in the bone marrow [90]. The neutrophil granulocytosis, in turn, is a
common sign of strong inflammation with cytokine release, a well-known disease marker.
As for the roles of CCL2 (C-C motif chemokine ligand 2, also known as monocyte chemoat-
tractant protein 1, MCP1) and CXCL (C-X-C motif chemokine ligand 10, also known as
interferon gamma-induced protein 10, IP-10), we have no information in the literature that
would suggest a direct role of these chemokines in rising the NLR.

3.4. The Utility of Porcine Zymosan-Induced CSS Model

The experimental procedures applied in this study represent relatively straightforward
in vivo investigation of systemic flare-up of inflammatory processes in the body, a complex
immune phenomenon, a feared end-stage of many severe diseases including COVID-19, vi-
ral infections [91], monoclonal antibody and CAR-T-cell therapies [92,93], acute respiratory
disease syndrome [94], and multiorgan failure [94,95]. CSS has multiple manifestations,
and the different models discussed above focus on different endpoints. In the present
model, we have focused on three standard physiological parameters which have been
reported as bad prognostic indicators in late-stage COVID-19: pulmonary hypertension,
rise in NLR and cytokine release, which can be also common features of all CSS, regardless
of cause. This choice of endpoints, taken together with the increasing appreciation of pigs,
as an immune toxicology model [34], the inexpensive access to zymosan, the rapid (up to 6
h) experimentation, the avoidance of problematic interpretation of immune data in murine
models, exotic animals or infectious viruses with need for BSL-3 facility, or sophisticated
gene technology, suggests that the porcine zymosan-induced CSS model may provide a
new tool to better understand and develop effective pharmacotherapies against CSS in
general, and end-stage COVID-19, in particular.

3.5. Outlook for the Pharmaceutical Industry

Quoting from a recent review by Cron [73], “more than 2 years into the pandemic,
almost 6 million people have died from COVID-19 worldwide. Many people who suc-
cumbed to the virus had CSS”; however, there is “no perfect therapy” for this disease [73].
There is a clear need for R&D of new drugs, drug combinations, and perhaps new treatment
approaches against CSS. The preclinical testing of a large number of drug candidates at
different doses and different combinations could certainly be streamlined by using an
in vivo single-treatment, relatively short-duration, reproducible large animal model requir-
ing only a small number of animals and using a reasonably simple endpoint. The porcine
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model described in this study meets these conditions, and although the hemodynamic
and cytokine changes were critical in realizing the relevance of the model for CSS and
end-stage COVID-19, the third endpoint in this study, NLR, represents an automated rou-
tine laboratory blood assay that seems to be sufficiently quantitative and reproducible to
provide a validatable disease marker without need for terminal surgery (for the PAP assay)
or labor-intense qPCR and polyplex ELISA tests of cytokines. In addition, the animals may
be reused after a washout period, which may help in ethical and financial aspects.

4. Materials and Methods
4.1. Materials

Ficoll-Paque was obtained from GE Healthcare Bio-Sciences AB (Uppsala, Sweden).
The porcine C3a kit was obtained from TECOMedical AG (Cat No: TE1078, Sissach, Switzer-
land). Zymosan, Dulbecco’s phosphate-buffered saline (PBS) without Ca2+/Mg2+ were
from Sigma Chemical Co. (St. Louis, MO, USA). Pre-designed primers for IP10 (CXCL10,
Assay cID: qSscCED0019399) and IL6 (Assay ID: qSscCED0014488) were purchased from
BioRad laboratories (Herkules, CA, USA).

4.2. Animals

Landrace pigs were obtained from the Research Institute for Animal Breeding, Nu-
trition and Meat Science of the Hungarian University of Agriculture and Life Sciences
(Herceghalom, Hungary). The study involved 13 female and castrated male pigs in the
22–32 kg size range. The experiments were approved by the Ethical Committee of Hungary
for Animal Experimentation (permission numbers: PE/EA/843-7/2020 and conformed to
the EU Directive 2010/63/EU and the Guide for the Care and Use of Laboratory Animals
used by the US National Institutes of Health (NIH Publication No.85-23, revised 1996).

4.3. Anesthesia and Instrumentation

Animals were sedated with an intramuscular injection of 25 mg/kg ketamine (50 mg/mL,
Gedeon Richter Plc. Budapest, Hungary) and 0.3 mg/kg midazolam (15 mg/3 mL, Kalceks
AS, Riga, Latvia), and were carefully transported into the laboratory. Anesthesia was
induced with a propofol bolus through an auricular vein. Airways were secured by
inserting an endotracheal tube. Unless otherwise specified, animals were allowed to
breathe spontaneously during the experiments. Controlled ventilation was applied in
case of animals, where continuous measurement of hemodynamic parameters necessitated
invasive surgical interventions. Surgery was done after povidone iodine (10%) disinfection
of the skin. To measure the pulmonary arterial pressure (PAP), a Swan-Ganz catheter
(Arrow AI-07124, 5 Fr. 110 cm, Teleflex, Morrisville, NC, USA) was introduced into the
pulmonary artery via the right internal jugular vein. A Millar catheter (SPC-561, 6 Fr.
Millar Instruments, Houston, TX, USA) was placed into the left femoral artery to record the
systemic arterial pressure (SAP). Additional catheters were introduced into the left external
jugular vein for drug administration, into the left femoral vein for venous blood sampling,
and into the right common carotid artery for arterial blood gas analysis. The latter was
executed with a Roche COBAS B221 benchtop analyzer (Roche Diagnostics, Rotkreuz ZG,
Switzerland). Hemodynamic and ECG data were collected using instruments from Pulsion
Medical Systems, and Powerlab, AD-Instruments (Castle Hill, Australia). Furthermore,
end-tidal pCO2, ventilation rate and body temperature were also continuously measured,
but they served no information beyond the measurements presented in this study and are
therefore not shown.

4.4. Experimental Protocols in Different Stages

This study was performed in three stages to measure the acute (minutes) and subacute
(hours to days) effects of zymosan in animals dedicated only to this study and in others
where zymosan was used as control. In the latter case, we used animals where other
treatments caused no or minimal physiological changes, and it could be ascertained that the
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other treatments had no impact on zymosan’s effects. In the first stage, five pigs were treated
with bolus injection of 0.1 mg/kg zymosan, and the resultant hemodynamic, hematological
and blood immune mediator changes were monitored or measured as described below. In
the second stage 1 mg/kg zymosan was infused in four pigs over 30 min, and the same
protocol was applied as in stage 1, except that the monitoring and serial blood sampling
lasted for 6.5 h. In the third stage, five pigs were infused with 1 mg/kg zymosan, followed
by blood withdrawals at 10, 20, 30, min, then in increasing times until 6.5 h, and then at
2–3 days intervals for 15 days.

4.5. Blood Assays

As described above, 10 mL of venous blood was drawn from the pigs at different
times into EDTA containing vacuum blood collection tubes (K3EDTA Vacuette, Greiner
Bio-One Hungary, Mosonmagyaróvár, Hungary). 0.5 mL of blood was aliquoted for
use in an ABACUS Junior Vet hematology analyzer (Diatron, Budapest, Hungary) to
measure the following parameters of blood cells: white blood cell (WBC), granulocyte (GR)
and lymphocyte (LY), platelet (PLT), red blood cell (RBC) count and hemoglobin (Hgb)
concentration. For measuring thromboxane B2 (TXB2), a stable metabolite of thromboxane
A2 (TXA2), 4 µg indomethacin (diluted in 2 µL of 96% ethanol) was mixed with 2 mL of
anticoagulated blood to prevent TXA2 release from WBC before centrifugation at 2000× g,
for 4 min at 4 ◦C. Another 2 mL of anticoagulated blood was directly centrifuged using
the same settings to separate the plasma. After centrifugation, the plasma samples were
aliquoted, frozen, and stored at −70 ◦C until the TXB2 assay was performed as described in
the kits’ instructions. We used a commercially available ELISA kit (Cayman Chemicals, Ann
Arbor, MI, USA) and an FLUOstar Omega microplate reader (BMG Labtech, Ortenberg,
Germany).

4.6. Cytokine Measurements

Cytokine levels were measured in plasma samples derived from blood, which were
taken in the previously discussed timepoints during and after zymosan infusion. The levels
of IL-1beta, IL-6, IL-8 and TNF-alpha cytokines were determined using a high sensitivity
4-Plex Porcine Cytokine kit from Quansys Biosciences Inc. (Logan, UT, USA) according to
the manufacturer’s protocol. Briefly, samples and standards were diluted with the provided
sample diluent in 1:1 ratio. An eight-point calibration curve (7 points, 1 blank) was prepared
using freshly suspended calibrator and standard serial dilutions were prepared ranging
2.13–1550 pg/mL for IL-1beta, 2.47–1800 pg/mL for IL-6, 2.88–2100 pg/mL for IL-8 and
2.19–1600 pg/mL for TNF-alpha. In a final volume of 50 microL, the calibration curve
standards and samples were pipetted on a Q-PlexTM Array 96-well plate. The plate was
sealed, incubated for three hours, then washed with the provided wash solution, and the
detection mix antibody solution was added. After 90 min incubation, the plate was washed;
then, Streptavidin-HRP was added and incubated for another 20 min. After six final washes,
the freshly prepared substrate solution was added and the plate was read immediately
with 270 s exposure time using Imager LS by Quansys operated through Q-View Software
(Quansys Biosciences, Logan, UT, USA), which was also used to evaluate the results. All
samples and standards were measured in duplicate. All incubations were performed at
room temperature (25 ◦C) on a shaker set to 500 rpm.

4.7. Isolation of PBMC and Quantitative RT-PCR

Peripheral blood mononuclear cells (PBMC) were isolated from 4 mL anticoagulated
blood within 30 min at each experimental time point. Briefly, 2 mL blood was transferred
into a 15 mL tube and diluted with 2 mL phosphate-buffer saline (PBS pH 7.4). In a new
15 mL tube, 3 mL Ficoll-Paque media (GE Healthcare, Chicago, IL, USA) was pipetted into
the bottom and the diluted 4 mL blood sample was carefully layered on top, centrifuged
for 30 min at 400× g. The upper plasma layer was removed, and the leukocyte layer was
transferred into a new tube containing 6 mL PBS, washed and centrifuged. The PBMC pellet
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was resuspended in 1 mL TriZol (Thermo Fisher Scientific, Waltham, MA, USA) and total
RNA was extracted according to manufacturer’s instructions. RNA pellet was resuspended
in RNAse-free water and the RNA concentration was determined photometrically on a
NanoDrop microphotometer (Thermo Fisher). One microgram of RNA of each sample was
reverse-transcribed with the high-capacity cDNA reverse transcription kit from Applied
Biosystems (Applied Biosystems/Life Technologies, Carlsbad, CA, USA) using random
primers in a final volume of 20 µL. Quantitative real-time PCR reactions were performed on
a Bio-Rad CFX96 thermal cycler (Bio-Rad Hungary, Budapest, Hungary) using the SensiFast
SYBR Green PCR Master Mix (Thermo Fisher). The specificity and efficiency of each PCR
reaction was confirmed with melting curve and standard curve analysis, respectively. Each
sample was quantified in duplicate and normalized to the same sample’s 18S rRNA (RN18S)
expression. Mean expression values were calculated as fold expression relative to a baseline
control sample using the 2−∆∆Ct formula. Pre-designed primers for IP10 (CXCL10, Assay
ID: qSscCED0019399) and IL6 (Assay ID: qSscCED0014488) were purchased from BioRad.
Primer sequences for RN18S, IL1RA and CCL2 are shown in Table 2.

Table 2. Primer sequences for qPCR analysis.

Gene Symbol Forward Primer Reverse Primer

ssRN18S
(NR_046261) GACAAATCGCTCCACCAACT CCTGCGGCTTAATTTGACTC

ssIL1RA
(NM_214262) CAAGCCTTCAGAATCTGGGATGTC GGCTCAACAGGCACCACATC

ssCCL2
(NM_214214) GAAGCAGTGATCTTCAAGAC GGGCAAGTTAGAAGGAAATG

4.8. Statistical Analyses

All data are presented as mean ± SD. Statistical analysis was performed using SPSS
10 (IBM, New York, NY, USA). Basic cardiopulmonary parameters were evaluated using
paired t-test, while blood cell counts and PBMC gene expression values were evaluated
using Kruskal–Wallis test and Dunn’s post-hoc test for multiple comparisons. Serum
cytokine protein levels were evaluated with ANOVA followed by Dunnett’s multiple
comparison test. Level of significance was set to p < 0.05 in each analysis.

Author Contributions: Conceptualization, J.S., T.R. and G.K.; methodology and formal analysis,
G.K., B.A.B., G.T.K., T.M. and T.R.; investigation, T.B., B.A.B., G.V.N., T.M. and G.T.K.; resources, A.S.,
B.M. and T.R.; writing: J.S., G.K. and B.A.B.; writing—review and editing, J.S., G.K., B.A.B. and T.R.;
supervision, T.R. and B.M.; project administration, B.M.; funding acquisition, A.S., T.R. and B.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union Horizon 2020 projects 825828 (Expert)
and 952520 (Biosafety) and National Research, Development, and Innovation Office (NKFIH) of
Hungary (2020-1.1.6-JÖVŐ-2021-00013 and K134939 to T.R.). Open access funding was provided
by Semmelweis University. G.K. was also supported by the Bolyai Scholarship of the Hungarian
Academy of Sciences (BO/00304/20/5) and ÚNKP Bolyai+ Scholarship from the Hungarian Ministry
of Innovation and Technology and National Research, Development, and Innovation Office (ÚNKP-
22-5/202206201434KG). J.S. thanks the support by the Applied Materials and Nanotechnology Center
of Excellence, Miskolc University, Miskolc.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and the animal study protocol was approved by the Institutional and National Review
Board/Ethics Committees, PE/EA/843-7/2020.

Data Availability Statement: Experimental data are available upon reasonable request to the corre-
sponding author.

Acknowledgments: The expert technical support by Katalin Simay, Henriett Biró and Krisztina
Fazekas are gratefully acknowledged.



Int. J. Mol. Sci. 2023, 24, 1138 15 of 18

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tang, Y.; Liu, J.; Zhang, D.; Xu, Z.; Ji, J.; Wen, C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies.

Front. Immunol. 2020, 11, 1708. [CrossRef]
2. Pearce, L.; Davidson, S.M.; Yellon, D.M. The cytokine storm of COVID-19: A spotlight on prevention and protection. Expert Opin.

Ther. Targets 2020, 24, 723–730. [CrossRef]
3. Sinha, P.; Matthay, M.A.; Calfee, C.S. Is a “Cytokine Storm” Relevant to COVID-19? JAMA Intern. Med. 2020, 180, 1152–1154.

[CrossRef]
4. Buszko, M.; Park, J.H.; Verthelyi, D.; Sen, R.; Young, H.A.; Rosenberg, A.S. The dynamic changes in cytokine responses in

COVID-19: A snapshot of the current state of knowledge. Nat. Immunol. 2020, 21, 1146–1151. [CrossRef]
5. Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front.

Immunol. 2020, 11, 1446. [CrossRef]
6. Iannaccone, G.; Scacciavillani, R.; Del Buono, M.G.; Camilli, M.; Ronco, C.; Lavie, C.J.; Abbate, A.; Crea, F.; Massetti, M.;

Aspromonte, N. Weathering the Cytokine Storm in COVID-19: Therapeutic Implications. Cardiorenal Med. 2020, 10, 277–287.
[CrossRef]

7. Del Valle, D.M.; Kim-Schulze, S.; Huang, H.-H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.;
Stock, A.; et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020, 26, 1636–1643.
[CrossRef]

8. Peter, A.E.; Sandeep, B.V.; Rao, B.G.; Kalpana, V.L. Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the
Cytokine Storm in COVID-19. Front. Pharmacol. 2020, 11, 583777. [CrossRef]

9. Coperchini, F.; Chiovato, L.; Ricci, G.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: Further advances in our
understanding the role of specific chemokines involved. Cytokine Growth Factor Rev. 2021, 58, 82–91. [CrossRef]

10. Coperchini, F.; Chiovato, L.; Rotondi, M. Interleukin-6, CXCL10 and Infiltrating Macrophages in COVID-19-Related Cytokine
Storm: Not One for All but All for One! Front. Immunol. 2021, 12, 668507. [CrossRef]

11. Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [CrossRef]
12. Shen, W.X.; Luo, R.C.; Wang, J.Q.; Chen, Z.S. Features of Cytokine Storm Identified by Distinguishing Clinical Manifestations in

COVID-19. Front. Public Health 2021, 9, 671788. [CrossRef]
13. Wright, D.J.M. Prevention of the cytokine storm in COVID-19. Lancet Infect. Dis. 2021, 21, 25–26. [CrossRef]
14. Machado, C.; Gonzalez-Quevedo, A. Hypoxemia and Cytokine Storm in COVID-19: Clinical Implications. MEDICC Rev. 2021, 23,

54–59.
15. Caricchio, R.; Gallucci, M.; Dass, C.; Zhang, X.; Gallucci, S.; Fleece, D.; Bromberg, M.; Criner, G.J. Preliminary predictive criteria

for COVID-19 cytokine storm. Ann. Rheum. Dis. 2021, 80, 88–95. [CrossRef]
16. Cron, R.Q.; Caricchio, R.; Chatham, W.W. Calming the cytokine storm in COVID-19. Nat. Med. 2021, 27, 1674–1675. [CrossRef]
17. Morgulchik, N.; Athanasopoulou, F.; Chu, E.; Lam, Y.; Kamaly, N. Potential therapeutic approaches for targeted inhibition of

inflammatory cytokines following COVID-19 infection-induced cytokine storm. Interface Focus 2022, 12, 20210006. [CrossRef]
18. Bai, Y.; Wang, E.; Zhao, S.; Li, J.; Zhu, Y.; Zhang, Y.; Cao, L.; Liu, H.; Dong, Y.; Wang, F.; et al. Implications of Laboratory Tests in

Disease Grading and Death Risk Stratification of COVID-19: A Retrospective Study in Wuhan, China. Front. Med. 2021, 8, 629296.
[CrossRef]

19. Wu, J.; Shen, J.; Han, Y.; Qiao, Q.; Dai, W.; He, B.; Pang, R.; Zhao, J.; Luo, T.; Guo, Y.; et al. Upregulated IL-6 Indicates a Poor
COVID-19 Prognosis: A Call for Tocilizumab and Convalescent Plasma Treatment. Front. Immunol. 2021, 12, 598799. [CrossRef]

20. Galván-Román, J.M.; Rodríguez-García, S.C.; Roy-Vallejo, E.; Marcos-Jiménez, A.; Sánchez-Alonso, S.; Fernández-Díaz, C.;
Alcaraz-Serna, A.; Mateu-Albero, T.; Rodríguez-Cortes, P.; Sánchez-Cerrillo, I.; et al. IL-6 serum levels predict severity and
response to tocilizumab in COVID-19: An observational study. J. Allergy Clin. Immunol. 2021, 147, 72–80.e8. [CrossRef]

21. Smieszek, S.P.; Przychodzen, B.P.; Polymeropoulos, V.M.; Polymeropoulos, C.M.; Polymeropoulos, M.H. Assessing the potential
correlation of polymorphisms in the IL6R with relative IL6 elevation in severely ill COVID-19 patients’. Cytokine 2021, 148, 155662.
[CrossRef]

22. Garcia-Gasalla, M.; Berman-Riu, M.; Pons, J.; Rodríguez, A.; Iglesias, A.; Martínez-Pomar, N.; Llompart-Alabern, I.; Riera, M.;
Beltrán, A.F.; Figueras-Castilla, A.; et al. Hyperinflammatory State and Low T1 Adaptive Immune Response in Severe and Critical
Acute COVID-19 Patients. Front. Med. 2022, 9, 828678. [CrossRef]

23. Jakobs, K.; Reinshagen, L.; Puccini, M.; Friebel, J.; Wilde, A.-C.B.; Alsheik, A.; Rroku, A.; Landmesser, U.; Haghikia, A.; Kränkel,
N.; et al. Disease Severity in Moderate-to-Severe COVID-19 Is Associated with Platelet Hyperreactivity and Innate Immune
Activation. Front. Immunol. 2022, 13, 844701. [CrossRef]

24. Pirsalehi, A.; Salari, S.; Baghestani, A.; Vahidi, M.; Khave, L.J.; Akbari, M.E.; Bashash, D. Neutrophil-to-lymphocyte ratio (NLR)
greater than 6.5 may reflect the progression of COVID-19 towards an unfavorable clinical outcome. Iran. J. Microbiol. 2020, 12,
466–474. [CrossRef]

25. Ciccullo, A.; Borghetti, A.; Verme, L.Z.D.; Tosoni, A.; Lombardi, F.; Garcovich, M.; Biscetti, F.; Montalto, M.; Cauda, R.; Di
Giambenedetto, S. Neutrophil-to-lymphocyte ratio and clinical outcome in COVID-19: A report from the Italian front line. Int. J.
Antimicrob. Agents 2020, 56, 106017. [CrossRef]

http://doi.org/10.3389/fimmu.2020.01708
http://doi.org/10.1080/14728222.2020.1783243
http://doi.org/10.1001/jamainternmed.2020.3313
http://doi.org/10.1038/s41590-020-0779-1
http://doi.org/10.3389/fimmu.2020.01446
http://doi.org/10.1159/000509483
http://doi.org/10.1038/s41591-020-1051-9
http://doi.org/10.3389/fphar.2020.583777
http://doi.org/10.1016/j.cytogfr.2020.12.005
http://doi.org/10.3389/fimmu.2021.668507
http://doi.org/10.1002/jmv.26232
http://doi.org/10.3389/fpubh.2021.671788
http://doi.org/10.1016/S1473-3099(20)30376-5
http://doi.org/10.1136/annrheumdis-2020-218323
http://doi.org/10.1038/s41591-021-01500-9
http://doi.org/10.1098/rsfs.2021.0006
http://doi.org/10.3389/fmed.2021.629296
http://doi.org/10.3389/fimmu.2021.598799
http://doi.org/10.1016/j.jaci.2020.09.018
http://doi.org/10.1016/j.cyto.2021.155662
http://doi.org/10.3389/fmed.2022.828678
http://doi.org/10.3389/fimmu.2022.844701
http://doi.org/10.18502/ijm.v12i5.4609
http://doi.org/10.1016/j.ijantimicag.2020.106017


Int. J. Mol. Sci. 2023, 24, 1138 16 of 18

26. Tudoran, C.; Tudoran, M.; Lazureanu, V.E.; Marinescu, A.R.; Pop, G.N.; Pescariu, A.S.; Enache, A.; Cut, T.G. Evidence of
Pulmonary Hypertension after SARS-CoV-2 Infection in Subjects without Previous Significant Cardiovascular Pathology. J. Clin.
Med. 2021, 10, 199. [CrossRef]

27. Pagnesi, M.; Baldetti, L.; Beneduce, A.; Calvo, F.; Gramegna, M.; Pazzanese, V.; Ingallina, G.; Napolano, A.; Finazzi, R.; Ruggeri,
A.; et al. Pulmonary hypertension and right ventricular involvement in hospitalised patients with COVID-19. Heart 2020, 106,
1324–1331. [CrossRef]

28. Khan, A.W.; Ullah, I.; Khan, K.S.; Tahir, M.J.; Masyeni, S.; Harapan, H. Pulmonary arterial hypertension post COVID-19: A
sequala of SARS-CoV-2 infection? Respir. Med. Case Rep. 2021, 33, 101429. [CrossRef]

29. Sun, B.; Wang, H.; Lv, J.; Pei, H.; Bai, Z. Predictors of Mortality in Hospitalized COVID-19 Patients Complicated with Hypotension
and Hypoxemia: A Retrospective Cohort Study. Front. Med. 2021, 8, 753035. [CrossRef]

30. Chen, Q.; Xu, L.; Dai, Y.; Ling, Y.; Mao, J.; Qian, J.; Zhu, W.; Di, W.; Ge, J. Cardiovascular manifestations in severe and critical
patients with COVID-19. Clin. Cardiol. 2020, 43, 796–802. [CrossRef]

31. Szebeni, J.; Bedocs, P.; Csukas, D.; Rosivall, L.; Bunger, R.; Urbanics, R. A porcine model of complement-mediated infusion
reactions to drug carrier nanosystems and other medicines. Adv. Drug Deliv. Rev. 2012, 64, 1706–1716. [CrossRef] [PubMed]

32. Urbanics, R.; Szebeni, J. Lessons learned from the porcine CARPA model: Constant and variable responses to different
nanomedicines and administration protocols. Eur. J. Nanomed. 2015, 7, 219–231. [CrossRef]
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