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Abstract: The increasing demand for portable and wearable electronics has promoted the develop-
ment of safe and flexible yarn–based batteries with outstanding electrochemical properties. However,
achieving superior energy storage performance with a high active material (AM) load and long
cycle life with this device format remains a challenge. In this study, a stable and rechargeable high–
performance aqueous Ni–Fe yarn battery was constructed via biscrolling to embed AMs within
helical carbon nanotube (CNT) yarn corridors. Owing to the high load of charge storage nanoparti-
cles (NPs; above 97 wt%) and the outer neat CNT layer, the buffered biscrolled Ni–Fe yarn battery
demonstrates excellent linear capacity (0.053 mAh/cm) and cycling stability (60.1% retention after
300 charge/discharge cycles) in an aqueous electrolyte. Moreover, our flexible yarn battery exhibits
maximum energy/power densities of 422 mWh/cm3 and 7535 mW/cm3 based on the total volume
of the cathode and anode, respectively, which exceed those reported for many flexible Ni–Fe batter-
ies. Thus, biscrolled Ni–Fe yarn batteries are promising candidates for next–generation conformal
energy solutions.

Keywords: biscrolled yarn; Ni–Fe batteries; high load; durability; carbon nanotubes

1. Introduction

Owing to the increasing demand for personal health–monitoring devices, intelli-
gent garments, rollup displays, and implantable medical devices, researchers have made
considerable progress in the field of flexible and wearable electronics over the past few
years [1–6]. Because of a rapidly growing market, researchers are increasingly interested in
different kinds of fibrous power sources such as lithium–ion batteries, zinc–ion batteries,
primary batteries, and supercapacitors for the development of 1D linear energy storage
devices [7–16]. For example, lightweight, flexible, and wearable yarn–based aqueous
batteries with tiny volumes are one of the most fascinating candidates for wearable elec-
tronics [17–22].

Researchers and engineers have tried many strategies to manufacture yarn–shaped
batteries: for example, chemical vapor deposition, hydrothermal synthesis, electrodepo-
sition, and in situ polymerization [23–28]. Nevertheless, producing high–performance
fibrous batteries with a sufficient mass load and long cycle life remains a
challenge [29–31]. The biscrolling method, which enables the straightforward incorpo-
ration of active materials (AMs) into carbon nanotubes (CNTs), is an eminent choice,
as it maximizes the AM load (>90 wt%) without the need for binders and laborious
procedures [32,33]. Thus, various AMs can be integrated into flexible CNT–based
yarn–structured batteries. The easy control of the diameter and porosity of the yarn
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provides the AMs with steady access to the electrolyte. More importantly, wearable
batteries must be suitable for the direct contact with human skin; they should not
explode or ignite. Aqueous Ni–Fe batteries, which are traditional aqueous batteries, are
relatively safe and cost–effective and exhibit high energy densities [34,35].

In this study, we built a flexible biscrolled Ni–Fe yarn battery (i.e., “BNF yarn battery”)
with a Ni(OH)2 cathode, Fe3O4 anode, and water–based electrolyte. Owing to the high
AM content (Ni content: up to 98.5 wt%; Fe content: up to 97.4 wt%), the fabricated BNF
yarn battery with 1.1 V voltage provides a linear capacity of 0.053 mAh/cm at 0.1 mA/cm
current density in an aqueous electrolyte. Because of the outer neat CNT buffer layer, our
BNF yarn battery exhibits 60.1% capacity retention for over 300 cycles with high coulombic
efficiency. This results in a high energy density of 422 mWh/cm3 and a high power
density of 7535 mW/cm3, which are better than those of the most previously reported
flexible Ni–Fe batteries. The proof–of–concept incorporation of mechanically flexible BNF
yarn batteries with these properties into textiles renders them promising candidates for
wearable electronics.

2. Results
2.1. Preparation and Morphology of Biscrolled AM/CNT Yarns

We employed CNT sheets that were drawn from spinnable CNT forests [36] as the host
material to form a twist–spun yarn. The guest–free neat CNT yarns (Figure 1(i)) have highly
oriented and porous structures (Figure S1); thus, active guest materials can be trapped
within the CNT network. We fabricated the biscrolled AM/CNT yarns (Figure 1(ii)) with
the typical biscrolling method [33]: an AM/CNT hybrid sheet stack was prepared by
drop–casting a dispersion of charge storage nanoparticles (NPs) onto stacked CNT sheets
and spinning them at approximately 1200 turns/m. The resulting NP load was tuned by
varying the AM concentration that was dispersed in the ethanol. More importantly, the
outermost layer of the as–fabricated biscrolled yarn was wrapped into neat CNT sheets to
ensure the anchoring of the AMs (Figure S2); that is, the CNT wrapping layer serves as a
buffer layer that prevents the AMs from being desorbed during the electrochemical reaction.
Thereby, the buffered biscrolled AM/CNT yarns (i.e., the b–biscrolled AM/CNT yarns) are
expected to exhibit a high energy storage capacity and excellent cycling durability owing
to the maximized weight percentage of the guest without compromising the accessibility of
the electrolyte to the guest.

More specifically, 98.5 wt% Ni(OH)2 NPs and 97.4 wt% Fe3O4 NPs were embedded as
the AMs in the cathode and anode yarns, respectively. The scanning electron microscopy
(SEM) images of the surface and magnified area of the guest NP–loaded biscrolled yarn
are shown in Figure 1b,c. Despite the low content of the CNT host, the guest materials are
embedded within the CNT scroll galleries. Moreover, a considerable amount of partially
aggregated guest material resides on the biscrolled yarn surface, leaving the possibility
of a detachment of the AMs. These biscrolled yarns exhibit stable electrical resistance
(approximately 90 ohm/cm) irrespective of the AM type, which represents the resistance of
the CNT host (Figure 1d). Moreover, a 5 cm long and 200 µm thick biscrolled Ni/CNT yarn
was attached to a conductive film and used in an electrical circuit (Figure 1e). The biscrolled
yarn provided the blue light–emitting diode (LED) in the circuit with power even when
a glass vial filled with water was attached to the yarn (30 g, which is ten thousand times
heavier than the yarn); thus, the yarn possesses superior mechanical properties even at a
high load of brittle guest NPs. In addition, the as–prepared biscrolled yarn was strong and
flexible enough to be (i) straightened, (ii) plied, and (iii) wound around a 2 mm diameter
glass tube, as shown in Figure 1f.
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Figure 1. Fabrication of a biscrolled AM/CNT yarn with outer buffer layer. (a) Schematic of fabrica-
tion of biscrolled AM/CNT yarns. The AM/CNT hybrid sheets were scrolled and wrapped into a 
neat CNT layer to build a buffered biscrolled AM/CNT yarn (i.e., a b–biscrolled AM/CNT yarn) in 
which the AM NPs are uniformly distributed within the CNT framework. The SEM images and 
magnified areas (insets) show the surfaces of (b) a 98.5 wt% Ni–embedded cathode yarn and (c) a 
97.4 wt% Fe–embedded anode yarn. (d) Length–normalized resistances of biscrolled Ni/CNT (blue 
bar) and Fe/CNT (red bar) yarns. (e) A biscrolled Ni/CNT yarn bearing a 30 g glass vial filled with 
water is connected to a power source to power a blue LED. (f) Photographs of (i) straightened and 
(ii) plied biscrolled Ni/CNT yarns and (iii) those wound around a glass tube. 

More specifically, 98.5 wt% Ni(OH)2 NPs and 97.4 wt% Fe3O4 NPs were embedded 
as the AMs in the cathode and anode yarns, respectively. The scanning electron micros-
copy (SEM) images of the surface and magnified area of the guest NP–loaded biscrolled 
yarn are shown in Figure 1b,c. Despite the low content of the CNT host, the guest materials 
are embedded within the CNT scroll galleries. Moreover, a considerable amount of par-
tially aggregated guest material resides on the biscrolled yarn surface, leaving the possi-
bility of a detachment of the AMs. These biscrolled yarns exhibit stable electrical resistance 
(approximately 90 ohm/cm) irrespective of the AM type, which represents the resistance 
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yarn was attached to a conductive film and used in an electrical circuit (Figure 1e). The 
biscrolled yarn provided the blue light–emitting diode (LED) in the circuit with power 

Figure 1. Fabrication of a biscrolled AM/CNT yarn with outer buffer layer. (a) Schematic of
fabrication of biscrolled AM/CNT yarns. The AM/CNT hybrid sheets were scrolled and wrapped
into a neat CNT layer to build a buffered biscrolled AM/CNT yarn (i.e., a b–biscrolled AM/CNT
yarn) in which the AM NPs are uniformly distributed within the CNT framework. The SEM images
and magnified areas (insets) show the surfaces of (b) a 98.5 wt% Ni–embedded cathode yarn and
(c) a 97.4 wt% Fe–embedded anode yarn. (d) Length–normalized resistances of biscrolled Ni/CNT
(blue bar) and Fe/CNT (red bar) yarns. (e) A biscrolled Ni/CNT yarn bearing a 30 g glass vial filled
with water is connected to a power source to power a blue LED. (f) Photographs of (i) straightened
and (ii) plied biscrolled Ni/CNT yarns and (iii) those wound around a glass tube.

2.2. Electrochemical Properties of the BNF Yarn Battery

The electrochemical properties of the Ni(OH)2 cathode and Fe3O4 anode were deter-
mined with cyclic voltammetry (CV) experiments in the three–electrode configuration with
a 6M potassium hydrate (KOH) solution. Figure S3a shows a pair of redox peaks of Ni(OH)2
at 0–0.55 V versus Ag/AgCl reference electrode, which correspond to the reversible redox
reactions between Ni2+ and Ni3+ with OH− [37,38]. As shown in Figure S3b, the CV curves
of Fe3O4 display one dominant pair of redox peaks (at approximately −1.1 and −0.7 V)
and other small peaks (at approximately −0.8 V), which originate from the redox reaction
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between Fe2+/Fe3+ and Fe0 with OH−. This result agrees well with previously published
results for Fe3O4–based electrodes [39]. Based on these results, BNF yarn–based full cells
were fabricated with the Ni(OH)2/CNT biscrolled yarn as the cathode and the Fe3O4/CNT
biscrolled yarn as the anode in aqueous electrolyte (Figure S4). The linear capacity versus
the mass ratio of Ni/Fe is presented in Figure S5. The optimal Ni(OH)2/Fe3O4 mass ratio is
1.8 for a reasonable and excellent charge balance between the cathode and anode. Figure S6
shows typical CV curves of the BNF yarn battery for different scan rates. The well–defined
pair of redox peaks indicates good agreement with the following reaction in the Ni–Fe
battery system [40]:

NiO +
1
8

Fe3O4 +
1
2

H2O ↔ NiOOH +
3
8

Fe

The CV curve of the b–BNF yarn battery exhibits a similar trend at the presented
scan rates, thereby indicating that the electrolyte sufficiently penetrated the biscrolled yarn
and that the embedded AMs could fully participate in the electrochemical reactions with
sufficient contact to the electrolyte. Thereby, the BNF and b–BNF yarn batteries provided
similar specific capacities (from 22.5 to 59.3 mAh/g based on the total mass of the AMs) and
rate capacities at different scan rates (Figure 2b). The specific capacity (Csp) was calculated
from the CV curves using the following equation: Csp(mAh/g) =

∫
i/mdt, where i is the

oxidation or reduction current, dt is the time differential, and m is the total mass of the AMs.
In addition, both had similar discharge plateaus and periods (Figure 2c). These results
confirm that the neat CNT sheath has no noticeable influence on the capacity of the BNF
yarn battery. Evidently, the CNT layer only functions as a buffer layer without participating
in the electrochemical reaction of the Ni–Fe battery. The effect of the CNT buffer layer
on the electrochemical performance was further investigated with electrochemical impen-
dence spectroscopy (EIS; Figure 2d). Its Nyquist plots (frequency range from 10 Hz to
100 kHz) clearly show that both the equivalent series resistance (i.e., the intersection of
the curve at the real part) and the inclined curve in the low–frequency region (i.e., the ion
diffusion impedance) of the BNF yarn battery substantially overlapped with those of the
b–BNF yarn battery. Furthermore, both batteries revealed the absence of a semicircle in the
high–frequency range, thereby indicating the high conductivity of the yarns and the low
charge transfer resistance. Notably, the low impedance at 10 Hz (<200 Ω) implies that the
ions could easily enter the biscrolled yarn from the aqueous electrolyte even with a CNT
buffer layer. More specifically, the series resistance of the b–biscrolled yarn at 100 kHz was
13.3 Ω and, thereby, lower than that of the biscrolled yarn (13.6 Ω; inset of Figure 2d). This
slight reduction due to the additional CNT wrapping layer can be explained by the fact
that the CNTs provide an enhanced conductive network and promote electron transport.

The electrochemical stability of Ni–Fe batteries is a great concern regarding their
widespread commercialization. The cycling performance of our b–BNF yarn batteries
was investigated by repeatably charging/discharging them at 0.1 mA/cm. As shown in
Figure 2e, the b–BNF yarn battery retained approximately 60.1% of its initial capacity after
300 cycles, whereas the BNF yarn battery showed a short cycle life with only approxi-
mately 20.2% capacity retention. The slight increase in the capacity in the initial stage
can be attributed to the progressive permeation of the electrolyte with the activation of
the AMs [37,41]. The improved durability comes from the protecting neat CNT sheath;
the effect is similar to the previously reported buffering behavior of PEDOT shells [42].
Figure 2f shows the linear capacity and capacity retention versus the number of outer CNT
buffer layers. It should be noted that the linear capacity of approximately 0.053 mAh/cm
remained almost unchanged despite the increase in the number of buffer layers, while the
capacity retention rate gradually increased. The buffering effect of the outermost CNT
layers was confirmed by taking optical images of the yarns before and after the cycling
test. According to Figure 2g, a large amount of exposed Ni particles on the surface of the
biscrolled yarn was completely covered by the CNT buffer layer, which resulted in good
dissolution tolerance to the electrolyte solution. The biscrolled Ni/CNT yarn without the
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outer buffer experienced evident Ni particle desorption after 300 cycles, and its surface
became smooth (Figure S7, upper image). By contrast, the surface morphology of the
b–biscrolled Ni/CNT yarn was well preserved (Figure S7, lower image). Figure 2h presents
the predicted dissolution model of the AM NPs embedded in the biscrolled yarns. In the
case of the biscrolled yarn without the external buffer, the AM may be desorbed through
the yarn surface into the electrolyte because of the aggressive electrochemical reaction.
This adverse effect does not occur in the biscrolled yarn with the outer buffer layer, which
confines the AM in the yarn.
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Figure 2. Electochemical characterizations of the BNF yarn batteries. (a) CV curves of b—BNF yarn
battery in aqueous 6M KOH at different scan rates. (b) Average specific capacity as a function of the
scan rate, (c) galvanostatic discharge curves at 0.1 mA/cm, (d) Nyquist plots (from 10 Hz to 100 kHz),
and (e) cycling stability of BNF and b—BNF yarn batteries at 0.1 mA/cm. Inset in d shows enlarged
section of Nyquist plots. (f) Dependence of linear capacity and capacity retention on outer CNT
buffer layer. (g) Optical images show biscrolled Ni/CNT yarn (top) and b—biscrolled Ni/CNT yarn
(bottom). (h) Schematics show the expected AM NP desorption process (indicated by arrows) of the
biscrolled yarns without (left) and with (right) an outer CNT buffer layer in an aqueous electrolyte.

2.3. Performance and Practical Applications

In this work, the amount of AMs in the yarn was controlled by altering their disper-
sion concentrations; this resulted in a volumetric loading density and corresponding linear
capacity of 2.26 g/cm3 and 0.053 mAh/cm, respectively (Figure 3a). This high load can be
ascribed to the strong compressive forces generated by the inserted twists [33]. The galvano-
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static discharge curves measured at different current densities (from 0.1 to 1 mA/cm) and
the corresponding capacity retention rate against the number of charge/discharge cycles are
presented in Figures 3b and 3c, respectively. All curves display distinct discharge voltage
plateaus at approximately 1.1 V, which are consistent with the CV curves in Figure 2a.
This b–BNF yarn battery exhibited a high linear capacity of 0.053 mAh/cm at 0.1 mA/cm
current density and 0.031 mAh/cm at 1 mA/cm current density, thereby indicating its good
rate capability. In addition, the coulombic efficiency was approximately 100% during rate
cycling; hence, the battery is a feasible power supply [40,43,44]. More importantly, when
the total volume of the cathode and anode is considered, our b–BNF yarn battery yielded
an incredibly high energy density of 422 mWh/cm3 at 753 mW/cm3 power density. Even
at 7535 mW/cm3, the energy density was 229 mWh/cm3. Thus, the proposed b–BNF yarn
battery outperforms most previously reported Ni–Fe batteries (Figure 3d) [45–53].
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curves at different current densities. (c) Capacity retention and corresponding coulombic efficiency
of b–BNF yarn battery. (d) Ragone plot of as–fabricated Ni–Fe battery (based on total volume of
the cathode and anode) [45–53]. (e) Photographs showing three b–BNF yarn batteries woven into a
commercial textile. Inset shows that each cell consists of a 3 cm–long Ni(OH)2 cathode yarn and a
3 cm–long Fe3O4 anode yarn with a gel electrolyte (PVA–KOH). (f) Galvanostatic discharge curves
of single b–BNF yarn battery (black curve) and three batteries connected in series (blue curve) and
parallel (red curve) at 1 mA/cm. The inset shows 13 LEDs (seven blue and six green) illuminated by
three serial–connected b–BNF yarn batteries.

To demonstrate the viability for power source application in wearable electronic
devices, the three b–BNF yarn batteries were assembled in series or parallel. Figure 3e
exhibits that 3 cm long, three b–BNF yarn batteries can be woven into a commercial textile
with a poly(vinyl alcohol) (PVA) gel electrolyte owing to their mechanical strength and
flexibility. According to the discharge curves (Figure 3f), the voltage and capacity are
tripled for the serial (blue line) and parallel (red line) assemblies, respectively, thereby
increasing the power and energy output. Because of their high energy/power density, the
woven BNF yarn batteries can simultaneously power and light up seven blue LEDs and six
green LEDs with a dazzling brightness (inset of Figure 3f).

3. Materials and Methods
3.1. Chemicals

For the yarn electrode materials, aerogel multiwalled CNT sheets were drawn
from 320 µm high CNT forests (A–Tech System Co., Hwaseong-si, Korea). Regarding
the AMs for energy storage, the cathode and anode contained commercially available
Ni(OH)2 powder with 1 µm particle diameter and Fe3O4 powder with 50–100 nm
particle diameter, respectively.

In addition, 6M KOH aqueous electrolyte was prepared by dissolving 33.6 g KOH
in 100 mL deionized water. To prepare the PVA+KOH solid gel electrolyte, 2 g PVA and
6.7 g KOH were mixed in 20 mL deionized water. The PVA + KOH solution was stirred at
130 ◦C until it was transparent and viscous.

3.2. Preparation Biscrolled Yarn Battery and B–Biscrolled Yarn Battery

Four 10 mm wide and 75 mm long CNT sheets were stacked onto a glass plate. To add
the AMs onto the CNT sheets, their powders were dispersed in ethanol and dropped onto
the CNT sheets; subsequently, the samples were dried at room temperature. To convert 2D
sheets into flexible 1D yarn, one end of the AM/CNT sheets was attached to the electrical
motor and twisted at approximately 1200 turns/m. Afterward, the parallel biscrolled yarn
cathode and anode were connected to copper wires with silver paste and coated with epoxy
to prevent unwanted electrochemical side reactions. The b–biscrolled yarn was prepared
by wrapping the yarn into the CNT buffer layer; it consisted of three layers of 10 mm wide
and 75 mm long CNT sheets that had parallelly been drawn on a vernier caliper (Mitutoyo,
Japan). The prepared biscrolled yarn was placed on it. In the next step, the sample was
rolled into a cylindrical cone. This cone was densified by inserting twists (approximately
500 turns) and dropping ethanol onto the yarn.

3.3. Characterization

The morphological information was obtained with SEM (S–4600, Hitachi, Japan) and
optical microscopy (D750, Nikon, Japan). In addition, an electrochemical analyzer (Vertex
EIS, Ivium) was used for all the electrochemical measurements.

3.4. Electrochemical Calculation

The weight of the AM wt% was calculated as follows:

wt% =
Wtotal −WCNT

Wtotal
× 100 =

WAM
Wtotal

× 100
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where wt% is the weight percentage of the AM NPs, Wtotal is the total weight of the
biscrolled yarn battery, WCNT is the weight of neat CNT yarn, and WAM is the weight of
the AM NPs. The loading density was calculated by normalizing WAM to the volume of
the biscrolled yarn.

The capacity was calculated as follows:

Capacity =
Idischarge − ∆t

Unit

where Idischarge is the discharge current, ∆t is the discharge time, and Unit is the length,
volume, area, and mass of the yarn battery.

4. Conclusions

We built high–performance aqueous Ni–Fe yarn batteries by embedding AMs into
the inner structure of helical CNT yarns. The employed biscrolling technique enabled the
high loading of AMs onto the cathode (Ni: up to 98.5 wt%) and anode (Fe: up to 97.4 wt%).
These highly loaded BNF yarn–based batteries delivered a maximum energy density of
422 mWh/cm3 and a power density of 7535 mW/cm3; thereby, they perform better than
most previously reported Ni–Fe batteries. More importantly, owing to the introduction of
external CNT buffer layers, the b–BNF yarn battery can retain up to 60.1% of its initial large
linear capacity (0.053 mAh/cm) even after 300 charge/discharge cycles with almost 100%
coulombic efficiency. Therefore, the presented high–performance b–BNF yarn battery is a
promising next–generation energy source for wearable and portable electronics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24021067/s1.
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