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Abstract: The microtubule-associated protein tau is an intrinsically disordered protein containing
a few short and transient secondary structures. Tau physiologically associates with microtubules
(MTs) for its stabilization and detaches from MTs to regulate its dynamics. Under pathological
conditions, tau is abnormally modified, detaches from MTs, and forms protein aggregates in neuronal
and glial cells. Tau protein aggregates can be found in a number of devastating neurodegenerative
diseases known as “tauopathies”, such as Alzheimer’s disease (AD), frontotemporal dementia (FTD),
corticobasal degeneration (CBD), etc. However, it is still unclear how the tau protein is compacted
into ordered protein aggregates, and the toxicity of the aggregates is still debated. Fortunately, there
has been considerable progress in the study of tau in recent years, particularly in the understanding
of the intercellular transmission of pathological tau species, the structure of tau aggregates, and the
conformational change events in the tau polymerization process. In this review, we summarize the
concepts of tau protein aggregation and discuss the views on tau protein transmission and toxicity.

Keywords: tau aggregates; tau toxicity; tau transmission; tauopathy

1. Introduction

The microtubule-associated protein tau (MAPT; here, tau is used for short), is one
of the microtubule-associated proteins (MAPs), and plays a crucial role in regulating the
dynamics of microtubules (MTs) through binding and detaching from them. Tau plays a
crucial role in axonal transport [1], synaptic transmission, and connectivity [2–4], as well as
in maintaining genomic stability and regulating gene expression [5–7]. However, in various
neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia
(FTD) with parkinsonism linked to chromosome 17 (FTDP-17), progressive supranuclear
palsy (PSP), corticobasal degeneration (CBD), Pick’s disease (PiD), etc., tau is abnormally
phosphorylated, leading to the formation of protein inclusions such as neurofibrillary
tangles (NFTs), which are collectively referred to as “tauopathies” (Table 1) [8]. Tau is
an intrinsically disordered protein lacking a defined structure, and poses challenges in
understanding its mechanism of polymerization into oligomers and ordered aggregates,
such as paired helical and straight filaments (PHFs and SFs), which ultimately lead to
detrimental consequences [9].
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Table 1. Relevance of microtubule-associated protein tau deposition in neurodegenerative disorders.

Tau Isoforms Tauopathies Neuropathological Hallmarks References

3R Tau Pick’s disease (PiD) Ballooned neurons, gliosis, Pick bodies [10,11]

3R + 4R Tau

Primary age-related tauopathy (PART) Neurofibrillary tangles (NFTs),
absence of amyloid (Aβ) plaques [12]

Alzheimer’s disease (AD) NFTs, Aβ plaques, dystrophic neurites
Plaques, pretangle neurons, tangle neurons [11]

Familial British dementia (FBD) Cerebral amyloid angiopathy (CAA),
parenchymal Aβ plaques, NFTs [13]

Familial Danish dementia (FDD) CAA, NFTs, Aβ plaques, Danish amyloid [13]

Chronic traumatic encephalopathy (CTE) NFTs, astrocytic tangles [14]

4R Tau

Progressive supranuclear paralysis (PSP) NFTs, tufted tau-positive astrocytes,
coiled bodies [15]

Globular glial tauopathy (GGT) Globular oligodendrocytic inclusions,
globular astrocytic inclusions [16]

Corticobasal degeneration (CBD) Astrocytic plaques, preganglionic neurons,
coiled bodies, argyrophilic threads [17,18]

Argyrophilic grain disease (AGD)

Argyrophilic grains,
small spindle-shaped lesions,

pretangle neurons,
oligodendroglial coiled bodies

[19,20]

Aging-related tau astrogliopathy (ARTAG) Thorny or granular/fuzzy astrocytic tau [21]

Tau is encoded by the MAPT gene on chromosome 17q21.31, which contains 16 exons
that can generate six isoforms due to the alternative splicing of exons 2, 3, and 10 (Figure 1).
The longest isoform of tau consists of 441 residues and can be divided into the N-terminus,
C-terminus, a proline-rich region, a microtubule binding region (MTBR) encompassing
R1-R4 segments, and two acidic N-terminal inserts that contain 29 amino acids each [22].
The concept that tau is involved in neurodegenerative diseases is supported by the evidence
that tau aggregations and mutations correlate with several neurodegenerative diseases,
including AD, FTDP17, PSP, etc. Furthermore, the presence of mutations on tau is adequate
to elicit neurological pathology in both human and transgenic animal models [23,24]. It
is interesting to note that, similar to the propagation of tau pathology in patients, the
results from animal models also provide strong evidence to support the transmissibility of
tau [25–27]. However, the underlying mechanism of tau aggregation and toxicity, as well
as its intercellular transmission, remains to be elucidated.
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2. Tau Aggregates

In vitro and in vivo studies have shown that the conformational change and subse-
quent exposure of aggregation-prone motifs serve as crucial intermediate events in the
formation of oligomeric and fibrillar tau aggregates [28–30]. The monomeric form of tau is
intrinsically unfolded, lacks a defined tertiary structure, and consists of a large proportion
of random coli regions; the absence of ordered secondary and tertiary structures poses
challenges in determining its structures [31]. It was proposed that the tau monomer is
compacted into a “paper clip” conformation (Figure 2), in which the C-terminus folds back
and interacts with the MTBR, while the N-terminus folds back over the C-terminus, form-
ing a local compacted structure by encircling the core aggregation-prone motifs. The core
aggregation-prone motifs encompass the segments “275VQIINK280” and “306VQRVYK311”
on R2 and R3, respectively, which adopt a β-strand conformation [31–34], and can further
facilitate polymerization through intermolecular interactions. However, intramolecular
compaction prevents the intermolecular interaction of aggregation-prone motifs, thereby
blocking tau aggregation [35]. Given the significant influence of intermolecular interactions
on tau, factors such as heparin, PTMs, and RNA, which are capable of neutralizing and
modulating the electrical properties of tau, can facilitate conformational changes and the
subsequent exposure of aggregation-prone motifs.
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Figure 2. A stepwise model elucidating the process of tau aggregation. The microtubule-associated
protein tau is physiologically associated with the tubulin heterodimer to maintain the stability of
microtubules. Following post-translational modifications (PTMs) such as phosphorylation, tau
undergoes dissociation from the tubulin heterodimer. The dissociation of tau monomers and the
naturally unfolded “paper clip” tau species undergo a series of mis-sorting processes, resulting in the
dendritic and somatic mislocalization of tau. This further facilitates PTMs and liquid–liquid phase
separation (LLPS). The presence of PTMs and LLPS further facilitates the conformational changes in
Tau, thereby exposing its aggregation-prone motifs. The intermolecular interface of tau facilitates
the nucleation and formation of tau dimers and trimers, which serve as seeds to promote gradual
polymerization through the extension of aggregates by the addition of tau monomers, ultimately
resulting in the formation of oligomers and filaments that accompany conformational changes.
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In addition to the “paper clip” model, an intermolecular interaction can also occur
through alternative mechanisms. The electricity of the tau protein is distinct across its four
segments; the N-terminus of the tau protein, particularly the N1 and N2 regions, exhibits a
negative charge with a combined charge of−11.8 when coupled with the proline-rich region.
In contrast, the MTBR carries a positive charge of +4.5. Thereby, the N-terminus of tau can
interact with the MTBR and mask its core aggregation motifs. A further neutralization of the
positive charge of tau via PTMs and heparin can also hinder the intramolecular interactions,
leading to the exposure of the aggregation-prone motifs [36]. Interestingly, tau monomers
are predominantly present in normal brains, whereas AD brains contain a substantial
proportion of tau oligomers, encompassing dimers, trimers, and high-molecular-weight
polymers [37]. Accordingly, tau oligomers can be classified into two types, sarcosyl-soluble
oligomers that are undetectable via AFM, and AFM-detectable oligomers, which mainly
consist of sarcosyl-insoluble granular oligomers containing more than 40 mers [38,39]. In
contrast to tau filaments, the structural determination of tau oligomers poses a significant
challenge. The results obtained from MT-associated tau dimers indicate that they are
formed through an intermolecular interaction between the N-terminus and the proline-rich
region in an antiparallel manner, facilitated by electrostatic complementation involving
salt bridges. Subsequently, the N-terminus, C-terminus, and MTBR regions undergo an
extension to facilitate the binding of tau towards MTs. The artificial condensation of dimeric
tau has been shown to increase its binding affinity towards MTs [40], particularly with
respect to tubulin heterodimers [41].

The tau dimers and trimers formed under physiological conditions exhibit distinct
characteristics from pathological tau oligomers, particularly in terms of their association
with different phosphorylation patterns and their status. These findings suggest that
normal and pathological tau oligomers possess different properties and undergo distinct
biological processing [42]. Prior to the formation of oligomers, monomeric tau undergoes
a series of conformational changes, particularly adopting the β-strand structure. The
disulfide-cross-linked intermolecular interaction further facilitates the formation of dimers,
and is accompanied by the disulfide-bond-independent intermolecular bridging of the
MTBR. These dimers can further polymerize into oligomers with a distinct fate compared
to the dimers that are formed physiologically [36,43].

Dimerization is likely to serve as a rate-limiting step in the aggregation of the tau
protein. The tau dimer acts as the core, and it can be further expanded by the addition of
monomers [44], which undergo polymerization to form multimers, and have been proven
in vitro [45,46]. Moreover, tau trimers can also serve as the aggregation seed, implying
that both dimers and trimers possess the potential to function as fundamental units for
aggregation [37]. In particular, they are abundant in AD brains [47].

Accordingly, the formation of tau granules precedes the formation of tau filaments,
which can be detected in the early stages of AD, even in the absence of AD-related symp-
toms. In particular, tau granules appear at Braak stages 0 and I, which implies that their
genesis is an early event and may relate to the progression of AD [39]. In contrast, tau
filaments can be detected at stage V instead of stages 0, I, and III, which does not exhibit a
strong correlation with the early cognitive changes [48].

Unlike unstructured monomers, tau dimers, trimers, and oligomers tend to gradually
adopt the β-sheet conformation. Accordingly, the content of the β-sheet conformation is
increased stepwise from soluble oligomers to granular oligomers and filaments, indicating
that the structure change is accompanied by tau aggregation and may facilitate the forma-
tion of higher-molecular-weight aggregates [38]. Interestingly, granular oligomers contain
more β-sheet structures than randomly coli-enriched monomers, and the proportion of
β-sheet structures is continuously increased in the filaments [48]. The gradual increase in
β-sheet conformation is likely critical for tau polymerization [38].

Although the toxicity of tau filaments is still uncertain and debated, their structures
have been investigated by several Cryo-EM studies, since they tend to form defined
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structures in vitro and in vivo. Unexpectedly, the structures of tau filaments are diverse in
different types of tauopathy diseases [49].

On the basis of the number of protofilaments, the CBD filaments can be divided into
types 1 and 2, which correspond to narrow and wide tau filaments, respectively. The ratio
of type 1 to type 2 filaments in CBD patients varies from 1:1 to 1:3 [50]. The narrow tau
filament consists of a single protofilament exhibiting a four-layer fold, while the wide
filament comprises pairs of identical narrow filaments [50]. The CBD protofilaments’ core
sequence comprises residues K274-E380 and features 11 β-strands linked by turns and
arcs, forming a four-layer structure. The antiparallel stacking of the 343KLDFKDR349 motifs
from two protofilaments further shapes the type 2 filaments [50]. In contrast to CBD
filaments, the PHFs and SFs observed in AD patients comprise two identical protofilaments
encompassing residues 306–378, with the disordered N-terminus and C-terminus forming
a fuzzy coat. The filament’s core comprises eight β-sheet structures, including β1–3 of
R3, β4–7 of R4, and β8 at the C-terminus. It adopts a C-shaped architecture without
R1 and R2, where three β-sheets are arranged in a triangular manner. Additionally, it
exhibits two regions with a cross-β architecture, wherein pairs of antiparallel β-sheets
are packed together. The cross-β interface is formed by the interaction between β1–2
and β8, which is facilitated by 306VQIVYK311 and residues 373–378 from the opposing β8
sheet. The antiparallel stacking of residues 332PGGGQ336 between two helically symmetric
protofilaments further contributes to the formation of PHF aggregates. In contrast, the
SF stacking involves the asymmetric packing of 321KCGS324 from protofilament 1 and
313VDLSK317 from protofilament 2 at their interfaces along the helical axis [49].

In patients with PSP, tau polymerizes to form subcortical neurofibrillary tangles
and neuropil threads, along with tufted astrocytes and oligodendroglial coiled bodies.
Intriguingly, a recent study has revealed that tau exhibits the novel three-layered folded
filaments in PSP, which is herein referred to as the PSP fold [51]. PSP filaments are composed
of a single protofilament featuring an ordered core spanning residues 272–381 and adopting
the three-layer PSP fold. This fold involves the stacking of R2–R4 and a turn at the “PGGG”
motifs located at the end of each repeat. The central layer is formed by R3, with R2 and R4
packing on either side of it. Additionally, the chain undergoes another hairpin turn at the
“PGGG” motif within R4, while the C-terminus forms a short fourth layer that covers the
end of R2 [51].

Pick’s disease is classified as a 3R tauopathy. It results in the degeneration of the
frontotemporal lobar, which is accompanied by the accumulation of abundant Pick bodies
composed of narrow and wide 3R tau filaments. The narrow Pick’s filament consists
of a single elongated protofilament, which exhibits structure differences from the PHFs
observed in AD. Furthermore, the association of two narrow Pick’s protofilaments results
in the formation of wide filaments. The Pick’s filament fold comprises a core consisting of
residues Lys254-Phe378, which adopts nine β-strands (β1–β9) organized into four cross-β
packing stacks that are connected by turns and arcs. Specifically, β1 and 2 of R1, β3–β5
of R3, and β6–β8 of R4 are tightly packed together to form a hairpin-like structure [52].
As revealed by the cryo-EM analysis, while R3, R4, and an additional 10–13 residues
from the C-terminus of tau contribute to the assembly of the common folded core in tau
filaments, distinct types of tau folds are observed in different tauopathy diseases, which
can be further classified into three classes and eight subclasses (Table 2, see review [51]).
Disease-associated folding specificity helps to elucidate the underlying mechanisms behind
the diverse protein inclusions, subcellular distributions, and cell-type-specific aggregations
of tau in various diseases. In particular, it helps to explain why the tau protein can deposit
diversely in neuronal cell bodies, synapses, and dendritic compartments, leading to distinct
pathological manifestations [53]. Interestingly, a recently discovered isoform of tau, known
as w-tau, exhibits the intriguing ability to mitigate tau aggregation in AD brains [54].
Moreover, it has been demonstrated that w-tau possesses the capacity to attenuate the
aggregation propensity of tau [55]. Interestingly, w-tau is generated by intron retention,
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which results in the absence of exon 13 and the addition of the translated intron 12 sequence
after exon 12 [54].

Table 2. Monomeric, oligomeric, and filamentary forms of tau protein.

Tau
Species

Molecular Weight
(kDa) Features Isoforms or

Compositions Folding Types References

Monomer 55–74 soluble
tau0N3R, tau1N3R,
tau2N3R, tau0N4R,

tau1N4R, and tau2N4R
[56]

Dimer

180
cysteine-

dependent and
reducible

2 Tau monomers

[45]

130
cysteine-

independent and
unreducible

[57]

Small oligomers 300–500 soluble 6–8 Tau monomers

[43]Granular
oligomers 1800 insoluble, granule 40 Tau monomers

Filaments

two-layered 3R
Narrow Pick filaments

[51]

Wide Pick filaments

three-layered

4R

PSP fold

GPT fold

GGT type 1, type 2, and
type 3 folds

four-layered
AGD type 1, type 2 folds

CBD fold

two-layered 3R + 4R

AD fold (including FBD
and FDD folds)

CTE fold

In addition to a structural investigation, despite its inherent challenges, tau aggregation
can be investigated by using several methodologies and models (Supplementary Table S1).

3. Factors Facilitating Tau Aggregation

The properties and electrostatics of tau can be influenced by various factors, including
post-translational modifications (PTMs) of proteins, polyanions such as RNAs, heavy
metals, heat shock proteins, membrane binding, and local condensation of tau (LLPS).
PTMs such as phosphorylation, acetylation, truncation, nitration, glycation, glycosylation,
and ubiquitination serve as crucial regulators of tau aggregation and toxicity. The primary
impact of PTMs is to modify the local charge distribution of tau proteins. For instance,
the attachment of a single phosphate group (Pi) to tau can result in an increase in the net
charge by −1 on the tau protein; therefore, the enrichment of phosphor sites and phosphor
groups can significantly diminish the positive charge of tau [58–60].

4. Post-Translational Modifications

The binding of phosphor groups to the MTBR can neutralize its positive charge,
thereby inducing its dissociation from the MTs [61]. For instance, the binding affinity
of MTs is reduced by the phosphorylation of the p-epitopes within the MTBR, such as
S262/S214, and the epitopes located in the proline-rich domain, like T231 [62].

Once dissociated from MTs, phosphorylated tau can further undergo pre-aggregation
events. Since the charge change, the interaction between the negatively charged C-terminus
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and MTBR is impeded, leading to the release of the “paper clip” structure and resulting
in an enhanced hydrophilic property. The subsequent intermolecular interaction of two
tau proteins with the exposed aggregation-prone motifs further facilitates the formation
of tau dimers and multimers [63]. Notably, some in vitro evidence suggests that the phos-
phorylation of the C-terminal epitopes, including Ser396, Ser404, and Ser422, does not
alter the binding affinity of MTs; however, the propensity for conformational changes
and aggregation is enhanced [60,64,65]. Interestingly, phosphorylation at Ser396 appears
to attenuate the binding affinity of MTs in cell culture models [66,67], suggesting poten-
tial variations in tau properties across different environments. In addition to reducing
the binding affinity of MTs, phosphorylation at AD-related serine (S) and threonine (T)
epitopes can increase the propensity for aggregation (Figure 3). The in vitro phosphory-
lation of tau at AT8, AT100, AT180, and PHF-1 epitopes leads to the self-aggregation of
tau, resulting in the spontaneous formation of small amorphous aggregates without the
need for aggregation inducers [68]. Moreover, in vitro phosphorylation at S208 through a
phosphoryl-mimetic mutation, S202E/T205E/S208E, induces Tau self-aggregation indepen-
dently of an aggregation seed [69], further suggesting that phosphorylation can modulate
Tau properties and drive its aggregation. The linking of polyphosphate chains also induces
a conformation change in Tau, facilitating the formation of intermolecular cross-linking
and aggregation [70].
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Figure 3. Post-translational modifications (PTMs) occur on the tau protein. The amino acid sequence
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various PTMs, while the amino acids associated with tau pathology are highlighted in yellow.

Lysine (K) acetylation, achieved by introducing an acyl group to the -NH side chain,
possesses the capacity to neutralize a positive charge and increase the negative charge
near the lysine residue, which can also change the properties of tau [71,72]. In particular,
acetylation at the K280 residue of the MTBR reduces the binding affinity of MTs (Figure 3),
increases the proportion of the β-sheet structure, and enhances the self-assembly capability
of tau, which can be attributed to the interaction between the hydrophobic chemical groups
within the PHF6* motifs [72,73].

Similarly, acetylation at K281 also hampers the capacity for MT binding and enhances
the propensity for aggregation [74]. Acetylation at K259, K290, K321, and K353 outside
the aggregation-prone motif (PHF6* and PHF6), exhibits a similar impact on reducing
the binding affinity of MTs. Surprisingly, mimicking acetylation at K321 and K353 exerts
an opposing effect on tau aggregation by influencing the stability of its β-sheet struc-
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ture [75]. These findings suggest that PTMs with different effects on tau conformation may
differentially modulate tau aggregation [64].

In addition to acetylation, lysine residues on tau can undergo modifications such as
ubiquitination, SUMOylation, methylation, and glycation et al., suggesting the potential
for competition and crosstalk among different PTMs (Figure 3) [60,76].

The ubiquitination of tau exerts diverse effects. It can facilitate the degradation of tau
through the ubiquitin–proteasome and autolysosome systems, while also promoting the
aggregation and insoluble inclusions of the tau protein [77,78]. The ubiquitination of K18
at the N-terminus of tau disrupts aggregate formation and sequesters tau oligomers into
the proteasome for degradation [79]. The ubiquitination of K63 promotes the autolysosome-
mediated degradation of tau. Moreover, the ubiquitination of K48 and K63 also promotes tau
aggregation due to the interaction of the enriched ubiquitin chains [79,80]. In fact, ubiquitin
moieties have been detected on human-brain-derived tau aggregates, including ubiquitin
chain-linked K321, K343, K353, and K369 in CBD, as well as K317/K321 in AD [81].

In particular, CHIP is a predominant ubiquitin ligase for tau. The deletion of CHIP
results in an accelerated accumulation of non-aggregated and ubiquitin-negative forms
of tau [82]. The up-regulation of CHIP expression in Cos7 cells results in the formation
of ubiquitin-positive tau aggregates, which can be attenuated by Hsp70 [83]. The AD
brain-derived tau conjugated to K63 ubiquitin chains is likely to exhibit a propensity for
aggregation and propagation [84]. The above evidence suggests that ubiquitin conjugation
not only influences the degradation of tau, but also modulates its aggregation propensity,
since ubiquitin chains can provide additional interactions among tau molecules [81].

Although the methylation of Tau has been detected in both normal and AD human
brains [85,86], the functional implications of this epigenetic modification remain to be
elucidated. The methylation of both mono- and di-methylated lysine residues occurs
along the entire tau protein. However, it does not impact MT polymerization unless the
lysine residues of tau are methylated to a high stoichiometry. Surprisingly, even when the
methylation levels are elevated, tau still maintains a disordered conformation. Additionally,
overall, methylation exerts a primary influence on tau by suppressing its aggregation
propensity through impairing the nucleation rate, thereby slowing down the extension of
aggregates, and ultimately reducing the stability of tau filaments [86].

Intriguingly, the methylation of certain residues, such as K317, elicits an opposing
effect. K317 methylation decreases tau solubility and facilitates intermolecular interactions
and dimerization, which is concomitant with MT destruction [87]. In addition to lysine
residues, methylation can also occur on certain arginine residues (R), including R126, R155,
and R349 [88,89]. However, the functional implications of arginine methylation remain
to be elucidated. Similar to acetylation, the methylation of lysine residues can induce
charge neutralization and conformational changes [58], thereby influencing both intra- and
intermolecular interactions [87]. The additional consequence of lysine methylation is the
perturbation of other PTMs. For instance, methylation at K254 blocks Tau ubiquitination
and degradation [89], while methylation at K267 influences the phosphorylation of Ser262,
albeit the underlying mechanism remains unknown [90].

5. Heavy Metal Elements

The disruption of heavy metal homeostasis is implicated in the pathogenesis of several
tau-related neurodegenerative diseases, such as AD, which accompanies the accumulation
of copper, iron, and zinc. Furthermore, the exposure to certain heavy metals also augments
the incidence of AD and other tauopathies [91]. In particular, heavy metals are postulated
to act as cofactors to induce tau aggregation through direct binding [92–94]. They possess
the capability to induce conformational changes and promote phase separation of tau,
thereby enhancing its propensity for aggregation [95,96]. However, it is unlikely that they
share identical binding sites and kinetics.

The imbalance and accumulation of copper ions have been demonstrated in AD
brains [97]. In vitro studies suggest that copper interacts with the R2 and R3 regions of tau,
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and that the histidine residues within tau play a vital role in the binding of copper ions.
Consequently, copper induces a conformational shift in the aggregation-prone motifs, lead-
ing to an increased proportion of alpha-helix and β-sheet structures [96,98,99], facilitating
tau self-assembly [98]. In addition to direct binding, copper can also catalyze the formation
of intermolecular disulfide bonds, thereby promoting tau dimerization [96].

The zinc ion is abundantly accumulated in the AD brain and possesses the capacity
to induce the formation of the β-sheet conformation, thus facilitating the formation of tau
aggregates. Under reducing conditions, the interaction between tau and zinc is mediated
by Cys291 and Cys322, with the additional involvement of certain histidine residues.
Interestingly, distinct effects on tau aggregation are observed at low and high levels of zinc.
In particular, low zinc levels promote the fibrillization of Tau by promoting the formation of
a β-sheet structure, whereas high zinc levels induce the formation of granular aggregation.
This phenomenon can be attributed to a binding site switch that occurs with increased zinc
concentrations [95,100,101].

In addition, the presence of iron (Fe2+) facilitates the aggregation of tau by inducing a
reversible conformational change through an interaction with the threonine residues [102].
Interestingly, lithium, an alkali metal, exhibits the potential to mitigate brain iron accumu-
lation induced by tau and consequently may reduce iron-induced tau toxicity [103].

Besides the direct interaction effects, heavy metal elements can modulate the con-
formation and aggregation of tau by influencing the flux of PTMs; for instance, zinc and
copper can impact the activities of tau kinase and phosphatase, thereby augmenting tau
phosphorylation and inclusion [93]. In addition to iron accumulation correction, lithium
has the ability to attenuate tau phosphorylation by inhibiting GSK3 activity and modulating
the AKT and PKA levels [104–107]. Interestingly, it also directly reduces tau expression;
however, the underlying mechanism remains to be elucidated [103].

6. Phase Separation

In the protein crowding niche, tau can be concentrated by LLPS, which has been
proposed to facilitate conformational change [68,108]. Interestingly, even at a physiological
concentration of as low as 1–3 µM, tau exhibits the ability to undergo LLPS. In particular,
phosphorylation is crucial for tau LLPS, and unphosphorylated tau is unable to undergo
LLPS, even in a crowding environment [108]. Since the phosphorylation of tau can increase
its negative charge, it induces conformational changes and enhances intermolecular inter-
actions, thereby facilitating tau LLPS. Overall, the phosphorylation of tau and site-specific
phosphorylation, such as phosphorylation at the AT180 and AT8 epitopes, both enhance the
propensity for LLPS [109]. In particular, at high protein concentrations exceeding 50 µM,
the phosphorylated tau can undergo LLPS spontaneously, even in the absence of crowding
agents. In contrast to phosphorylation, the implications of acetylation on Tau LLPS remain
a subject of ongoing debate and necessitate meticulous clarification [110].

In addition, tau LLPS can be further facilitated by heparin, RNA, and genetic mutations
of tau. In particular, even in the absence of crowding circumstances, tau can undergo
spontaneous LLPS when carrying pathological mutations such as P301L and delaK280,
which have been implicated in inducing β-sheet conformational changes in tau [108,111].

Droplets of Tau LLPS exhibit a dynamic exchange with the surrounding environ-
ment and undergo rapid gel-like condensation, which can further progress to β-sheet-
enriched protein aggregates. These findings suggest that LLPS enhances aggregation
propensity [108,111]. From this perspective, it is plausible that after mis-sorting from
axonal MTs, the subsequent PTMs, such as phosphorylation, are able to promote the LLPS
of tau, leading to its condensation (Figure 2). It has been demonstrated that LLPS can enrich
the tau concentration by up to ~100-fold [111], thereby facilitating conformational changes
including the extension of the N- and C-terminus, exposing the MTBR, and promoting
intermolecular contact for the cluster formation of tau molecules, ultimately leading to
tau aggregation and fibrillization [111,112]. Surprisingly, although the MTBR is prone to
form aggregation, LLPS is predominantly reliant on the N-terminus of tau. Tau cluster-
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ing in LLPS likely occurs through the interface of its N-terminus, and the removal of the
N-terminus impedes LLPS, indicating that the mechanisms of tau LLPS differ from those
driving tau polymerization, although LLPS can promote the aggregation of tau [111].

7. RNAs and RNA-Binding Proteins

Although the precise roles of RNA and RNA-binding proteins in tau aggregation
remain elusive, their association with pathological tau aggregates has been demonstrated
in vivo [113,114]. Tau interacts with RNA molecules through electrostatic interactions. The
negatively charged phosphate backbones of RNAs bind to the positively charged segments
of tau, facilitating tau condensation, particularly the LLPS [115], increasing its propensity
for aggregation [114,116,117].

Structural studies of tau fibers induced by RNA molecules-reveal the incorporation of
two molecular weight RNAs. The intermolecular interaction between two parallel protofil-
aments, mediated by the Glu391-Ala426 segments, further gives rise to an aggregation
core comprising five β-strand structures [118]. The presence of RNA molecules not only
serves as a structural factor that stabilizes tau aggregates, but also acts as a catalyst for tau
aggregation by catalyzing the formation of tau filaments. Surprisingly, the removal of RNA
molecules can lead to the unexpected dissociation of tau aggregates, indicating their crucial
role as molecular glue [118,119]. In vitro evidence also suggests that tau has the ability to
sequester RNA molecules and subsequently undergo co-polymerization, leading to the
formation of amyloid-like fibrils [120].

However, the properties of tau aggregates induced by RNAs exhibit distinct dissimi-
larities compared to those induced by heparin. In addition to poly (U), (A), (C), and (G),
tRNA, m6A-RNA, snRNAs, and snoRNAs also exhibit the capability of interacting with tau,
leading to the LLPS and subsequent polymerization with distinct stoichiometry [119–121].
Tau LLPS is also implicated in the indirect interaction between tau and RNAs mediated by
RNA-binding proteins such as TIA and HNRNPA2B1 [122,123].

8. Interplay between Tau Protein and Membrane Architecture (Membrane Binding)

In the AD brain, tau has been demonstrated to exhibit an association with the cellular
membrane [124]. Furthermore, PHF filaments co-deposit with membrane lipids, including
phosphatidylcholine (PC), cholesterol, and sphingolipid [125], thereby suggesting a link
between tau pathology and its interaction with membrane lipids. Furthermore, in vivo
and in vitro studies have demonstrated that tau exhibits a propensity to directly associate
with membrane lipid species, which is driven by electrostatic interactions. In particular, the
hydrophobic hexapeptide motifs PHF6*/PHF6 possess the ability to interact with lipids,
leading to the formation of the core structure within the tau-lipid complex, which can
further enhance the formation of the β-sheet structure, thereby augmenting the aggregation
propensity of tau [126,127]. The binding affinity of tau and membrane lipids is predom-
inantly determined by the intensity of the electrostatic interactions and the composition
of the phospholipid headgroups [128]. The specific lipid species capable of binding to
tau have been reviewed by Bok et al. [126]. Interestingly, tau has the capacity to remodel
and extract phospholipids from cell membranes, leading to the formation of the tau-lipid
complex. The R2 and R3 regions of tau, particularly the PHF6 motif, exhibit a robust
capacity for remodeling membrane lipids.

The formation of the tau-lipid complex facilitates a favorable shift in electrical proper-
ties [127], and the presence of a hydrophobic environment may potentially facilitate the
enrichment of the tau protein, thereby promoting the intermolecular interfaces. However,
it remains to be determined whether lipid binding can facilitate tau LLPS, and the role of
membrane lipids in enhancing and stabilizing tau aggregates remains unclear. The binding
of tau to lipids also facilitates tau propagation and transmission [126], since membrane
binding enhances tau internalization and exocytosis across the cell membrane. Besides the
lipids, membrane-associated proteoglycans and proteins also possess the capacity to inter-
act with tau and contribute to tau pathology. Heparan sulphate proteoglycans (HSPGs),
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which are ubiquitously distributed on the extracellular matrix and plasma membrane, have
the capacity to interact with tau and promote its spreading [129]. The muscarinic choliner-
gic receptor can interact with tau, leading to the disruption of calcium homeostasis [130].
However, the interaction between tau and lipids is predominantly limited to in vitro exper-
iments; therefore, further investigations are warranted to elucidate the binding of tau to
the membrane lipids in vivo, as well as the impact of phosphorylation and its relevance to
tau aggregation.

9. Propagation and Transmission of Tau

Similar to prions, pathological tau can serve as a nucleating seed for aggregation,
inducing the conformational transformation of intrinsically disordered monomers of tau.
This process leads to the formation of a conformation that is prone to aggregation and
further polymerization, ultimately resulting in the expansion of tau toxicity, which is
demonstrated as “tau transmission and propagation” [131–134] (Figure 4).
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Figure 4. Tau transmission. The transmission of tau is initiated with the release of pathologi-
cal tau species, including monomers, dimers, oligomers, and NFTs. This process is facilitated by
(1) the direct translocation across the plasma membrane, (2) membranous organelle-based uncon-
ventional secretion (MOBS), (3) shedding of microvesicles derived from the plasma membrane, and
(4) nanotube-mediated transfer. The extracellular tau and tau-containing vesicles can be internalized
by (5) translocation across the membrane, (6) micropinocytosis, and (7) endocytosis. Subsequently,
they can be (8) released into the recipient cells, (9) seeding the endogenous tau to undergo conforma-
tional change and polymerization.

The transmission process involves the formation of pathological tau species, which
serve as propagating seeds and can be secreted from donor cells into the extracellular
space. Subsequently, they are internalized by recipient cells, where they act as seeds to
facilitate the sorting and conversion of normal monomeric tau into aggregation-prone
species [135,136]. The propagation and transmission of Tau have been unveiled and can be
investigated through various models and methodologies (Supplementary Table S2).
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10. Release of Tau

In the absence of a canonical secretion signal peptide, tau is likely secreted by the
unconventional protein secretory pathway (UPS) rather than the conventional ER-Golgi se-
cretory pathway. According to current knowledge, tau can be secreted through three mech-
anisms: (1) direct translocation across the plasma membrane; (2) membranous organelle-
based unconventional secretion (MOBS); and (3) shedding of plasma membrane-derived
microvesicles [135].

It has been demonstrated that the direct translocation of tau across the plasma mem-
brane is facilitated by its binding to certain lipid species located on the inner leaflet of the
plasma membrane, such as PI (4,5)P2. Furthermore, tau is released from the membrane,
which occurs through an interaction with HSPGs that are present on the outer leaflet of
the plasma membrane [135], which is similar to the release process of FGF2, and can be
enhanced by phosphorylated tau [137]. In fact, elevated levels of HSPGs such as syndecan
4 and serglycin have been implicated in the presence of amyloid and tau pathology [138].
The inhibition of HSPGs and their interaction with tau has demonstrated a reduction in
in vivo tau propagation [129], thus highlighting the critical role played by HSPGs in facili-
tating tau release. It is still not clear whether the pathological species of tau can produce a
transmembrane pore similar to FGF2, and additional investigation is required [139].

Moreover, intracellular tau can be packaged within membranous organelles, such
as exosomes, which then fuse with the plasma membrane, thus facilitating the release of
organelle-encapsulated tau into the extracellular space. The exosome-mediated secretion of
tau is initiated by the engulfment of tau into intraluminal vesicles derived from the inward
budding of the late endosome. These vesicles contain hyperphosphorylated species of both
monomeric and aggregated forms of tau [135,140,141]. In particular, hyperphosphorylated
tau has been detected in the exosome fraction of the cerebrospinal fluid in Alzheimer’s,
suggesting that tau is potentially secreted by exosomes [141], and it has been verified in
cell cultures and mouse models [140,142].

Although exosome-mediated transmission only contributes to a small fraction of tau
propagation, patient-derived exosomes have demonstrated the ability to propagate tau
pathology in cell culture and mouse models. Moreover, inhibiting exosome formation can
effectively impede tau propagation, providing evidence to suggest that exosome-mediated
tau secretion is involved in this process [135,143]. In particular, exosome-mediated tau
secretion also contributes to the trans-synaptic transmission of tau, a process that is de-
pendent on synaptic connectivity and neuronal transmission activity, although the precise
mechanism is not fully understood [140].

It has been suggested that the disruption of the fusion event between the autophagosome
and the lysosome can potentiate autophagosome-mediated cargo release [135]. Although
the underlying mechanism remains elusive, impaired autophagy and the accumulation of
autophagic vacuoles have been broadly demonstrated in AD [144]. Once engulfed by au-
tophagosomes, tau can either be secreted by the fusion of autophagosomes with the plasma
membrane [145], or degraded by the fusion of autophagosomes with lysosomes [135]. Tau
is able to block autophagosome–lysosome fusion by downregulating the expression of the
IST1 factor associated with ESCRT-III (IST1). Given that the interaction between IST1 and
charged multivesicular body protein 2B\4B (CHMP2B\CHMP4B) plays a crucial role in the
assembly of the endosomal sorting complex required for transport complex III (ESCRT-III
complex), tau can hinder the formation of the ESCRT-III complex, thereby inhibiting the activ-
ity of autophagosome–lysosome-mediated protein degradation. Moreover, tau can disrupt
lysosome-mediated protein degradation by enlisting and sequestering FKBP4, resulting in
diminished lysosome clustering [146,147]. Consequently, tau may enhance autophagosome-
mediated secretion by inhibiting the functionality of the autophagosome–lysosome path-
way [148]. In contrast, augmenting autophagic flux by inhibiting p300/CBP activity can
conversely attenuate the secretion and propagation of tau [145,149].

Unlike exosomes, ectosomes are larger extracellular vesicles that are shed directly
from the plasma membrane through budding [150]. Tau-containing ectosomes have been



Int. J. Mol. Sci. 2023, 24, 15023 13 of 26

characterized in the cerebrospinal fluids in Alzheimer’s [151]; in particular, tau can indeed
be secreted by ectosomes in cell culture and rat models [152]. However, the precise mecha-
nism underlying ectosome-mediated tau secretion remains to be elucidated, particularly
regarding its potential involvement in tau propagation in vivo.

The exocytosis of tau can also be facilitated by the secretion of late endosomes/
lysosomes [153]. In particular, the up-regulation of the late endosome/lysosome-associated
small GTPase Rab7 has been observed in post-mortem AD brains, suggesting a potential
increase in Rab7-mediated late endosome/lysosome secretion that may contribute to disease
progression, which has been verified in cell culture models. The reduction in Rab7 expression
leads to a decrease in tau secretion, while the up-regulation of Rab7 expression exerts the
opposite effect [154–156]. Furthermore, the secretion of tau through late endosome/lysosome-
mediated pathways is also modulated by Hsc70 and its partner DnaJC5, which has been
termed as misfolding-associated protein secretion (MAPS) [153,157,158]. The MAPS pathway
is initiated by the recognition of tau by the ER-bound chaperone USP19, followed by the
processing of tau by Hsc70 and DNAJ5C. This leads to the translocation of tau into the lu-
men of ER-associated late endosomes, which are then secreted into the extracellular space
via the SNAP23- and syntaxin-4-mediated plasma membrane fusion of tau-containing late
endosomes/lysosomes [153,159], leading to the free distribution of tau in the extracellular
milieu, thereby facilitating its propagation [157]. The MAPS pathway is likely to function in
parallel with the proteasome-mediated protein degradation system, serving as an additional
mechanism for maintaining protein quality control (PQC). The initiation of the proteasome
pathway is also facilitated by the USP19-mediated sorting of protein clients, and its func-
tional disruption indeed has the potential to augment MAPS [160]. It is worth noting that
the accumulation of tau in AD may impede proteasome function, potentially leading to the
pathological promotion of MAPS-mediated tau secretion as a compensatory mechanism for
impaired PQC, thereby reducing the intracellular levels of misfolded tau [161–163].

Nanotubes represent cellular protrusions that facilitate the direct intercellular delivery
of cargos such as prion proteins, viruses, and organelles. F-actin-rich tunneling nanotubes
are capable of facilitating the intercellular transportation of tau, thereby facilitating tau
transmission [134,164]. Interestingly, nanotubes possess the capacity to facilitate the trans-
portation of tau fibrils between neuronal cells with the aid of Actin [165,166]. In particular,
the formation of nanotubes can be promoted via extracellular tau, which is likely involved
in the formation of nanotubes [165]. Cellular stress, such as the accumulation of misfolded
proteins like alpha-synuclein and tau, along with lysosomal and proteasomal dysfunction,
may drive the formation of nanotubes to alleviate protein entrapment and aggregation-
related stress [136,167]. Furthermore, the involvement of nanotubes in the propagation of
tau in animal models and patients remains unclear.

11. Tau Internalization

The internalization of extracellular tau and tau-containing organelles is predominantly
reliant on endocytosis. The internalization of tau fibrils is mediated by micropinocytosis
through the invagination of the plasma membrane, which is a process modulated by Actin.
In particular, the binding and internalization of tau fibrils are modulated by HSPGs on
the cell surface, and inhibiting the binding of tau and HSPGs can prevent the uptake and
propagation of tau [129]. In contrast to fibrils, the internalization of low-molecular-weight
species such as tau oligomers is mediated via bulk endocytosis, which is akin to the fluid-
phase endocytosis of dextran, and is mediated by dynamin. Relevantly, bulk endocytosis is
thereby able to enrich tau within endosomes [168,169]. In particular, monomeric tau species
are also able to be slowly internalized by actin-dependent micropinocytosis and rapidly
internalized via dynamin-dependent endocytosis [135]. In addition, the endocytosis of free
tau species, including monomeric tau and tau oligomers, is also modulated by cell surface
receptors such as LRP1. The inhibition of LRP1 significantly impedes the propagation of
tau in mice, suggesting that interfering with its internalization can potentially reduce tau
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pathology. However, it should be noted that the inhibition of LRP1 only partially reverses
the uptake of sonicated Tau fibrils [129,170].

The uptake of tau exosomes is modulated via filopodia-mediated internalization,
involving filopodial surfing, grabbing, and pulling motions. This dynamic filopodia extends
to endocytic hot spots to facilitate the delivery of exosomes into the endosomes [171].

12. Intracellular Seeding and Propagation of Tau

Once internalized, tau can be released from endosomes or macropinosomes by perme-
abilizing through vesicular membranes, although the precise mechanism underlying this
process remains to be elucidated. Internalized tau aggregates can further induce damage to
the membrane of endosomes [172]. Importantly, tau has the ability to interact with vesicular
membranes by sequestering phospholipids, thereby leading to membrane rupture [127].
In fact, other protein aggregates like alpha-synuclein can also cause a similar rupture of
endosome membranes [173].

Following its release, tau can induce the formation and aggregation of endogenous tau
by adopting a conformation that is prone to aggregation, resembling the behavior exhibited by
intracellular tau seeds [36,120,132,174,175]. Remarkably, monomeric tau also has the ability to
sequester endogenous tau and form the nucleation core, thus facilitating tau polymerization in
a prion-like manner [36,176]. The internalized monomeric tau can also activate calpain, thereby
facilitating the cleavage of endogenous tau [177]. In accordance with the propagation of tau,
tau pathology exhibits gradual progression and spread patterns, which initially manifest in
the transentorhinal cortex, and subsequently spread to the entorhinal cortex, hippocampus,
deeper cortical layers, and subcortical nuclei [178–180].

13. Revisiting the Pathogenic Mechanisms of Tau Toxicity

Given its pivotal role in regulating microtubule dynamics, aberrant PTMs and other
factors can disrupt the normal physiological function of tau by altering its properties, subcel-
lular localization, and promoting the formation of insoluble tau aggregates, thereby leading
to at least two detrimental toxic effects (Figure 5): (1) the loss of normal physiological
function and (2) the gain of toxic effects resulting from tau aggregates.
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riety of biological processes, including destabilization of microtubules and cytoskeletons, impairment
of axonal transport and synaptic plasticity, disruption of mitochondrial function and proteostasis,
hyperactivation of microglia, and induction of neuronal cell death, among others.
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Physiologically, tau binds to MTs and stabilizes MTs by acting as a spacer between
tubulin dimers [181,182]. However, hyperphosphorylation of tau abolishes its ability to
bind MTs, resulting in their dissociation [183–185] and subsequent destabilization. Since
MTs serve as the structural skeleton and corridor for efficient axonal transport, they facilitate
the movement of cargo between the neuronal cell body and their axon terminals, such as
nutrients, signaling molecules, and organelles [186,187]. Therefore, the dissociation of MTs
leads to the disruption of axonal transport and synaptic dysfunction [188,189], manifesting
as cognitive decline, memory loss, and other associated symptoms [190,191].

The toxicological effects of tau aggregates, particularly the oligomers, exhibit a complex
and diverse nature (Figure 5) [192]. For instance, tau oligomers have been shown to exert
detrimental effects on mitochondria, disrupt fast axonal transport, impair genomic stability,
interfere with synaptic transmission and function, destabilize MTs and the cytoskeleton
including the Actin network, disrupt protein degradation systems, as well as induce cell
death such as apoptosis [192–195].

The toxicity of NFTs and filaments remains debated despite their association with
tauopathy as one of the pathological features. However, it is important to note that neuronal
dysfunction and cell death precede the formation of NFTs in both human patients and
animal models, suggesting that NFTs may not be the primary causative factor responsible
for exerting tau toxicity [193,196,197], although several lines of evidence suggest that
there is a correlation between neuronal apoptosis and the formation of NFTs [24], and
the neuronal dysfunction and behavioral changes in tauopathy animals coincide with the
occurrence of NFTs [198]. A precise study by Santacruz et al. demonstrates that tau toxicity
is independent of the accumulation of NFTs, which is revealed by expressing a repressible
human tau variant in mice. The suppression of tau expression significantly attenuates tau
toxicity in mice, while the formation of NFTs continues [199]. The assessment of the toxicity
of different tau species in vivo is challenging since monomeric and oligomeric tau species
also serve as precursors of NFTs. Thereby, animals with NFTs exhibit the coexistence of
monomeric and oligomeric tau species, implicating that the toxic effects associated with
NFTs may also be caused by the intermediate oligomeric tau and the hyperphosphorylated
monomeric tau.

It is noteworthy that tau toxicity extends beyond synapses, MTs, and axons as men-
tioned [192]. In addition, tau can interfere with various biological processes, and induce
genomic instability, neuroinflammation, metabolic disorders, and membrane remodel-
ing [192]. Neuroinflammation has been suggested as an important consequence of patho-
logical tau accumulation in various neurodegenerative diseases, such as FTD, Pick’s disease,
and PSP, which can result in synaptic clearance and neuronal damage [200–203]. Addi-
tional evidence from mouse models has demonstrated that tau possesses the capacity to
elicit hyperactivated inflammation, encompassing the excessive activation of microglia and
T-cells [204,205]. Interestingly, the inhibition of microglial and T-cell activation has been
shown to effectively block tau pathology [205], thereby suggesting a significant contribution
of inflammatory responses in tau pathology.

A new perspective regarding tau toxicity is that it has the potential to disrupt cellular
metabolism [206,207]. Tau deposition is correlated with impaired metabolisms of glucose,
norepinephrine, and purine [208,209], reduced glucose utilization and oxidative phosphoryla-
tion activity [209,210], as well as the interference of the arginine, ornithine, and methionine
metabolisms [211]. Although the metabolic decline in AD can be attributed to the synergis-
tic effect of Aβ and tau [207], it is plausible that tau itself exerts a significant influence on
inducing metabolic disturbances. The expression of only the tauP301L mutant in a trans-
genic mouse model can eventually result in metabolic disturbance [212,213], including the
impaired metabolism of glucose and glutamate, which is attributed to the reduced expression
of metabolic enzymes [214]. Additionally, it has been demonstrated that induced neurons
(iNs) derived from Alzheimer’s fibroblasts undergo a metabolic switch to facilitate aerobic
glycolysis as a result of a pathological isoform transition of pyruvate kinase M [215]. Fur-
thermore, tau can disrupt energy biogenesis by interfering with the activity of mitochondrial
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complex-I [214]. The interaction between tau and mitochondrial proteins like NDUFS5, 6,
NDUFA8, etc., can also impact the mitochondrial proteomes [216]. However, the diverse
metabolic perturbing effects of tau, the link between metabolic disturbance and tau toxicity,
and the underlying mechanisms remain poorly understood.

14. Discussion

The properties and structures of tau have been shown to be diverse in various tauopa-
thy diseases, which highlights the complexity of tau polymerization. The mechanism by
which tau adopts the aggregation process in vivo remains incompletely understood despite
the initial electrical change and subsequent gradual conformation shift model that have
been demonstrated. The diversity of tau aggregation courses may hinder the efficacy of tar-
geted compounds and antibodies, necessitating careful consideration in future therapeutic
approaches for tauopathies.

To propagate its pathology, tau undergoes a series of transmission events involving
the release of transmissible seeds and subsequent internalization by recipient cells. It is
noteworthy that the modulation of the tau transmission process, such as perturbing HSPGs
and endocytosis, has the potential to slow down tau propagation in animal models, thereby
offering a promising avenue for endeavors aimed at attenuating the progression of tau
pathology in vivo.

Importantly, the multifaceted downstream consequences of tau dysfunction and ag-
gregation necessitate a comprehensive approach, and targeting a single consequence may
yield limited efficacy. It is worth noting that prioritizing the upstream driving forces and
the tau protein itself holds greater potential for mitigating tau toxicity.
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96. Zubčić, K.; Hof, P.R.; Šimić, G.; Jazvinšćak Jembrek, M. The Role of Copper in Tau-Related Pathology in Alzheimer’s Disease.

Front. Mol. Neurosci. 2020, 13, 572308. [CrossRef] [PubMed]
97. Squitti, R.; Quattrocchi, C.C.; Salustri, C.; Rossini, P.M. Ceruloplasmin fragmentation is implicated in ‘free’ copper deregulation of

Alzheimer’s disease. Prion 2008, 2, 23–27. [CrossRef]
98. Ma, Q.F.; Li, Y.M.; Du, J.T.; Kanazawa, K.; Nemoto, T.; Nakanishi, H.; Zhao, Y.F. Binding of copper (II) ion to an Alzheimer’s tau

peptide as revealed by MALDI-TOF MS, CD, and NMR. Biopolymers 2005, 79, 74–85. [CrossRef]
99. Sadqi, M.; Hernández, F.; Pan, U.; Pérez, M.; Schaeberle, M.D.; Avila, J.; Muñoz, V. Alpha-helix structure in Alzheimer’s disease

aggregates of tau-protein. Biochemistry 2002, 41, 7150–7155. [CrossRef]

https://doi.org/10.3389/fmolb.2021.801577
https://www.ncbi.nlm.nih.gov/pubmed/34966788
https://doi.org/10.1038/srep44102
https://doi.org/10.1038/s41598-021-96627-7
https://www.ncbi.nlm.nih.gov/pubmed/34426645
https://doi.org/10.1016/j.molcel.2008.07.002
https://www.ncbi.nlm.nih.gov/pubmed/18722172
https://doi.org/10.3389/fneur.2021.786353
https://doi.org/10.1002/anie.201916756
https://doi.org/10.1016/j.jmb.2019.08.021
https://doi.org/10.1093/hmg/ddm320
https://doi.org/10.1016/j.cell.2021.11.029
https://www.ncbi.nlm.nih.gov/pubmed/34890553
https://doi.org/10.1523/JNEUROSCI.0746-06.2006
https://www.ncbi.nlm.nih.gov/pubmed/16807328
https://doi.org/10.1093/hmg/ddh083
https://www.ncbi.nlm.nih.gov/pubmed/14962978
https://doi.org/10.1016/j.jbc.2022.101766
https://www.ncbi.nlm.nih.gov/pubmed/35202653
https://doi.org/10.3233/JAD-190604
https://www.ncbi.nlm.nih.gov/pubmed/31450505
https://doi.org/10.1042/BJ20140372
https://doi.org/10.1016/j.mcn.2022.103707
https://doi.org/10.1038/nn.4067
https://doi.org/10.3389/fmolb.2017.00056
https://doi.org/10.1007/s00401-011-0893-0
https://doi.org/10.3389/fphar.2022.903099
https://www.ncbi.nlm.nih.gov/pubmed/36105221
https://doi.org/10.1186/s40035-020-00189-z
https://doi.org/10.3390/ijms19010128
https://doi.org/10.1016/j.ijbiomac.2022.04.058
https://doi.org/10.1016/j.celrep.2014.06.047
https://www.ncbi.nlm.nih.gov/pubmed/25066125
https://doi.org/10.3389/fnmol.2020.572308
https://www.ncbi.nlm.nih.gov/pubmed/33071757
https://doi.org/10.4161/pri.2.1.6297
https://doi.org/10.1002/bip.20335
https://doi.org/10.1021/bi025777e


Int. J. Mol. Sci. 2023, 24, 15023 21 of 26

100. Mo, Z.Y.; Zhu, Y.Z.; Zhu, H.L.; Fan, J.B.; Chen, J.; Liang, Y. Low micromolar zinc accelerates the fibrillization of human tau via
bridging of Cys-291 and Cys-322. J. Biol. Chem. 2009, 284, 34648–34657. [CrossRef]

101. Roman, A.Y.; Devred, F.; Byrne, D.; La Rocca, R.; Ninkina, N.N.; Peyrot, V.; Tsvetkov, P.O. Zinc Induces Temperature-Dependent
Reversible Self-Assembly of Tau. J. Mol. Biol. 2019, 431, 687–695. [CrossRef] [PubMed]

102. Ahmadi, S.; Ebralidze, I.I.; She, Z.; Kraatz, H.-B. Electrochemical studies of tau protein-iron interactions—Potential implications
for Alzheimer’s Disease. Electrochim. Acta 2017, 100, 384–393. [CrossRef]

103. Rametti, A.; Esclaire, F.; Yardin, C.; Cogné, N.; Terro, F. Lithium down-regulates tau in cultured cortical neurons: A possible
mechanism of neuroprotection. Neurosci. Lett. 2008, 434, 93–98. [CrossRef] [PubMed]

104. Hong, M.; Chen, D.C.; Klein, P.S.; Lee, V.M. Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3.
J. Biol. Chem. 1997, 272, 25326–25332. [CrossRef] [PubMed]

105. De-Paula, V.J.; Forlenza, O.V. Lithium modulates multiple tau kinases with distinct effects in cortical and hippocampal neurons
according to concentration ranges. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2022, 395, 105–113. [CrossRef]

106. Brown, K.M.; Tracy, D.K. Lithium: The pharmacodynamic actions of the amazing ion. Ther. Adv. Psychopharmacol. 2013, 3, 163–176.
[CrossRef]

107. Lenox, R.H.; Hahn, C.G. Overview of the mechanism of action of lithium in the brain: Fifty-year update. J. Clin. Psychiatry 2000,
61 (Suppl. 9), 5–15.

108. Wegmann, S.; Eftekharzadeh, B.; Tepper, K.; Zoltowska, K.M.; Bennett, R.E.; Dujardin, S.; Laskowski, P.R.; MacKenzie, D.; Kamath,
T.; Commins, C.; et al. Tau protein liquid-liquid phase separation can initiate tau aggregation. Embo J. 2018, 37, e98049. [CrossRef]

109. Rai, S.K.; Savastano, A.; Singh, P.; Mukhopadhyay, S.; Zweckstetter, M. Liquid-liquid phase separation of tau: From molecular
biophysics to physiology and disease. Protein Sci. 2021, 30, 1294–1314. [CrossRef]

110. Rane, J.S.; Kumari, A.; Panda, D. The Acetyl Mimicking Mutation, K274Q in Tau, Enhances the Metal Binding Affinity of Tau and
Reduces the Ability of Tau to Protect DNA. ACS Chem. Neurosci. 2020, 11, 291–303. [CrossRef]

111. Kanaan, N.M.; Hamel, C.; Grabinski, T.; Combs, B. Liquid-liquid phase separation induces pathogenic tau conformations in vitro.
Nat. Commun. 2020, 11, 2809. [CrossRef] [PubMed]

112. Wen, J.; Hong, L.; Krainer, G.; Yao, Q.Q.; Knowles, T.P.J.; Wu, S.; Perrett, S. Conformational Expansion of Tau in Condensates
Promotes Irreversible Aggregation. J. Am. Chem. Soc. 2021, 143, 13056–13064. [CrossRef] [PubMed]

113. Lester, E.; Ooi, F.K.; Bakkar, N.; Ayers, J.; Woerman, A.L.; Wheeler, J.; Bowser, R.; Carlson, G.A.; Prusiner, S.B.; Parker, R. Tau
aggregates are RNA-protein assemblies that mislocalize multiple nuclear speckle components. Neuron 2021, 109, 1675–1691.
[CrossRef] [PubMed]

114. McMillan, P.J.; Benbow, S.J.; Uhrich, R.; Saxton, A.; Baum, M.; Strovas, T.; Wheeler, J.M.; Baker, J.; Liachko, N.F.; Keene, C.D.; et al.
Tau-RNA complexes inhibit microtubule polymerization and drive disease-relevant conformation change. Brain 2023, 146,
3206–3220. [CrossRef] [PubMed]

115. Lee, G.; Cowan, N.; Kirschner, M. The primary structure and heterogeneity of tau protein from mouse brain. Science 1988, 239,
285–288. [CrossRef]

116. Kampers, T.; Friedhoff, P.; Biernat, J.; Mandelkow, E.M.; Mandelkow, E. RNA stimulates aggregation of microtubule-associated
protein tau into Alzheimer-like paired helical filaments. FEBS Lett. 1996, 399, 344–349. [CrossRef]

117. Ambadipudi, S.; Biernat, J.; Riedel, D.; Mandelkow, E.; Zweckstetter, M. Liquid-liquid phase separation of the microtubule-binding
repeats of the Alzheimer-related protein Tau. Nat. Commun. 2017, 8, 275. [CrossRef]

118. Abskharon, R.; Sawaya, M.R.; Boyer, D.R.; Cao, Q.; Nguyen, B.A.; Cascio, D.; Eisenberg, D.S. Cryo-EM structure of RNA-induced tau
fibrils reveals a small C-terminal core that may nucleate fibril formation. Proc. Natl. Acad. Sci. USA 2022, 119, e2119952119. [CrossRef]

119. Zwierzchowski-Zarate, A.N.; Mendoza-Oliva, A.; Kashmer, O.M.; Collazo-Lopez, J.E.; White, C.L., 3rd; Diamond, M.I. RNA
induces unique tau strains and stabilizes Alzheimer’s disease seeds. J. Biol. Chem. 2022, 298, 102132. [CrossRef]
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