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Abstract: The current study evaluates the role of reactive oxygen species (ROS) in bioeffects of mag-
netite nanoparticles (MNPs), such as bare (Fe3O4), humic acids (Fe3O4-HA), and 3-aminopropyltri-
ethoxysilane (Fe3O4-APTES) modified MNPs. Mössbauer spectroscopy was used to identify the
local surrounding for Fe atom/ions and the depth of modification for MNPs. It was found that the
Fe3O4-HA MNPs contain the smallest, whereas the Fe3O4-APTES MNPs contain the largest amount
of Fe2+ ions. Bioluminescent cellular and enzymatic assays were applied to monitor the toxicity and
anti-(pro-)oxidant activity of MNPs. The contents of ROS were determined by a chemiluminescence
luminol assay evaluating the correlations with toxicity/anti-(pro-)oxidant coefficients. Toxic effects of
modified MNPs were found at higher concentrations (>10−2 g/L); they were related to ROS storage
in bacterial suspensions. MNPs stimulated ROS production by the bacteria in a wide concentration
range (10−15–1 g/L). Under the conditions of model oxidative stress and higher concentrations of
MNPs (>10−4 g/L), the bacterial bioassay revealed prooxidant activity of all three MNP types, with
corresponding decay of ROS content. Bioluminescence enzymatic assay did not show any sensitivity
to MNPs, with negligible change in ROS content. The results clearly indicate that cell-membrane
processes are responsible for the bioeffects and bacterial ROS generation, confirming the ferroptosis
phenomenon based on iron-initiated cell-membrane lipid peroxidation.

Keywords: magnetite nanoparticles; surface modification; humic acids; organosilane; reactive oxygen
species; toxicity; bioluminescence assay; bacteria; enzymes; oxidative stress; prooxidant; ferroptosis

1. Introduction

Magnetic nanoparticles (MNPs) are of wide scientific interest due to their potential
applications in biology, medicine, nanotechnology, and the environment. These applications
include enzyme and protein separation, RNA and DNA purification [1–3], controlled and
targeted drug delivery [4,5], immunoassay [6], biosensor production for toxic pesticide
detection [7,8], a contrast agent for magnetic resonance imaging [9,10], hyperthermic
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therapy for cancer diagnosis [11,12], and cancer treatment [13,14]. Another important
application is the removal of ecotoxicants from natural waters and industrial wastes [1,15].
Therefore, iron oxide nanomaterials can be found in natural and engineering aquatic
environments due to their numerous applications, as well as corrosion products of metal
components in the presence of natural materials [16,17].

With the development of nanotechnology, iron-based nanoparticles have become
widely used in cancer therapy research. A new, iron-dependent form of programmed cell
death, ferroptosis, first described in 2012 by Dixon [18], is one of the types of regulated
cell death caused by strong activation of lipid peroxidation, which is concerned with the
production of reactive oxygen species (ROS) and iron availability in cells [19].

Ferroptosis-inducing systems initiate the overexpression of H2O2 in a cancer cell [20,21]
and the subsequent formation of hydroxyl radicals. Among the ferroptosis-inducing sys-
tems, the following substances are known: complexes [22–24], various iron (II, III)-based
nanoplatforms [25–27], including ferromagnetic nanoparticles (maghemite γ-Fe2O3 or
magnetite Fe3O4) [28], iron-containing nanometallic silicas [29] and metal-organic frame-
works [30]. The study of the release of iron ions is associated with the possibility of newly
formed iron ions affecting the intracellular redox reactions and homeostasis of ROS inside
cells considerably [31].

In general, ROS are active intermediate compounds involved in the processes of
aqueous solutions. ROS are natural by-products of cellular oxidative metabolism; they
play an essential role in cell death, modulation of cell survival, differentiation, and cell
signaling [32,33]. ROS result from the energy/electron transfer to oxygen; they are highly
reactive and potentially harmful to living organisms [34]. The group of ROS includes
free radicals such as singlet oxygen, superoxide, hydroxyl radical, etc., as well as radical
precursors, such as hydrogen peroxide H2O2, a compound of longer lifespan and higher
stability as compared with free radicals [35,36]. ROS are important intermediates in certain
physiological processes (e.g., respiration, cell signaling), and their cell levels are rigor-
ously controlled via antioxidants of different types—enzymatic (e.g., catalase, glutathione
transferases, glutathione peroxidase, and superoxide dismutase) and non-enzymatic (e.g.,
ascorbic acid, tocopherols, cysteine, glutathione, carotenoids, bilirubin, flavonoids). How-
ever, this redox homeostasis can be disturbed in some conditions, and overage of ROS may
cause oxidative stress, which induces harmful effects to cells through oxidative damage
of biomolecules (e.g., proteins, lipids, and nucleic acids) or disruption in cell signaling
mechanisms [37]. Iron is inextricably linked to ROS due to its partially filled d-orbitals,
variable oxidation states, and involvement in energy transfer or electron-transfer processes.
Thus, studying the ROS-related bioactivity of metal nanoparticles defines their application
as engineered nanostructures, as well as explains their biological and ecological role as
nanostructures of natural origination [38,39].

Pristine MNPs require a protective coating since they can be easily oxidized in air
and aggregated after production, especially in aqueous systems [40,41]. Thus, stabilization
of iron oxide particles is desirable, it is achieved by functionalizing the MNP surfaces
with various substances—polymers, metals, inorganic, and organic substances [42]. In the
current paper, we use three types of MNPs: bare Fe3O4 (1), functionalized with humic
acids (2), and alkoxysilane (3).

Humic acids (HA), natural high-molecular organic multifunctional substances, with
the domination of carboxyl and hydroxyl groups, are relatively small molecules held
together by weak non-covalent intermolecular interactions (e.g., π-π, van der Waals, charge
transfer, and hydrogen bonds) among organic fragments [27]. HA are of high affinity
to magnetite (Fe3O4) and effectively cover pristine MNPs, most likely through surface
complexing ligand exchange reactions [43–45]. HA-modified magnetite can have anti- and
pro-oxidant features due to the presence of donor-acceptor groups of HA and magnetically
controlled properties due to Fe3O4 cores [46–48]. HA sorption onto Fe3O4 nanoparticles
increases the stability of nanodispersions, preventing their aggregation [49] and potentially
increasing the adsorption capacity and selectivity of the nanoparticles [42,50]. The HA-
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coated MNPs were previously used to remove oxyanions (chromates) of metals, anionic
phosphate [42,51], metal cations [52], rhodamine [53], toxic inorganic forms of arsenic [44],
for adsorption and reduction of toxic Cr(VI) to non-toxic Cr(III) [51], adsorption of Pb(II),
Cu(II), Cd(II), and Ni ions from wastewater [54], and protein immobilization [55].

The possibility to attain functionalized iron-based nanoparticles by alkoxysilanes is
of wide scientific interest to researchers [56]. The chemistry of the silica surface is well
established, enabling a large number of applications of silica-coated nanoparticles [56,57].
Alkoxysilane can bind to metal oxide by adsorption or covalent linking. A functional
alkoxysilane consists of at least two functional groups, the first group being used for
attachment to the surface of the MNPs, and the second group providing an adhesion point
to the bond of the molecule [1]. Nanoparticles coated with silica or alkoxysilanes are
promising reagents in nanobiotechnology due to their biocompatibility and hydrophilic
properties. The great variety of alkoxysilanes makes it possible to carry out various types
of functionalization of the surface of nanoparticles by introducing charges into the system.
Thus, functionalization prevents from the aggregation of nanoparticles in liquids and
improves their chemical stability by controlling surface charge [58].

In this study, we chose a luminous marine bacterium as a model microorganism to
evaluate and compare the biological effects of MNPs. The bioluminescence bacteria-based
assessment is known as a toxicity assay and it has been applied for more than 50 years for
toxicity monitoring due to its simplicity and high sensitivity [59–64]. The bioassay uses
luminescence intensity as a physiological test parameter providing a convenient approach
with high rates of analysis (1–10 min), low costs, and ease of the bioassay procedure.

We compare the cellular bioeffects of MNPs in the bioluminescence enzymatic assay
system, proposing a relatively new approach in a toxicology practice [65–68]. The conven-
tional enzymatic bioluminescent assay is based on the bacterial bioluminescent enzyme
system, which involves two coupled enzymatic reactions:

NADH + FMN NADH:FMN−oxidoreductase→ FMN · H− + NAD+ (R1)

FMN · H− + RCHO + O2
luci f erase→ FMN + RCOO− + H2O + hν (R2)

where, FMN is flavin mononucleotide, NADH is nicotinamide adenine dinucleotide dis-
odium salt-reduced.

Similar to cellular bioassay, the enzymatic analysis can assess the general toxicity
in test samples allowing the integration of all the interactions of toxic compounds with
the bioluminescent system such as redox processes, polar and nonpolar binding, etc.
Moreover, the enzymatic bioassay is specific to oxidizers due to its additional kinetic
parameter, the induction period, which directly depends on the redox potentials of toxicants
in solutions [67]. Previously [69,70], we used the bioluminescent enzymatic assay system to
evaluate the toxicities of general and oxidative types in solutions of organic and inorganic
oxidizers (quinones and polyvalent metals, respectively). Changes in general toxicity and
oxidative toxicity of aqueous media under exposure to humic substances were studied
previously in our previous studies [71–73]. Later [74–79], the toxicity and antioxidant
activity of a series of fullerenols (i.e., carbon nanostructures, water-soluble derivatives of
fullerenes, and perspective pharmaceutical agents) were evaluated and compared.

In our previous work [80], we used bioluminescence bioassays, cellular and enzy-
matic, to evaluate the bioeffects of three types of MNPs: bare MNPs, modified by humic
acids, and silica (3-aminopropyltriethoxysilane, APTES), i.e., (1) Fe3O4, (2) Fe3O4/HA, and
(3) Fe3O4/APTES, respectively. The bioeffects under study were: toxic effects and anti/pro-
oxidant activity of the MNPs. Current work continues the study of three types of MNPs [80];
it evaluates the role of ROS in the bioeffects of these nanoparticles. Contents of reactive
oxygen species (ROS) were determined using chemiluminescence luminol assay in the bio-
luminescence assay systems. Correlations of ROS content with toxicity/anti-(pro-)oxidant
coefficients were evaluated, thus contributing to comprehending ferroptosis phenomenon.
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2. Results and Discussion
2.1. Characterization of the Microstructure and Magnetic Properties of Samples
2.1.1. Local Environment of Fe Atom/Ions

The composition and morphological properties of MNPs were studied by Mössbauer
spectroscopy, and related spectra, along with their description and results of simula-
tion in different state superparamagnetic relaxation models are presented in Table 1 and
Supplementary materials (Figure S1, Table S1). Relying on the presented results, it can
be argued that magnitudes of magnetic splittings, obtained even for spectra at low tem-
peratures, are lower than expected for massive samples of magnetite and maghemite [81],
which is typical for nanosized materials [82]. Indeed, the sizes of magnetic domains can be
estimated in the range from 12.6 (for Fe3O4-HA) to 15.7 (for Fe3O4-APTES) nm as reported
in Table 1.

Table 1. Properties of materials according to Mössbauer spectroscopy and Magnetic properties of
bare and modified MNPs.

Sample Composition
Fe3−δO4 * D, nm Saturation Magnetization

Ms, emu/g
Remanent Magnetization

Mr, emu/g
Coercive

Force Hc, Oe

Fe3O4 Fe2.718O4 15.64 ± 0.03 68.2 6.88 74.1
Fe3O4-APTES Fe2.734O4 15.73 ± 0.02 31.2 3.93 79.0

Fe3O4-HA Fe2.682O4 12.61 ± 0.06 30.9 6.40 160.0

* δ–calculated as an average from the data in Table S1, D–magnetic domain diameter.

Moreover, by analyzing the areas of the subspectra related to iron atoms in different
crystallographic sites of magnetite, the value of the non-stoichiometric parameter–δ for
nano-magnetite–Fe3−δO4 ≡ (Fe3+)A(Fe2+

1−3δFe3+
1+2δ#δ)BO4 [15,83], can be estimated by

using the following expression:

δ = {Σ(δ2 − 3δi + 2δ3)·Si + (δ2 − δ3)ΣSj}/{Σ(3δ2 − δi − 2δ3)·Si + 3(δ2 − δ3)ΣSj}, (1)

where Si is the relative area of the subspectrum with isomeric shift δi related to the iron
atoms in the B-site, Sj is the relative area of the remaining subspectra, δ2 and δ3 are the
isomeric shifts of iron atoms (+2) and (+3) in the octahedral oxygen environment for given
temperature (here δ2 = 1.16 ± 0.06 и 1.33 ± 0.09 mm/s for 296 and 78 K, respectively,
δ3 = 0.37 ± 0.04 and 0.49 ± 0.04 mm/s for 296 and 78 K, respectively) [84]. Computed
results are reported in Table 1, and the data reveal that magnetite samples are quite strongly
oxidized indicating a magnetite-maghemite solid solution [15]. At the same time, the
Fe3O4-HA sample contains the smallest amount of Fe2+ ions, whereas the Fe3O4-APTES
contain the largest amount. It should be noted that, in the case of the studied samples, there
is a clear correlation between their particle sizes and nonstoichiometric composition which
leads to the following result: the smaller the particle size, the more nonstoichiometric the
nanomagnetite composition is (Table 1).

2.1.2. Magnetic Parameters

The most crucial property of MNPs, which allow a variety of applications, especially
in biomedicine, is represented by their ferrimagnetism. As a matter of fact, the application
of an external magnetic field makes it possible to concentrate magnetic nanoparticles in the
target point, thus reducing likely side effects [85–88]. Some magnetic characteristics for the
Fe3O4 MNPs are presented in Table 1. The hysteresis loops for the three different magnetite
NMPs results were closed and symmetrical with respect to the origin of the coordinate
system as reported in Figure 1.



Int. J. Mol. Sci. 2023, 24, 1133 5 of 23

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 24 
 

 

2.1.2. Magnetic Parameters 
The most crucial property of MNPs, which allow a variety of applications, especially 

in biomedicine, is represented by their ferrimagnetism. As a matter of fact, the application 
of an external magnetic field makes it possible to concentrate magnetic nanoparticles in 
the target point, thus reducing likely side effects [85–88]. Some magnetic characteristics 
for the Fe3O4 MNPs are presented in Table 1. The hysteresis loops for the three different 
magnetite NMPs results were closed and symmetrical with respect to the origin of the 
coordinate system as reported in Figure 1. 

 
Figure 1. Hysteresis loops at 300 K for Fe3O4, Fe3O4/HA, and Fe3O4/APTES. The inset shows an 
enlarged view of the data at lower magnetic fields. The surface modification led to a twofold de-
crease in the saturation magnetization. 

The shape of the loops indicates the ferromagnetic features of the material which are 
prone to their potential application. The saturation magnetizations of bare Fe3O4, 
Fe3O4/HA, and Fe3O4/APTES were respectively 68.2, 30.9, and 31.2 emu/g (Table 1), sug-
gesting a 40% (w/w) of HA content in Fe3O4/HA. The attained values of saturation mag-
netization indicate that NMPs are stabilized by the HA or APTES functionalization exhib-
iting superparamagnetic properties at room temperature (Figure 1) and the corresponding 
variations, respectively of 54.6% for the Fe3O4/H and 54.5% for the Fe3O4/APTES, com-
pared to bare magnetite can be explained by the noncollinearity of surface spins of MNPs 
and likely by the same thickness of the HA and APTES shell surrounding the nanomag-
netite particles. In the absence of a magnetic field, all samples showed a similar low resid-
ual magnetism ∼±4–7 emu g−1 (Table 1), due to magnetic viscosity for superparamagnetic 
materials [89]. The further increase of the coercivity can be related to cumulative anisot-
ropy by phase transformation to maghemite in the case of Fe3O4/HA in terms of concen-
tration compared to Fe3O4/APTES, which correlates with Mössbauer spectroscopy data 
[90]. 

In general, bare and functionalized nanoparticles exhibit a saturation magnetization 
sufficient to control an external magnetic field. In many works, focused on the preparation 
of materials for catalyzing ferroptosis, the authors have used iron salts as iron ion sources 

Figure 1. Hysteresis loops at 300 K for Fe3O4, Fe3O4/HA, and Fe3O4/APTES. The inset shows an
enlarged view of the data at lower magnetic fields. The surface modification led to a twofold decrease
in the saturation magnetization.

The shape of the loops indicates the ferromagnetic features of the material which
are prone to their potential application. The saturation magnetizations of bare Fe3O4,
Fe3O4/HA, and Fe3O4/APTES were respectively 68.2, 30.9, and 31.2 emu/g (Table 1), sug-
gesting a 40% (w/w) of HA content in Fe3O4/HA. The attained values of saturation magne-
tization indicate that NMPs are stabilized by the HA or APTES functionalization exhibiting
superparamagnetic properties at room temperature (Figure 1) and the corresponding varia-
tions, respectively of 54.6% for the Fe3O4/H and 54.5% for the Fe3O4/APTES, compared to
bare magnetite can be explained by the noncollinearity of surface spins of MNPs and likely
by the same thickness of the HA and APTES shell surrounding the nanomagnetite particles.
In the absence of a magnetic field, all samples showed a similar low residual magnetism
~±4–7 emu g−1 (Table 1), due to magnetic viscosity for superparamagnetic materials [89].
The further increase of the coercivity can be related to cumulative anisotropy by phase
transformation to maghemite in the case of Fe3O4/HA in terms of concentration compared
to Fe3O4/APTES, which correlates with Mössbauer spectroscopy data [90].

In general, bare and functionalized nanoparticles exhibit a saturation magnetization
sufficient to control an external magnetic field. In many works, focused on the prepara-
tion of materials for catalyzing ferroptosis, the authors have used iron salts as iron ion
sources [29,91,92], however, as reported by Huo et al., 2017, [93] without targeting, only
6.95% of nanoparticles were stored and localised in the 4T1 cancer cell 48 h upon injection.

2.1.3. Iron Ion Release

The study of the release of Fe2+ ions and Fe3+ ions is also associated with the dif-
ferent contributions of ions of different redox states to the Fenton reaction [94]. It is
known that the rate constant of •OH generation via Fenton reaction catalyzed by Fe2+ ion
[76 (mol/L)−i s −s] is 104 −105 times higher than this of the Fe3+ ion-catalyzed Fenton-like
reaction [0.001−0.07 (mol/L)−i s −s] [94]. In this regard, estimation of the concentration of
released ions of different redox states is of interest in order to identify their contribution to
the induction of ROS production.
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UV-Vis spectroscopy was used to investigate the kinetics of the release of Fe2+ and Fe3+

ions from nanoparticles Fe3O4, Fe3O4/HA, and Fe3O4/APTES (Figure S2). It is noticeable
from the spectra, that Fe3O4 suspension reveals a release of both Fe2+ and Fe3+ ions,
respectively of 6.3 mg/L and 3.5 mg/L, as shown in Figure 2A. The Fe3+/Fe2+ ratio during
the first hour was close to the stoichiometric ratio for magnetite, i.e., 1.8–2.3 (Figure 2B).
Upon 24 h, Fe3+ concentration increases taking the Fe3+/Fe2+ ratio to a value of 3.3 due to
the oxidation of Fe2+ to Fe3+ ions.
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Figure 2. Kinetics of release of iron ions by MNPs (A,B) (mg/L of ions from 1 g/L of Fe in the sample).
Colors denote various nanoparticles, “square” markers denote the release of Fe2+ ions, and “triangle”
markers denote Fe3+ ions. According to the obtained data, samples of Fe3O4/HA and Fe3O4/APTES
release only Fe3+ ions, while Fe3O4 releases both Fe2+ and Fe3+ ions (A), and their ratio increases
within three hours reaching a plateau (B).

Fe3O4/HA and Fe3O4/APTES do not release Fe2+ ions within 24 h, Figure 2A. In
the case of Fe3O4/HA, the absence of Fe2+ ions within the solution can be explained
by the complete oxidation of magnetite Fe3O4 to maghemite Fe2O3, according to the
Mössbauer spectroscopy data (Section 2.1.1). However, analyzing the same data as well as
results of X-ray diffraction [82], APTES-functionalized nanoparticles contain both Fe2+ and
Fe3+ ions. The absence of Fe2+ ions into the Fe3O4/APTES solution can be explained by
the very low concentration which can fall beyond the sensitivity limits of the employed
analysis technique. Additionally, Fe2+ would undergo spontaneous chemical oxidation
with molecular oxygen or other potential oxidants to Fe3+, which eventually precipitate as
ferric hydroxides [95,96].

Both functionalized oxides, Fe3O4/HA and Fe3O4/APTES, release Fe3+ ions, however,
the release kinetics differ significantly (Figure 2A). So, in the case of Fe3O4/HA, the Fe3+

concentration in the solution increases from 10.6 mg/L to 19.0 mg/L in a half an hour,
and then decreases to 9.5 mg/L in 24 h. In the case of Fe3O4/APTES, on the contrary, a
decay of Fe3+ release (from 58.2 mg/L to 29.6 mg/L in half an hour after suspension) was
revealed with a subsequent increase of Fe3+ concentration almost to the initial value of
51.4 mg/L after 24 h. In general, functionalized MNPs release more Fe3+ ions compared to
bare MNPs, but do not or negligibly release Fe2+ ions. For this reason, bare MNPs represent
an effective source of a pair of Fe2+/Fe3+ ions, whereas the HA and APTES functionalized
nanoparticles, under the specified synthesis conditions, are a source of only the Fe3+ ions.

The difference in the behavior of iron ions released from the different considered
samples would need an attempted explanation. In the case of bare Fe3O4, their occurring
aggregation leads to a decrease in the concentration of surface ions and consequently to
their hydrolysis forming stable hydrocomplexes as supported by the binding constant
increasing for lgK(Fe(OH)3aq) and lgK(Fe(OH)4), from 12 and 22, respectively [97]. Due to
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a high complexing potential of HA, the binding constants (lgK) of Fe2+ and Fe3+ ions are,
five and four, respectively, according to [98]. Based on this evidence, HA functionalization
not only induces stabilization of the magnetite, but also triggers iron ions to be pulled
out by HA from the NP’s surface leading into the solution. The higher release of iron
ions, in the case of Fe3O4/APTES, is probably associated with a high level of porosity and
amorphous structure of silica, according to the results reported by Oliveira, et al., 2019, and
Otalvaro, et al., 2019, [99,100].

In 1987, Minotti et al. [101] showed that lipid peroxidation can be induced both by the
participation of Fe2+ or Fe3+ ions in the formation of hydroxyl radicals •OH as a result of
the Fenton reaction, and also by the participation of pairs of Fe2+/Fe3+ ions immediately to
form the Fe3+-dioxygen-Fe2+ complex. However, in a physiologically neutral or slightly
acidic environment such as a tumor area, the effectiveness of the Fenton reaction is relatively
low [102]. Even under acidic pH conditions, the Fenton reaction catalyzed by Fe2+ has a
low reaction rate (~63 M−1 s−1), leading to the slow formation of ROS [103]. For these
reasons, the development of nanopreparations featured by high catalytic activity and
specificity, is highly prospective in a weakly acidic and neutral media (pH 6–7) as a tumor
microenvironment.

The ability to generate ROS by MNPs in highly diluted solutions was studied in
relation to bacterial and enzymatic systems at a pH value of ~6 in Sections 2.2 and 2.3.

2.2. Effects of MNPs on Bacterial Cells

The luminescence intensity of bacterial cells was studied in the presence of MNPs
considering different concentrations of MNPs. The MNP effects were analyzed at <1 g/L,
as higher content was limited by both low water solubility and nanoparticles dispersion
stability during the experiments and also by the demand to avoid the “optical filter” effect,
which limits the use of luminescence signal detection in solutions with high optical density
and/or light-scattering suspensions [104].

2.2.1. Toxic Effects of MNPs in Bacterial Suspension

(a) Effects of MNPs on Bacterial Bioluminescence Intensity

All three types of MNPs demonstrated moderate bioluminescence activation
(1.0 < Irel < 1.25, p < 0.05) in a lower concentration range (i.e., 10−8–10−2 g/L), as shown
in Figure 3. The activation of bacterial response by MNPs might be described in terms
of the conventional “hormesis” model [105–108]. It is known that the model includes, in
the broadest case, three stages of the biological dose-dependent response—stress recog-
nition (I), activation (II), and inhibition of organismal functions or toxic effect (III). As a
concept, hormesis involves favorable biological responses to low exposures to stressors, in
all cases [109,110].

To characterize the toxicity of the MNP samples, the bioluminescence inhibition
(Irel < 1.0, p < 0.05) effects due to higher concentrations of MNPs (>10−2 g/L) were analyzed.
The EC50 values of MNPs (i.e., MNP concentrations at 50% bioluminescence inhibition)
were determined and presented in Table 2. The results show that the values are compa-
rable, however, the lowest value of EC50 of bare Fe3O4 is evidence of its higher toxicity
compared to surface-modified MNPs (Fe3O4/APTES and Fe3O4/HA). Probably, this is a
result of the Fe2+ release in suspensions of bare Fe3O4, the participation of Fe2+/Fe3+ pairs
(see Section 2.1.3, Figure 2A,B), which actively produce toxic hydroxyl radicals (according
to Fenton reaction [101]) and the result in lipid peroxidation in the cellular membrane.
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Table 2. Effective concentrations of MNPs, EC50 (i.e., concentrations inhibiting bioluminescence
intensity by 50%).

MNPs EC50, g/L

Fe3O4 0.05
Fe3O4/APTES 0.07

Fe3O4/HA 0.12

(b) Effects of MNPs on ROS Content in Bacterial Suspension

ROS content was determined for two types of suspensions: (1) MNPs in bacteria-free
solution (Figure 4A) and (2) MNPs + bacteria (Figure 4B).

Figure 4A shows an ROS increased content in bacteria-free media at higher con-
centrations of MNPs (10−4–10−1 g/L) and only a negligible rise was observed for bare
Fe3O4. Whereas, a relevant variation was observed for both modified MNPs at >10−3 g/L.
Such difference between ROS formation into MNP suspensions between modified and
non-modified surface MNPs could be probably related to free Fe3+ ions content in the
suspension, Figure 2A.

Similar differences in ROS content due to modified and unmodified MNPs were
assessed in bacterial suspensions at high nanoparticle concentrations (>10−3 g/L, refer
to Figure 4B). In fact, an increase in the ROS content was found at high concentrations
(>10–3 g/L) of two modified MNPs, but not observed for bare Fe3O4. Similarly to the
bacteria-free media (Figure 4A), this may be due to a higher concentration of Fe3+ released
by functionalized nanoparticles (Figure 2A).

It should be noted, that a moderated increase in the ROS content (as compared to
the control samples, ROSrel > 1.0, p < 0.05) was observed over a wide range of MNP
concentrations (10–15–10–3 g/L) in bacterial media (Figure 4B) compared to the bacteria-free
media (Figure 4A). This clearly indicates the effective ROS generation associated with the
bacterium itself within the low-concentration solutions of MNPs. The above-mentioned
effect represents an important achievement that should be further studied in detail.
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Correlations between bioluminescence intensity Irel and ROSrel (Figures 3 and 4B)
were analyzed. The correlation coefficients, r, were calculated for three MNP types, as
reported in Table 3. High reversed correlations (r = −0.88; −0.79) for two modified MNPs
(Fe3O4/APTES, Fe3O4/HA) were demonstrated, whereas a low correlation (r = −0.21)
was determined for bare Fe3O4. The high level of correlations is indicative of a high ROS
contribution to the bioluminescence-inhibiting (“toxic”) effect of the modified MNPs within
the bacterial media. The effect of modified MNPs related to the ROS involvement could
be associated with Fenton-like reactions (catalyzed by Fe3+ ion) or Haber−Weiss reaction
at neutral pH, whereas the low correlation of bare MNPs is a reasonable indication of
additional mechanisms of bacterial inhibition. Supposedly, the Fe2+ presence and lower Fe3+

concentration in the suspensions of bare MNPs (as shown in Section 2.1.3, Figure 2A) lead
to the reasonable assumption of additional occurring mechanisms, such as the production
of toxic −OH via Fenton reaction [101] and break of quantitative correlations between ROS
and MNP contents (Table 3).
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Table 3. Correlation coefficients, r, between dependencies of Irel and ROSrel on MNP concentrations.

MNPs MNP Concentration Range, g/L r

Fe3O4 (10−9–10−1) −0.21
Fe3O4/APTES (10−9–10−1) −0.88

Fe3O4/HA (10−9–10−1) −0.79

Previously, high positive correlations between Irel and ROSrel were found in suspen-
sions of luminous bacteria and fullerenol at high ”toxic” fullerenol’ concentrations [79].
Fullerenols, conversely to MNPs, are antioxidants and active trappers of free radicals, and
they could lower the ROS content effectively [111–116] suppressing the rates of oxidative
processes in cells. Hence, the opposite signs of correlations for fullerenols and MNPs
could be concerned with their anti- and pro-oxidant properties, respectively, indicating the
complexity and multiplicity of processes of different bioactive compounds.

2.2.2. Effects of MNPs in Bacterial Suspension under Model Oxidative Stress

The MNP anti-(pro-)oxidant activity in bacterial suspensions was investigated under
specific conditions of model oxidative stress. During this study, toxic concentrations of
MNPs (i.e., >10−2 g/L) were excluded, while bacterial bioluminescence kinetics was mon-
itored and recorded assuming model solutions of an oxidizing agent, 1,4-benzoquinone
(Bq), at its EC50 to suppresses bioluminescence intensity by 50% (EC50, Bq = 10–7 M). The
ROS content was monitored by chemiluminescence technique, within the same media after
bioluminescence measurements. It has been assumed that restoration of the bioluminescence
intensity (Irel

Bq > 1) results in evidence of MNP antioxidant activity, whereas the additional
bioluminescence suppression (Irel

Bq < 1) would indicate a prooxidant attitude of MNPs.

(a) Effects of MNPs on Bacterial Bioluminescence Intensity under Model Oxidative Stress

Figure 5A shows the Irel
Bq-values at different concentrations of MNPs. All consid-

ered MNPs did not activate reliably the bacterial bioluminescence under oxidative stress,
hence, it can be reasonably concluded that MNPs do not induce any antioxidant activ-
ity. Oppositely, the Irel

Bq-values showed a suppression of the bioluminescence intensity
(i.e., Irel

Bq < 1, p < 0.05) at higher concentrations of MNPs (>5 × 10−5 g/L), confirming the
prooxidant properties of MNPs. The HA-modified MNPs (Fe3O4/HA) suppressed biolu-
minescence intensity (i.e., Irel

Bq < 1, p < 0.05) reliably in a wider range of concentrations
(10–12–10–2 g/L), as compared to Fe3O4 and Fe3O4/APTES and this can be explained by the
partial hydrolysis of the HA coating in Bq solutions which leads, as a result, to an oxidized
iron higher content (Fe3+, surface and/or free) in Fe3O4/HA suspensions.

(b) Effects of MNPs on ROS Content in Bacterial Suspension under Model Oxidative Stress

The ROS content was preliminarily measured in the absence of MNPs at the fol-
lowing different conditions: in physiological saline (3% NaCl) solution, in bacteria-free
and in bacterial media under oxidative stress model conditions (i.e., at EC50 of Bq, EC50,

Bq = 10−7 M). We showed previously, that Bq lower the ROS content by 10% and by 15%
in bacteria-free media and bacterial media, respectively. Analogous results were attained
by [79], earlier. The ROS content reduction can be explained considering the peroxides,
representative of ROS groups, whose tendency to combine to Bq follows Scheme 1 as
presented below.
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Bq, in the
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oxidative stress. The 1,4-benzoquinone concentration was EC50,Bq = 10−7 M (control) with ROS content
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We aimed to reveal how the MNPs addition changes the ROS content in the bacterial
suspension under oxidative stress conditions (i.e., in the presence of Bq). Figure 5B shows
the ROS content in the bacterial system at various MNP concentrations in the Bq solutions.
An additional valuable decay in the content of ROS (ROSrel

Bq < 1, p < 0.05) was observed
in the concentration range of MNPs 10−4–10−2 g/L. The further ROS decay might be
explained if the Bq balance with its reduced form–hydroquinone–in the bacterial suspension
is hypothesized. In this case, the Fe3+ addition should shift the balance to the oxidized
form, i.e., Bq, according to Scheme 2, and thus decreasing ROS additionally.
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Correlation coefficients, r, were calculated between the dependencies of Irel
Bq

(Figure 5A) and ROSrel
Bq (Figure 5B) for the corresponding MNP concentration range as

reported in Table 4. Direct correlations were found, showing direct interrelations between
these dependencies. The correlation values confirm interrelations between bioluminescence
intensity and ROS under oxidative stress conditions, supporting the envisaged chemical
mechanism of free Fe3+ involvement (Figure 2A) to the prooxidant activity of MNPs as
depicted in Schemes 1 and 2.

Table 4. Correlation coefficients, r, between dependencies of Irel
Bq and ROSrel

Bq on MNP concentrations.

MNPs MNP Concentration Range, g/L r

Fe3O4 (10−7–10−3) 0.92
Fe3O4/APTES (10−7–10−3) 0.91

Fe3O4/HA (10−7–10−3) 0.78

2.3. Effects of MNPs on Enzymatic Reactions

The effect of MNPs on bioluminescence enzymatic reaction is a question of interest.
Comparison of the MNP effects on bacterial cells and their enzymatic reactions forms
understanding at the cellular and biochemical levels, respectively, identifies processes most
sensitive to MNP exposure, and allows supposing a role of cellular membrane-related
processes in the MNP bioeffects.

Analogously to luminous marine bacteria (Section 2.2.1), the enzyme system lumines-
cence intensity was studied in the presence of Fe3O4, Fe3O4/HA, and Fe3O4/APTES; at
low concentrations (i.e., 10–15–10–1 g/L).

2.3.1. Effects of MNPs without Oxidative Stress

(a) Effects of MNPs on Bioluminescence Intensity of Enzyme Reactions

Figure 6 presents the dependence of bioluminescence intensity Irel on MNP concentra-
tion in the enzyme system. The plotted data reveal negligible inhibition of the intensity of
the bioluminescence.

The difference in MNP effects on the bioluminescence of bacteria and enzymes is
evident from the comparison of Figures 3 and 6, respectively. In fact, the MNPs inhibited
or moderately activated bacterial bioluminescence, according to Figure 3, but they did not
affect the enzymatic bioluminescence as clearly analysing Figure 6. The difference might be
related to the complexity of cellular processes, specifically the cell-membrane ones.

(b) Effects of MNPs on ROS Content in Enzyme System

As discussed above for the bacterial system (Section 2.2.1 b), the ROS content was
also investigated in the enzyme system using (1) MNPs in an enzyme-free medium and
(2) MNPs in enzyme reactions. MNP concentrations were altered as reported in Figure 6,
but none of the ROS changes were found for both types of solutions over the entire
concentration range (Figures S3 and S4).
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2.3.2. Effects of MNPs in Enzyme System under Model Oxidative Stress

To verify the molecular mechanisms of redox MNP effects under oxidative stress con-
ditions in bacteria (Section 2.2.2), the MNPs influence on luminescent enzymatic reactions
under similar conditions (i.e., in solutions of model oxidizer Bq, EC50 = 5 × 10−7 M) was
studied. Similar to bacteria, the effects on bioluminescence intensity were explored in the
presence of three types of MNPs–bare Fe3O4, Fe3O4/HA, and Fe3O4/APTES. We did not
find any reliable deviations in Irel

Bq (p < 0.05) from the control samples (without MNPs)
(Figure S5).

The ROS content was measured preliminarily in enzyme-free and enzymatic media,
both, under model oxidative stress conditions, i.e., at EC50 of Bq (5 × 10−7 M). It has
been shown that Bq increases the content of ROS in enzyme-free and enzyme solutions
by 110% and 80%, respectively. Such an increase is probably associated with the forma-
tion of intermediate peroxide with the occurrence of bacterial luciferase bioluminescence
reaction [117], which contributes additionally to overall ROS content. Dark processes in
the reaction of bacterial luciferase with hydrogen peroxide production can contribute to
the ROS concentration, as well. The ROS content was monitored in the same media after
bioluminescence measurements in the presence of Bq (5 × 10−7 M) and MNPs record-
ing unchanged ROS content in enzyme solutions’ overall concentration ranges of MNPs
(see Figure S6); no changes were found.

Hence, model oxidative stress has not revealed any reliable changes due to MNPs
either in bioluminescence enzymatic intensity or in ROS content in the enzyme solutions.
As for the case of absent oxidative conditions (Section 2.3.1), the enzymatic system appeared
insensitive to MNP content under oxidative stress conditions, too.

Apparently, all the differences in sensitivity of the bacterial cells and their enzymatic re-
actions to MNPs are concerned with the cell-membrane processes of luminous bacteria. This
result is in agreement with the supposed mechanism of the ferroptosis phenomenon [18,19],
which considers the iron-initiated cell-membrane lipid peroxidation in the cellular systems.

3. Materials and Methods
3.1. Preparations of Fe3O4 MNPs and Humic Acids- and Amino-Silica Functionalized
Fe3O4 MNPs

Full details regarding the preparation of the samples were previously described [80].
Briefly, magnetite was obtained in accordance with the Elmore reaction. So, FeCl3 ×
6H2O salts (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) and FeCl2 × 4H2O
(Sigma-Aldrich Chemie GmbH, Steinheim, Germany) were dissolved in deionized H2O



Int. J. Mol. Sci. 2023, 24, 1133 14 of 23

and added to 25% solution of ammonium hydroxide (Sigma-Aldrich Chemie GmbH,
Steinheim, Germany) with stirring in argon at 50 ◦C. The formed Fe3O4 nanoparticles were
washed five times with Millipore water and ethanol and dried at 70 ◦C in a vacuum.

To prepare the aminosilica-functionalized MNPs, the Fe3O4 surface modification was
performed by using 3-aminopropyltriethoxysilane (APTES, (Sigma-Aldrich Chemie GmbH,
Steinheim, Germany)). Fe3O4 was dispersed in ethanol/water (volume ratio, 1:1) solution,
and APTES was added under an argon atmosphere, at 40 ◦C for 2 h with a molar ratio
of APTES:Fe3O4 as 4:1. After cooling down to a room temperature, Fe3O4/APTES MNPs
were collected with a magnet (Nd, 0.3 T), rinsed three times with ethanol and deionized
water and dried in vacuum at 70 ◦C for 2 h.

Commercial sodium salt of humic acids (HA) (Powhumus, the total acidity of the
HA was 5.3 mmol/g of acidic COOH and OH-groups, weight-average molecular weight
Mw was 9.9 kD; Humintech, Grevenbroich, Germany) was used for Fe3O4/HA. For the
synthesis of NPs, FeCl3 × 6H2O and FeCl2 × 4H2O were dissolved in 100 mL water. Upon
heating at 40 ◦C, two solutions, namely the ammonium hydroxide (25%), and the Has were
added rapidly and sequentially. The mixture was stirred at 1000 rpm at 40 ◦C for 10 min
under an argon atmosphere and then cooled to room temperature. The black precipitation
of Fe3O4/HA NPs was collected by Nd-magnet (0.3 T) and washed to neutral by distilled
water (90 ◦C) before drying under a vacuum at 40 ◦C.

3.2. Characterization of the MNPs

Mössbauer spectra were obtained on an MS1104EM spectrometer (CJSC Kordon,
Rostov-on-Don, Russia) with 57Co/Rh (RITVERC JSC, St. Petersburg, Russia) with an
activity of 5 mCi as a source of γ-radiation. The spectra were recorded for each sample
both at room temperature (296 K) and at the boiling point of liquid nitrogen (78 K) in an
evacuated cryostat. The temperature control accuracy of the samples was ±2 and ±0.5 ◦C,
respectively. The spectra were obtained in high resolution (1024 points) with a noise/signal
ratio lower than 2%. Experimental data were processed using SpectrRelax 2.8 and associated
software (MSU, Moscow, Russia). The values of chemical shifts in the manuscript are given
relative to α-Fe. The magnetic properties of MNP dry powders were haracterized with
a Vibrating Sample Magnetometer Lake Shore (Lake Shore Cryotronics, Westerville, OH,
USA) at 300 K. To measure the Fe2+/Fe3+ stimuli-responsive release the obtained samples
were dispersed in buffer solutions (dispersed water or 3% NaCl to simulate conditions of
bioluminescence assay) containing Potassium thiocyanate (50% solution) and HCl (18.25%
solution) as an indicator of Fe3+ ions and o-phenanthroline (1% solution) as an indicator of
Fe2+ ions. At different time points (i.e., 0, 0.5, 1, 3, and 24 h), the mixtures were centrifuged
to collect the supernatant. The absorbance in the regions of 490 nm or 690 nm was detected
by UV–Vis-NIR spectrophotometry and then analyzed for Fe3+ and Fe2+, respectively.
Elemental analysis of the samples was performed using a CHNS/O elemental analyzer
Vario Microcube (Elementar GmbH).

3.3. Bioluminescence Assay Systems and Luminol Chemiluminescence Assay
3.3.1. Bioluminescence Assay Systems

Effects of MNPs on microbiological and biochemical processes were evaluated using
model bioluminescence assay systems, both cellular and enzymatic, i.e., luminous marine
bacteria and a system of coupled enzymatic reactions of the marine bacteria, respectively.

Bioluminescence Cellular Assay

The bacterial assay, i.e., intact marine luminous bacteria Photobacterium phosphoreum,
strain 1883 IBSO from the Collection of Luminous Bacteria CCIBSO 863, Institute of Bio-
physics SB RAS [118] was used.

For the cultivation of P. phosphoreum 1883 IBSO, the semisynthetic medium containing:
10 g/L tryptone, 28.5 g/L NaCl, 4.5 g/L MgCl2 × 6H2O, 0.5 g/L CaCl2, 0.5 g/L KCl,
3 g/L yeast extract, and 12.5 g/L agar was used. P. phosphoreum was plated on 25 mL
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of the semisynthetic medium and incubated at 25 ◦C for 24 h (stationary growth phase
corresponding to the maximum bioluminescence) in an incubator (WIS-20R, WiseCube
Laboratory Instruments, Wertheim, Germany). Prior to experiments, bacteria were collected
by pipetting of 3% NaCl solution directly onto the agar to release bacteria. The 3% NaCl
solution was used to imitate the marine environment for bacterial cells and to balance
osmotic processes. The bacterial suspension was diluted to Abs660 = 0.025 and stored at 4◦C
for 30 min to allow the bioluminescence stabilization. The reagents for bacterial cultivation
were: tryptone and yeast extract from Dia-M, Moscow, Russia; sodium chloride (NaCl)
from Khimreactiv, Nizhny Novgorod, Russia; magnesium chloride hexahydrate (MgCl2
6H2O), calcium chloride (CaCl2), and potassium chloride (KCl) from Pancreac AppliChem
GmbH, Darmstadt, Germany; agar from Difco Laboratories, Detroit, MI, USA. The reagents
were of chemical or analytical grade.

Sodium chloride (NaCl) from Khimreactiv, Nizhny Novgorod, Russia was used to
prepare a 3% NaCl solution.

Bioluminescence Enzymatic Assay

The enzymatic assay, i.e., enzymatic preparation was based on the system of coupled
enzyme reactions catalyzed by NADH:FMN-oxidoreductase from Vibrio fischeri (0.15 a.u.)
and luciferase from Photobacterium leiognathi at 0.5 mg/mL [118]. The enzyme prepara-
tion was produced at the Institute of Biophysics SB RAS, Krasnoyarsk, Russia. Enzyme
reactions (1) and (2) are presented in the Introduction.

The used chemicals were FMN and tetradecanal from SERVA, Heidelberg, Germany;
NADH from ICN Biochemicals, Costa-Mesa, CA, USA; all reagents were of chemical or
analytical grade.

In order to construct the enzymatic assay system, we used 0.1 mg/mL of enzyme
preparation, 4 × 10−4 M NADH, 5.4 × 10−4 M FMN, and 0.0025% tetradecanal solutions.
The NADH, FMN, and tetradecanal were dissolved in distilled water, at 25 ◦C. The con-
centration of NADH, FMN, and tetradecanal solutions in the experimental samples were
1.6 × 10−4 M, 5.4 × 10−5 M, and 0.00025%, respectively.

3.3.2. Experimental Data Processing

1. The toxic (for bacterial assay) and inhibitory (for enzymatic assay) effects of MNPs
on the bioluminescent systems were characterized by the relative bioluminescence
intensity, Irel:

Irel = IMNP/Icontr, (2)

where Icontr and IMNP are the maximum bioluminescence intensities in the absence and
presence of MNPs, respectively.

Values of Irel were determined at different concentrations of MNPs. The dependence
of Irel vs. MNP concentrations was studied and plotted.

Additionally, to characterize the toxic effects of MNPs on the bacteria, their effective
concentrations that inhibited the luminescence intensity by 50% (Irel = 0.5), EC50, were
determined and compared.

2. The anti-(pro-)oxidant activity of MNPs on the bacterial and enzyme systems was
assessed under the conditions of oxidative stress. The methods for determining the
anti-(pro-)oxidant activity were elaborated on and developed previously by different
authors [67,71,73,75,77,80].

To create conditions of the model oxidative stress, we used an organic oxidizer, 1,4-
benzoquinone (Bq) (Sigma-Aldrich, St. Louis, MO, USA). The Bq was prepared in 3% NaCl
solutions and in distilled water for bacterial and enzymatic assays, respectively. The Bq
concentrations that inhibited the bioluminescence intensity of bacterial and enzymatic
systems by 50% were applied in the experiments (10−7 M and 5 × 10−7 M, respectively). To
study and compare changes in the toxicity in the Bq solutions with the addition of MNPs,
the antioxidant coefficients Irel

Bq were determined as follows:
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Irel
Bq = IMNP + Bq/IBq, (3)

where, IMNP + Bq and IBq are the maximum bioluminescence intensities in the Bq solutions
in the presence and absence of MNPs, respectively.

A higher MNP concentration range inhibiting the bioluminescence intensity (Irel < 1)
was not used in the experiments to determine Irel

Bq. The dependence of IMNP + Bq vs. MNP
concentrations was studied and plotted.

− Values of Irel
Bq > 1 revealed a decrease in the toxicity under the exposure to MNPs, i.e.,

the antioxidant activity of MNPs in the Bq solutions.
− Values of Irel

Bq ≈ 1 revealed the absence of the MNP effects.
− Values of Irel

Bq < 1 revealed an increase in toxicity under exposure to MNPs, i.e., the
pro-oxidant activity of MNPs in the Bq solutions.

3.3.3. Luminol Chemiluminescence Assay

We used the luminol chemiluminescence method to evaluate the content of reactive
oxygen species (ROS) in the experimental bacterial suspensions, enzymatic solutions, and
non-biological systems [119,120]. This technique was used to determine the integral content
of ROS assuming that there was a dynamic equilibrium between different ROS forms.

The reagents used for the chemiluminescence measurements were the following:
luminol (C8H7N3O2) and potassium ferricyanide (K3[Fe(CN)6]) from Sigma-Aldrich (St.
Louis, MO, USA), potassium hydroxide (KOH) from Khimreactiv (Nizhny Novgorod,
Russia). All reagents were of chemical grade.

Stock luminol solution (10−2 M) was prepared as follows: luminol powder was dis-
solved in 5 mL in a 1N solution of KOH and then, 5 mL of distilled water was added. The
chemiluminescence luminol reaction was initiated by an alkaline luminol solution; the
maximum value of chemiluminescence intensity was determined. The concentrations of
the alkaline luminol solution and aquatic solutions of K3[Fe(CN)6] in the experimental
samples were 10−4 M and 10−3 M, respectively. Initially, the dependences of the chemi-
luminescence intensity on the concentration of H2O2 (Tula Pharmaceutical Factory, Tula,
Russia), were determined in distilled water and 3% NaCl solution for the enzymatic and
bacterial luminescence systems, respectively; they were used as calibration dependences to
evaluate the ROS content in all the experimental samples.

To verify the role of ROS in the biological effects of MNPs, chemiluminescence inten-
sities were measured in the bioluminescence assay systems (bacterial and enzymatic), as
well as in bacteria-free/enzyme-free aqueous solutions. The relative values of ROS content
(ROSrel) were calculated as ratios of the ROS content in the experimental solutions to that
in the control solutions without MNPs:

ROSrel = ROSMNP/ROScontr (4)

The ROSrel values were obtained at different concentrations of MNPs (10−15–1 g/L) in
the absence and presence of Bq at EC50 (see Section 3.3.3). The chemiluminescence assay
was carried out immediately after the bioluminescence measurements in the bacterial and
enzymatic samples.

The values of ROSrel were plotted vs. the concentration of MNPs.

3.3.4. Preparation of the MNP Suspensions for the Bioluminescence Analyses

Solid samples were ground in a mortar and dissolved in a 3% aqueous NaCl solution
(for bacterial assay or non-biological systems) or distilled water (for enzymatic assays
or non-biological systems). To obtain homogeneous suspensions, the stock suspensions
were exposed to ultrasound for 10 min. The MNP solutions of different concentrations
(10−15–10 g/L) were prepared from the stock suspensions, with the additional 5 s ultra-
sonic treatment at each dissolution stage. Before the measurements, the dispersions were
additionally treated ultrasonically for 5–10 s.
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To exclude the effect of the optic filter in the bio-(chemi-)luminescence measurements,
the suspensions with optical density higher than 0.1 (at 490 nm and 425 nm, respectively)
were excluded. Hence, the effect of the “optic filter” [104] did not skew the results of the
bio-(chemi-)luminescence measurements.

3.3.5. Equipment

Measurements of the bio-(chemi-)luminescence intensities were carried out with a
bioluminometer Luminoskan Ascent (Thermo Electron Corporation, Solon, OH, USA)
equipped with an injector system. All the luminescence measurements were taken at 25 ◦C
and without pre-incubation.

Absorption spectra of the bacterial and MNP suspensions were recorded using a
UVIKON 943 Double Beam UV/VIS Spectrophotometer (Kontron Instruments, Milan, Italy).

Ultrasonic treatment was provided using an Elmasonic EASY 10 bath (Elma Schmid-
bauer GmbH, Singen, Baden-Wurttemberg, Germany).

3.3.6. Statistical Processing

All bio-(chemi-)luminescence measurements were conducted in five replicates for all
the control and MNP solutions.

The SD-values for Irel, Irel
Bq, ROSrel, ROSrel

Bq were calculated using GraphPad Prism 8
(GraphPad Software, San Diego, CA, USA). They did not exceed 21%, 19%, 20%,
and 20%, respectively.

To reveal correlations between the bioluminescence intensity and ROS content, the
statistical dependence between the rankings of two variables was analyzed [121], and the
correlation coefficients r were calculated.

Statistical processing of the results of bioluminescence and chemiluminescence assays
was carried out; p-values were calculated with GraphPad Prism 8 using ANOVA. The
p-values were assessed by the Kruskal–Wallis test of two independent sample distributions.

4. Conclusions

In the current paper, we used bioluminescence bioassays, cellular and enzymatic,
to evaluate the bioeffects of three types of magnetite nanoparticles (MNPs), namely, the
pristine bare Fe3O4, humic acid, and silica (3-aminopropyltriethoxysilane) modified nanoa-
particles. Additionally, the toxic and anti-(pro-)oxidant bioeffects of MNPs were analyzed
assessing the role of ROS. Bacterial bioluminescence was applied as a signal physiologi-
cal parameter and the ROS content was evaluated by chemiluminescence luminol assay.
Higher toxicity related to bare NMPs, Fe3O4, was revealed, with a minimum effective
concentration of EC50 at 0.05 g/L. The inhibition ability of modified nanoparticles at higher
concentration intervals (i.e., 10−2–1 g/L) was associated with ROS accumulation in the bac-
teria suspensions, but the effect of bare Fe3O4 appeared to be more complex and it should
be further investigated. Wide MNP concentration ranges (10−15–1 g/L) have revealed a
higher ROS content in bacterial suspensions compared to bacteria-free media, and this sup-
ports the conclusion that ROS production is enhanced by bacteria in the presence of MNPs.
Under model oxidative stress conditions (i.e., in the presence of model organic oxidizer 1,4-
benzoquinone) and higher concentrations of MNPs (>5 × 10−5 g/L), the bacterial bioassay
has suggested a pro-oxidant activity of all three types of MNPs, with a corresponding decay
of ROS content. The ROS decay can be due to shifting the redox balance in the system, such
as the reducer-oxidizer model (i.e., 1,4-hydroquinone–1,4-benzoquinone). Bioluminescence
enzymatic assay did not show sensitivity to MNPs, and ROS content was unchanged at all
applied concentrations of MNPs (<10−1 g/L), involving model oxidative stress conditions.
The result probably indicates that cell-membrane processes are responsible for the MNP
bioeffects and ROS generation by the bacteria, according to the supposed mechanism of fer-
roptosis phenomenon, which considers the iron-initiated cell-membrane lipid peroxidation
in connection of ROS production within the cells.
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