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Abstract: MicroRNAs (miRNAs), playing an important role in cell differentiation, development, gene
regulation, and apoptosis, have attracted much attention in recent years. miRNAs were shown to be
involved in the mechanisms of various diseases, and certainly, they can be employed as useful disease
biomarkers. The phylogenetic tree analysis of miRNA biomarkers is a useful tool to investigate
the association between various diseases as well as the association between viruses and disease. In
addition to the phylogenetic tree analysis, a more advanced study is to use the miRNA distance
distribution to evaluate the similarity of the miRNA biomarkers. The mature miRNA distance
distribution based on mature miRNA sequences has been derived. The averages of the pairwise
distances of miRNA biomarkers for several associated diseases were shown to be smaller than the
overall mean of all miRNAs, which indicates the high similarity of miRNA biomarkers for associated
diseases. In addition to the mature miRNA, the precursor miRNA (pre-miRNA) may be more
useful to explore the similarity of miRNAs because the mature miRNA duplex is released from
the pre-miRNA. Therefore, in this study, the distance distributions based on human pre-miRNA
stem–loop sequences were derived. The 1917 human miRNA stem-loop sequences in the miRBase
dataset were used to derive the pre-miRNA distance distribution, and this is the first study to provide
the distance distribution based on the human pre-miRNAs. The similarity of miRNA biomarkers
for several associated diseases or vaccines was examined using the derived distribution, and the
results show that the similarity of pre-miRNA biomarkers may be a feasible way to help explore the
disease association.
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1. Introduction

MicroRNAs (miRNAs) are non-coding RNAs about 21–24 nucleotides long that were
discovered to have many important functions, including cell differentiation, development,
apoptosis, and cell cycle regulation [1,2]. The first miRNA was discovered in the 1990s in
studying the nematode Caenorhabditis elegans [3]. Since then, more miRNAs in different
species have been discovered, and to date, around 2000 human miRNAs have been discov-
ered and studied. Currently, 38,589 entries representing hairpin precursor miRNAs from
271 organisms are available in the miRNA database miRBase [4].

miRNAs are involved in the initiation and progression of many diseases, such as
cancers, neurological disorders, and inflammation. They can be regulated by tumor sup-
pressor genes and oncogenes or can act as tumor suppressor genes or oncogenes [5,6]. As
a result, miRNAs can be useful biomarkers for various diseases. The expression levels
of miRNAs can be obtained from the serum or tissue of an individual using microarray
technology. Microarray expression analysis is an ideal strategy for identifying candidate
miRNA biomarkers of disease [7]. miRNAs are very useful biomarkers for various can-
cers [8]. miR-613 plays a role in the development of colorectal cancer, hepatocellular
carcinoma, gastric cancer, non-small cell lung cancer, and breast cancer [9]; miR-149 is
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involved in the pathogenesis of digestive system cancers, including colorectal cancer, hepa-
tocellular cancer, gastric cancer, oral cancer, pancreatic cancer, and esophageal cancer [10];
miR-142 is involved in the function of different human cancers including lung cancer,
breast cancer, gynecological malignancies, cervical cancer, ovarian cancer, colon cancer,
and colorectal cancer [11]. In addition to cancer, miRNAs also contribute to many other
disorders. miR-29a, miR-128-3p, miR-223, and miR-130a are common biomarkers of major
depression and gastroesophageal reflux [12]; miR-92a, miR-100, and miR-23a are common
biomarkers of Parkinson’s disease and diabetes [13]; miR-125a, miR-199a, and miR-27a are
common biomarkers of multiple sclerosis and major depression. miRNAs are also related
to anti-NMDA receptor encephalitis and the coronavirus disease 2019 (COVID-19) [14,15].

Two main pathways of biogenesis of miRNA are classified into canonical and non-
canonical ones [16]. In the canonical pathway, a primary miRNA (pri-miRNA) transcript
is cleaved by the endoRNase Drosha to excise the precursor miRNA (pre-miRNA). The
cytoplasmic RNase III Dicer cuts the pre-miRNA to process it into mature miRNAs. In
the non-canonical miRNA biogenesis pathways, different combinations of the proteins
related to the canonical pathway are involved in the non-canonical pathways. During these
processes, mature miRNAs are processed from pre-miRNAs. Pri-miRNAs are processed
in the nucleus by RNase complexes, generating imperfect stem–loop structures called
pre-miRNAs. The pre-miRNA is transported to the cytoplasm, where it is cleaved and
unwound by RNase Dicer [17].

The miRNA biomarkers were used to study disease associations using phylogenetic
analysis. Phylogenetic analysis is useful in comparative genomics [18]. The use of the
phylogenetic tree method could help increase the accuracy of miRNA biomarkers [19].
Although many methods of constructing phylogenetic trees have been proposed and several
criteria have been proposed to evaluate the phylogenetic tree, each type of phylogenetic
tree has its own merits [20–22]. Some types of miRNA phylogenetic trees cluster miRNAs in
terms of their pairwise distances. Therefore, the miRNA pairwise distance is an important
tool to examine the similarity of miRNAs.

The similarity of miRNAs can be measured in terms of their distance. The smaller the
distance between two miRNAs, the more similar the two miRNAs are. However, without
a distance distribution, it is difficult to evaluate whether a distance value is relatively
small or not. The mature miRNAs that could target mRNAs to inhibit or promote gene
expression are the functional miRNAs. The pairwise distance distribution of the mature
miRNAs has been derived [23]. Since mature miRNAs are formed from the stem–loop
sequences of primary transcripts of miRNA genes, the use of the pre-miRNA stem–loop
sequences to explore the similarity between miRNAs may be more appropriate than using
the mature miRNA sequences. As a result, in this study, the distance distribution based on
the pre-miRNA is derived, and this distribution is compared with the distance distribution
based on mature sequences.

miRBase is a miRNA database that stores published miRNA sequences [4]. The
miRNA nucleotide sequences for 271 organisms, including animals and plants, can be
found in miRBase. There are a total of 1917 human miRNA sequences that are available
from miRBase. MiRGeneDB is another miRNA database [24]. In this study, we chose the
1917 human miRNA data from miRBase for analysis. The 1,836,486 pairwise distances
of these 1917 human miRNAs were calculated using Jukes and Cantor’s one-parameter
model, which is a simple and commonly used distance model for nucleotide sequences.
The distance calculation in this study was implemented by the Bioinformatics toolbox of
Matlab software.

2. Results
2.1. Approximate Distance Distributions

The histogram of the 1,836,486 pairwise distances calculated from the 1917 miRNA
stem–loop sequences is plotted in Figure 1.
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Figure 1. The histogram of the 1,836,486 distance data.

Two approximate distance distributions based on the 1,836,486 pairwise distances
were derived by the empirical cumulative distribution and kernel density estimation
methods, respectively. The details are provided in the Materials and Methods section. The
histograms of 1,836,486 data generated from the two derived distributions are plotted in
Figures 2 and 3, respectively. In addition to these two methods, other methodologies were
used to derive pre-miRNA distance distributions. Compared with other methods, the
kernel density estimation method has the best performance. Therefore, the distribution
derived by the kernel density estimation method was recommended and used in this study.
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2.2. The Percentiles of the Pre-miRNA Distance

Using the recommended distribution that was derived by the kernel density estimation
method, the qth quantiles are tabulated in Table 1 for q = 5, 10, 15, . . . , 100.

Table 1. The percentiles of the distance based on the derived distribution.

q The qth Percentile q The qth Percentile

5 0.7321 55 0.9799

10 0.7781 60 1.0022

15 0.8093 65 1.0262

20 0.8358 70 1.0528

25 0.8583 75 1.0833

30 0.8792 80 1.1196

35 0.8993 85 1.1656

40 0.9190 90 1.2311

45 0.9388 95 1.3470

50 0.9589 100 27.0327

The similarity of any two miRNAs can be evaluated by using Table 1. It is easy to set
a threshold of the miRNA pairwise distance using Table 1. To measure the similarity of
two miRNAs, we can first calculate the pairwise distance of these two miRNAs, and then
find the percentile in Table 1 that is closest to this distance value. This percentile can be
regarded as the rank of this distance value. For example, if the distance of two miRNAs is
0.81, then the closest distance value in Table 1 is 0.8093. This indicates that this distance
is in the 15th percentile of all distances. Then, these two miRNAs are regarded as similar
when a threshold of the pth percentile is p > 15.

There have been a number of studies using the similarity of miRNA biomarkers to
explore the associations between diseases or between disease and vaccination [25–27].
However, in these studies, only the phylogenetic tree method was used to evaluate the
similarity of miRNAs, lacking more in-depth analyses. A more advanced tool is to use the
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distance distribution of mature miRNA sequences to evaluate the similarity of the miRNA
biomarkers [23]. In this study, the similarity of the miRNA biomarkers was evaluated by
the derived distance distribution of miRNA stem–loop sequences, and a comparison with
the previous result based on the mature miRNA distance distribution was made.

2.3. Applications

There are three cases considered in this study. The first one is the association be-
tween anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis and vaccination. Anti-
NMDA receptor encephalitis is an acute neurological disorder with a multistage illness
progressing from initial psychiatric symptoms to memory impairment, catatonia, move-
ment disorders, seizures, and decreased consciousness [28,29]. The cause of this disease
is usually unknown. Vaccination or tumors might trigger this disease. H1N1 influenza,
tetanus, diphtheria, pertussis, poliomyelitis, Japanese encephalitis, and COVID-19 vaccines
have been reported to be associated with anti-NMDA receptor encephalitis [14,25,30]. The
25 miRNAs listed in Table 2 were used to explore the association between anti-NMDA
receptor encephalitis and vaccination [25]. These miRNAs are biomarkers of anti-NMDA
receptor encephalitis or some vaccine-related viruses or bacteria. There are 25 × 24/2 = 300
pairwise distances of these 25 miRNAs. The range is (0.27452, 1.35758). The mean of these
distances is 0.86574 which is the 27th percentile of the distribution derived by the kernel
density estimation method. That is, the probability of a distance less than 0.86574 is 0.27,
corresponding to this distribution. It indicates that these 25 miRNAs have high similarity
when the threshold of the pth percentile is p > 27. It also reveals that the use of the
pre-miRNA distance to explore the association between anti-NMDA receptor encephalitis
and vaccination is feasible. The distances of the mature sequences of this example have
also been studied [23], and the mean of the distances based on the mature sequences is the
40.64th percentile of the mature sequence distance distribution. Compared to the previous
result of the 40.64th percentile, the 27th percentile result based on the stem–loop sequence
analysis shows that the distribution based on the stem–loop sequences may provide a more
useful tool to examine the similarity of miRNAs.

Table 2. The pairwise distance analysis of 25 miRNA biomarkers of anti-NMDA receptor encephalitis
and vaccination.

miRNA biomarkers
miR-323, miR-491, miR-654, miR-10a, miR-31,miR-29a, miR-148a, miR-146a, miR-202,
miR-342, miR-206, miR-487b, miR-576, miR-555, miR-145, miR-101, miR-19b, miR-33a,
miR-155, miR-29b, let-7a, let-7b, let-7c, let-7d, let-7f

Pairwise distance range (0.27452, 1.35758)

The mean of the 300 distances 0.86574

The percentile of this mean in the
kernel density distribution 27th percentile

In addition to vaccination, tumors might trigger anti-NMDA receptor encephalitis in-
cluding ovarian teratoma, dura mater lesions, neuroendocrine tumor, mediastinal teratoma,
testis teratoma, and small-cell lung cancer [26,31,32]. The 27 miRNAs in Table 3 were
used to study the association between anti-NMDA receptor encephalitis and tumors [26].
There are 27 × 26/2 = 351 pairwise distances of these 27 miRNAs. The range is (0.16505,
1.56450). The mean of these distances is 0.90627, which is in the 36th percentile of the
distribution. It indicates that these 27 miRNAs have high similarity when the threshold
of the pth percentile is p > 36. In addition, compared with the 47.80th percentile result of
the mature sequences [23], the 36th percentile result reveals that the distance distribution
of the stem–loop sequences may provide a more useful tool to examine the similarity of
miRNAs than that of mature sequences.
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Table 3. The pairwise distance analysis of 27 miRNA biomarkers of anti-NMDA receptor encephalitis
and tumors.

miRNA biomarkers

mir-371, miR-372, miR-373, miR-129, miR-103, miR-107, miR-29b, miR-19a, miR-142,
miR-26b, miR-421, miR-934, miR-22, miR-34a, miR-214, miR-196a, miR-629, miR-555,
miR-657, miR-27a
let-7b, let-7f, let-7a, let-7d, miR-492, miR-150, miR-620

Pairwise distance range (0.16505, 1.56450)

The mean of the 351 distances 0.90627

The percentile of this mean in the
kernel density distribution 36th percentile

Finally, the case of 12 miRNAs that linked migraine and major depression is stud-
ied [27]. The 12 miRNA biomarkers are listed in Table 4. There are 12 × 11/2 = 66 pairwise
distances of these 12 miRNAs. The range is (0.40674, 1.42990). The mean of these distances
is 0.89101, which is the 34th percentile of the distance distribution derived from the ker-
nel density estimation. It indicates that these 12 miRNAs have high similarity when the
threshold of the pth percentile is p > 34. Compared with the 62.60th percentile result of the
mature sequences [23], the 34th percentile result of using stem–loop sequences reveals that
the pre-miRNA distance distribution may be a more useful tool to examine the similarity
of miRNAs than the mature miRNA distance distribution.

Table 4. The pairwise distance analysis of 12 miRNA biomarkers of major depression and migraine.

miRNA biomarkers miR-590, miR-34a, miR-382, miR-30a, miR-375, mir-27a, miR-181a, let-7b, miR-22, miR-155,
miR-126, let-7g

Pairwise distance range (0.4067432, 1.429901)

The mean of the 66 distances 0.8910118

The percentile of this mean in the
kernel density distribution 34th percentile

From these three cases, the results suggest that the pre-miRNA method may be more
useful to study disease association than the mature miRNA method. The mature miRNA
and pre-miRNA methods will be evaluated by applying them to more cases in future
studies.

3. Materials and Methods

The 1917 human miRNA stem-loop sequences in miRBase are provided in the Supple-
mentary Materials. The pairwise distances of these 1917 human miRNAs were calculated
using Jukes and Cantor’s one-parameter model. Several methods were used to derive the
distance distributions. The details of these methods are provided in this section. The Matlab
codes for performing these calculations are provided in the Supplementary Materials.

3.1. Distance Method

Jukes and Cantor’s one-parameter model assumes that substitutions occur with equal
probability among the four nucleotide types, A, T, C, and G. Let K denote the number of
substitutions per site since the time of divergence between the two sequences. Under Jukes
and Cantor’s one-parameter model, we have

K = −3
4

ln(1− 4
3

p̂) (1)

where p̂ = X/L is the observed proportion of different nucleotides between two sequences.
The value K is used as the distance of two miRNA sequences in this study.
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3.2. Model Selection

To find a statistical distribution to fit the distance data, we use the two-sample Kolmogorov–
Smirnov test to evaluate different statistical models. First, two statistical models including
the normal distribution and the exponential distribution were used to fit the distance data.
However, these two models cannot accurately fit the data. To this end, we consider using the
empirical cumulative distribution and kernel density estimation to fit the data.

Let F(x) be the cumulative distribution of the pairwise distance of miRNA sequences.
Let F̂n(x) be the empirical cumulative distribution based on n observed data, x1, . . . , xn.
The definition of F̂n(x) is

F̂n(x) =
1
n

n

∑
i=1

I(xi≤x)(x) (2)

where IA(x) denotes the indicator function that IA(x) = 1 when x ∈ A and IA(x) = 0
otherwise. F̂n(x) can be used to estimate F(x).

Another method is the kernel density estimation method which is to estimate the
density function instead of the cumulative distribution. The estimated density is

f̂h(x) =
1
n

n

∑
i=1

Kernelh(x− xi) =
1

nh

n

∑
i=1

Kernel(
x− xi

h
)

where Kernel is the kernel function, a non-negative function, and h > 0 is a smoothing
parameter called the bandwidth [33].

There are a total of 1917 × 1916/2 = 1,836,486 pairwise distances for these 1917 miR-
NAs. The range of these distances is (0, 27.0324). The histogram of these 1,836,486 distance
data in Figure 1 shows that the data are skewed. Therefore, it is not suitable to use a
symmetrical distribution to fit the data, such as the normal distribution. Nevertheless, we
have used the normal distribution N(µ, σ2) with mean µ and variance σ2 to fit the data.
The exponential distribution exp(λ) with mean 1/λ is also used to fit the data. When using
the normal distribution to fit the data, the estimated value of µ is µ̂ = 0.995292 and the
estimated value of variance σ is σ̂ = 0.44501. When using the exponential distribution to fit
the data, the estimated value for 1/λ is 0.995292. Figures 4 and 5 are the histograms of gen-
erated data from the fitted normal distribution and exponential distribution, respectively.
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3.3. Kolmogorov–Smirnov Test

The plots of Figures 4 and 5 are not similar to Figure 1. This indicates that the
normal and exponential distributions do not fit the distance data well. The two-sample
Kolmogorov–Smirnov test was used to evaluate the model selection result. The p-values
for using the normal distribution and the exponential distribution to fit the data are less
than 0.00001 (Table 5). This coincides with the result from Figures 4 and 5 that the two
distributions are not appropriate to fit the data. Then, we apply the empirical cumulative
distribution and the kernel density estimation method to fit the data.

Table 5. The fitted distributions and the p-values of the two-sample Kolmogorov–Smirnov test.

Model Parameter p-Value

Normal distribution µ̂ = 0.995292
σ̂ = 0.44501 <0.00001

Exponential distribution 1/λ̂ = 0.995292 <0.00001

Empirical cumulative distribution Piecewise linear approximation 0.4404

Kernel density estimation
Kernel = normal distribution

Bandwidth = 0.00973513
Support = unbounded

0.4824

From Equation (2), we can see that the empirical cumulative distribution is not a
smooth function. The piecewise linear approximation method is used to smooth the
distribution. The empirical cumulative distribution can be obtained by the Matlab code.
Figure 2 shows the histogram of generated data from the empirical cumulative distribution,
which is more similar to Figure 1 compared to Figures 4 and 5. The p-value obtained by
the two-sample Kolmogorov–Smirnov test for testing 66 data generated from the empirical
cumulative distribution is 0.4404 (Table 5). This indicates that the empirical cumulative
distribution is a more acceptable model than the normal and exponential distributions.

Finally, the kernel density estimation method was used to fit the data. The kernel
function used in this method is the normal distribution. By using the Matlab code, the
bandwidth is set to 0.00973513. Figure 3 shows the histogram of 1,836,486 generated data
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from the kernel density estimation. Similar to the empirical cumulative distribution, the
plot is more similar to Figure 1 compared with Figures 4 and 5. The p-value obtained by
the two-sample Kolmogorov–Smirnov test by the 1,836,486 distance data and 66 generated
data from the kernel density estimation method is 0.4824 (Table 5). The p-value is higher
than that for the empirical cumulative distribution. This indicates that the kernel density
estimation method is also an acceptable model, like the empirical cumulative distribution.
Among these methods, the kernel density estimation method has the largest p-value. As a
result, we suggest using the distribution derived by the kernel density estimation method
as an approximate distance distribution.

3.4. Flowchart

A flowchart of the methods to fit the data and derive the distance distribution is
provided in Figure 6.
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4. Conclusions

The miRNAs are involved in disease mechanisms, and there might be an association
between two diseases if their miRNA biomarkers are highly similar. As a result, setting
a similarity threshold for the pairwise distance of miRNA sequences can be a useful
criterion to evaluate the similarity of two miRNAs. To find a threshold, we suggest the
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distance distribution of miRNAs. The miRNA stem–loop sequences in miRBase were used
to calculate the pairwise distances of pre-miRNAs and derive the distance distribution.
Compared with the mature miRNA method, the pre-miRNA method is more useful for
studying disease association.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24021009/s1.
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