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Abstract: This comprehensive review thoroughly explores the intricate involvement of insulin
receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and
insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands,
receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as
carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights
their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands.
Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and
resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression
and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs,
contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors
could present a more effective strategy for surmounting chemoresistance. To conclude, this review
brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and
therapy resistance. By precisely modulating these receptors and their complex signaling pathways,
the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to
improved patient outcomes.

Keywords: insulin receptor isoforms; insulin growth factor-like receptors; chemoresistance; insulin
signal transduction; IGF signal transduction

1. Introduction

Cancer is a major cause of mortality worldwide accounting for the death of nearly
10 million cases and 19.3 million new cases in 2020, showing an increase of 15% and 10.3%
compared to 2015, respectively [1]. The formidable challenge of chemoresistance further
complicates cancer treatment, leading to relapses and metastases and accounting for a stag-
gering 90% of cancer-related fatalities [2–4]. Insulin receptors (IRs) and insulin-like growth
factor receptors (IGFRs) have been reportedly linked to carcinogenesis and chemoresistance.
While IRs serve as key mediators of insulin and its intercellular pathways, influencing
cellular metabolism and mitosis, IGFRs play vital roles in cellular proliferation and sur-
vival. This comprehensive review investigates the formation, structure, and regulation
of IR isoforms and IGFRs in the human body, exploring their activation and downstream
signaling pathways and examining their significant involvement in both carcinogenesis
and chemoresistance.
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2. IRand IGFR Genes and Structures
2.1. IR
2.1.1. INSR Gene and IR Isoform Formation

The human IR is encoded by the INSR gene, which comprises 22 exons spanning
120 kb and is located on chromosome 19p13.2. The first 11 exons encode the alpha subunit,
while the remaining 11 exons encode the beta subunit of the receptor. INSR cDNA cloning
was first reported in 1985 [5,6], and the predicted transcripts showed different lengths due
to the alternative splicing of exon 11, which spans 36 bp. As a result, two IR isoforms are
produced: IR-A (1370 amino acids) and IR-B (1382 amino acids) [7]. Notably, the 12-amino
acid sequence (residues 745–756) derived from exon 11 is present in the IR-B isoform but
absent in the IR-A isoform [8,9].

Regulation of IR expression involves various factors at the transcriptional and mRNA
levels [10] (Figure 1). Several factors upregulate IR expression at the promoter level,
such as the hepatocyte-specific transcription factor of the IR gene [11], IR nuclear factor I
and II [12,13], and the transcription factor high-mobility group protein A1 (HMGA1) [14].
Conversely, p53 downregulates its expression [15]. MicroRNAs (miRNAs) also play a
role in post-transcriptional regulation [16], with liver-specific miRNAs (miRNA-15b [17],
miR-195 [18], miR-497 [19], and miR-103/107 [20] suppressing IR expression by targeting
its 3′untranslated region (UTR). Additionally, let-7 miRNA family members, which are
tumor suppressors, suppress IR expression [21].

The modulation of alternative splicing critically governs the expression of distinct IR
isoforms. Within the breakpoint sequence of intron 10 and in exons 10, 11, and 12, essential
regulatory elements have been identified, coordinating the splicing process. Notably, CUG-
binding protein1 (CUGBP1) was the first known splicing regulator of exon 11 to promote IR-
A isoform by binding two silencer sequences, one upstream of exon 11 at the 3′end of intron
10 and another in the middle of exon 11 [22]. Heterogeneous nuclear ribonucleoprotein
family proteins (hnRNPs) have also emerged as significant splicing regulators involved in IR
pre-mRNA splicing and mRNA export, stability, and translation [23]. Specifically, hnRNPF
and hnRNPA1 exhibit antagonistic roles by binding to GA-rich intronic and exonic splicing
regulatory elements, influencing the alternative splicing of exon 11. hnRNPF promotes IR-B
expression by binding to both ends of intron 10, facilitating the inclusion of exon 11. On the
other hand, hnRNPA1 enhances IR-A expression by binding to intron 10 and the 5′ splice
site of intron 11, resulting in the exclusion of exon 11 [24]. Moreover, Muscleblind-like 1
(MBNL1), belonging to the muscleblind-like (MBNL) proteins, positively regulates the
expression of the IR-B isoform. MBNL1 recognizes an intronic enhancer element within
intron 11, thus promoting IR-B isoform expression [22] and counteracting the effects of
CUGBP1 and hnRNPH [25].

Serine–arginine-rich (SR) proteins play a crucial role in the alternative splicing of
mRNA by binding to exonic and intronic sites and interacting with small nuclear ribonu-
cleoproteins [26]. Specifically, the splicing factors SRp20 and SF2/ASF exert their influence
by promoting the formation of IR-B through their binding to the enhancer sequence at
the 5′ end of exon 11, while concurrently antagonizing the actions of CUGBP1 [22]. Ad-
ditionally, the RNA binding motif4 (RBM4) protein has been identified as a promoter of
exon 11 inclusion, favoring IR-B expression by binding to GC-rich motifs [27]. Further-
more, Malakar et al. demonstrated the regulatory role of the Ras-MEK1-ERK pathway in
this alternative splicing event, suggesting its potential impact on exon 11 inclusion and
consequently influencing IR-B isoform levels [28].
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Figure 1. The formation of IR isoforms: (1) Gene expression: INSR gene encoding IR is transcribed 
from DNA in the nucleus. (2) Pre-mRNA splicing involving introns’ removal and exclusion/inclu-
sion of E11 to form mature mRNA molecules that encode either IR-A or IR-B isoforms; this process 
is regulated by specific splicing factors that bind to cis-acting elements in the pre-mRNA. (3) mRNA 
export from the nucleus to the cytoplasm through nuclear pores to serve as templates for protein 
synthesis. (4) mRNA Translation for IR synthesis. (5) Post-translational modifications (PTMs) in the 
endoplasmic reticulum and Golgi apparatus, including glycosylation, disulfide bond formation, and 
proteolytic cleavage. (6) Protein trafficking and secretion: mature IR isoforms are transported from 
the ER to the plasma membrane, where they are inserted and anchored by transmembrane domains. 
This process occurs through vesicular transport and fusion with the plasma membrane. Once in-
serted into the plasma membrane, IR isoforms are available for ligand binding and downstream 
signaling. 

2.1.2. IR Structure 
The IR is a transmembrane receptor with a molecular weight of (156 kDa), represent-

ing a classical example of the tyrosine kinase family [29]. It spans the cell’s plasma and 
was first characterized in 1971 when the specific binding of 125I-labeled insulin to the 
plasma membrane of adipose tissue and liver cells was detected [30]. Over the years, var-
ious methods have been employed to elucidate its structure, including insulin-agarose 

Figure 1. The formation of IR isoforms: (1) Gene expression: INSR gene encoding IR is transcribed
from DNA in the nucleus. (2) Pre-mRNA splicing involving introns’ removal and exclusion/inclusion
of E11 to form mature mRNA molecules that encode either IR-A or IR-B isoforms; this process is
regulated by specific splicing factors that bind to cis-acting elements in the pre-mRNA. (3) mRNA
export from the nucleus to the cytoplasm through nuclear pores to serve as templates for protein
synthesis. (4) mRNA Translation for IR synthesis. (5) Post-translational modifications (PTMs) in the
endoplasmic reticulum and Golgi apparatus, including glycosylation, disulfide bond formation, and
proteolytic cleavage. (6) Protein trafficking and secretion: mature IR isoforms are transported from
the ER to the plasma membrane, where they are inserted and anchored by transmembrane domains.
This process occurs through vesicular transport and fusion with the plasma membrane. Once inserted
into the plasma membrane, IR isoforms are available for ligand binding and downstream signaling.

2.1.2. IR Structure

The IR is a transmembrane receptor with a molecular weight of (156 kDa), representing
a classical example of the tyrosine kinase family [29]. It spans the cell’s plasma and was
first characterized in 1971 when the specific binding of 125I-labeled insulin to the plasma
membrane of adipose tissue and liver cells was detected [30]. Over the years, various
methods have been employed to elucidate its structure, including insulin-agarose affinity
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chromatography [31], photoreactive insulin derivatives [32], and the use of bifunctional
cross-linking agents such as disuccinimidyl suberate [33], with subsequent analysis per-
formed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
In 2006, the first 3D structures of the human IR ectodomain were reported [34,35]. The
INSR-encoded IR chain is cleaved by the enzyme furin, generating α subunits (135 kDa) and
β subunits (95 kDa) (Figure 2). Following dimerization with another α- β pair, the subunits
undergo proteolytic cleavage, and the two dimers become covalently linked by disulfide
bonds, forming a 450 kDa protein, disregarding post-translational glycosylation [29,36].
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Figure 2. Structure of IR receptors. (A) Illustration showing different IR domains encoded by the 22 
exons. IR has two main subunits: α and β. The α subunit contains 5 main domains, L1 (AA 28–174) 
CR (AA 182–339), and L2 (AA 340–497), and 2 Fibronectin subunits: FnIII-1 (residue 624–726) and 
FnIII-2 (757–842). The two α-subunits are linked by a disulfide bond between the two Cys 524 in the 
first FnIII domain. One to three of the triplet Cys at 682, 683, and 685 in the insert within the second 
FnIII domain are also involved in α-α disulfide bridges. There is a single disulfide bridge between 
α and β subunits between Cys 647 in the insert domain and Cys 872. The β subunit details are ex-
plained in the main text. Teal arrow shows 6 O-glycosylations, whereas the pink arrows imply the 
N-glycosylation. (B) IR-B amino acid sequence colored to identify each domain sequence presented 
in (A). (C) 3D structure of IR-B showing the Λ-shaped structure when no ligand is bound to it. (D) 
Structural differences between IR-A and IR-B. JM: Juxtamembrane, TK: Tyrosine Kinase. The 3D 
models were created using Swiss Model. 

2.1.3. Characteristics of IR Isoforms 
As indicated above, there exist two isoforms of IRs: IR-B and IR-A. These isoforms 

are distinguished by the inclusion or exclusion of exon 11, resulting in length differences 
between the two isoforms. Additionally, these two transcript variants vary in their affinity 
for ligand binding, their distribution throughout the body, and their functions (Table 1). 
IR-A exhibits higher binding affinity for insulin binding [45,46]. However, it has a signifi-
cantly stronger affinity for IGFs, particularly for IGF-II, compared to IR-B [47]. Moreover, 
IR-A has a greater internalization and recycling rate [48].  

Figure 2. Structure of IR receptors. (A) Illustration showing different IR domains encoded by the
22 exons. IR has two main subunits: α and β. The α subunit contains 5 main domains, L1 (AA 28–174)
CR (AA 182–339), and L2 (AA 340–497), and 2 Fibronectin subunits: FnIII-1 (residue 624–726) and
FnIII-2 (757–842). The two α-subunits are linked by a disulfide bond between the two Cys 524 in the
first FnIII domain. One to three of the triplet Cys at 682, 683, and 685 in the insert within the second
FnIII domain are also involved in α-α disulfide bridges. There is a single disulfide bridge between
α and β subunits between Cys 647 in the insert domain and Cys 872. The β subunit details are
explained in the main text. Teal arrow shows 6 O-glycosylations, whereas the pink arrows imply the
N-glycosylation. (B) IR-B amino acid sequence colored to identify each domain sequence presented
in (A). (C) 3D structure of IR-B showing the Λ-shaped structure when no ligand is bound to it.
(D) Structural differences between IR-A and IR-B. JM: Juxtamembrane, TK: Tyrosine Kinase. The 3D
models were created using Swiss Model.
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The α subunit of IR comprises the N-terminal portion of the extracellular domain,
characterized by rich leucine repeat L1 and L2 separated by a highly marked cysteine
region (CR). It also includes one of the fibronectin type III domains (FnIII-1) and two amino
acids (FnIII-2). Ligands can bind to the IR receptor either at the cysteine-rich domain in
the extracellular region or at the 16-aminoacid residue CT peptide [37,38]. In contrast,
the β subunit contains a C-terminal ectodomain (residues 763–956), a transmembrane
helix domain (residues 957–979), and a cytoplasmic domain consisting of juxtamembrane
segment and intercellular tyrosine kinases, consecutively (residues 980–1382) [39,40]. The
rest of the FnIII-2 is located together with (FnIII-3) on the β subunit. Notably, a relatively
disordered insert domain (ID) containing the α/β furin cleavage site is located within
the canonical CC′ loop of FnIII-2. A peptide segment from the C-terminal region of the
ID α-chain component (IDα) is known as αCT. The length of the αCT segment varies
in the IR-A and IR-B, depending on whether exon 11 is included or excluded in the IR.
Of significance, the α subunit, along with 149 residues of the β subunit, constitutes the
ectodomain of the IR receptor, displayed as Λ-shaped structure. In the ligand-unbound
state, the “Λ” conformation of IR is formed by the L1-CR-L2 module of one monomer
packing against the FnIII-1, -2, and -3 modules of the alternate monomer (Figure 2C) [39].
There are two distinct classes of disulfide bonds (S-S) in the IR structure. Class I disulfide
bonds link the α-subunits within the homodimer, while class II disulfide bonds form
between the α and β monomers. Intermonomer disulfide bonds occur between the FnIII-
1 domains and between the segments of the insert domain α chain component (IDα).
Additionally, within each monomer, a disulfide bond links IDα to the FnIII-3 domain,
which is part of the β-chain. The IR exhibits an extensive glycosylation pattern, with
nineteen N-glycans and six O-glycans distributed across the α-subunit and the extracellular
part of the β-subunit. This glycosylation plays a crucial role in protein folding, processing,
and membrane translocation, facilitating the proper functioning of the receptor [41,42].
Apart from its pivotal role in maintaining glucose homeostasis, the IR can also stimulate cell
growth through its cytoplasmic carboxy-terminal domain within the intracellular β-subunit.
This domain moderates the mitogenic actions of the receptor, contributing to its diverse
cellular functions [43,44].

2.1.3. Characteristics of IR Isoforms

As indicated above, there exist two isoforms of IRs: IR-B and IR-A. These isoforms
are distinguished by the inclusion or exclusion of exon 11, resulting in length differences
between the two isoforms. Additionally, these two transcript variants vary in their affinity
for ligand binding, their distribution throughout the body, and their functions (Table 1). IR-
A exhibits higher binding affinity for insulin binding [45,46]. However, it has a significantly
stronger affinity for IGFs, particularly for IGF-II, compared to IR-B [47]. Moreover, IR-A
has a greater internalization and recycling rate [48].

Table 1. Differences between the IRs, IGF-1R, and HR receptors.

Characteristics IR-A IR-B IGF-1R IR-A/IGF-1R IR-B/IGFR IGF-2R

Ligand-binding affinity
Pro-insulin 4.5 ± 0.6 [49] 31.0 ± 6.3 [49] >100 [49] _ _

Insulin 0.4 [50] − 2.7 [51] 0.49 [50] − 2.6 [51] >30 [52] − >1000 [50] 1.1 [53] − 342 [54] 1.1 [53] − 325 [54]
IGF-I >30 [52] >30 [52] 0.2 [52] − 1.49 [55] 0.01 [53] − 6 [54] 0.01 [53] − 12 [54]
IGF-II 3.3 [47] − 15 [56] 36.0 ± 3.8 [47] 0.6 [52] − 13 [10] 0.18 [53] − 0.7 [57] 0.19 − 15 [53] 1.87 [58]

Distinctive structure Absence of 12 AA Presence of 12 AA
encoded by Exon 11 Formed by 21 exons _ _ Lacks tyrosine

kinase
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Table 1. Cont.

Characteristics IR-A IR-B IGF-1R IR-A/IGF-1R IR-B/IGFR IGF-2R

Function Embryogenesis and
fetal development

Regulates glucose
production and
renal function of

glomeruli and
tubules. Because of
its higher tyrosine

kinase activity
(2-folds), it is more

involved in
metabolic

signaling [28]

Mediates
apoptosis-inhibiting

signals, and enhances
cell metabolism and
protein synthesis as

well as tumor
transformation and

malignant
cell survival

IGF-II
scavenging, as

well as regulating
and trafficking

lysosomal
enzymes from the
Golgi apparatus

to lysosomes

Distribution in cells

More in brain cells,
cancer cells, human

placenta,
osteoblasts

precursor, spleen
cells, and

skeletal muscle

More in liver cells,
mature osteoblasts,
epididymal adipose
tissue, kidney cells,

and thyroid

Ubiquitous so it can
be found in the kidney,

ovary, and prostate

Ubiquitous and
thus can be found

in the liver,
kidney, lung,

adipose tissues,
skeletal muscle,

and placenta

IRs primarily exist in target organs like the liver, adipose tissue, and skeletal muscle
since insulin serves as their major ligand. IRs are also present in various other tissues,
including the brain, heart, kidney, pulmonary alveoli, pancreatic acini, placenta vascular
endothelium, monocytes, granulocytes, erythrocytes, and fibroblasts [59]. When examining
the distribution of IR isoforms, it becomes apparent that it varies across different tissues.
For instance, IR-A is predominantly expressed in fetal tissues, the brain, ovaries, testes,
and the spleen, whereas IR-B expression is most abundant in the liver as well as pancreatic
beta cells and muscle, adipose tissue, and kidney cells [8,60,61]. However, some tissues do
express both isoforms in relatively equal proportions, such as in pancreatic islets [62] and
skeletal muscle [8]. Importantly, the distribution of IR isoforms is not only specific to certain
tissues but also varies within different cell types. For example, in the liver, hepatocytes
predominantly express IR-B (approximately 90%), whereas endothelial cells in the liver
mainly express IR-A [63,64]. Similarly, while IR-A is the primary isoform expressed in the
brain, IR-B expression is more prominent in human astrocytes [65].

The aforementioned differences lead to a preference for IR-B in metabolic and differen-
tiating signaling pathways. IR-B serves as the primary regulator of glucose homeostasis,
initiating stronger kinase activation and playing a crucial role in metabolic effects [46,66].
On the other hand, IR-A predominantly promotes cell growth, proliferation, and survival,
particularly contributing to cellular growth during fetal development. Furthermore, IR-A
receptors demonstrate greater efficiency in mediating receptor endocytosis and insulin
degradation. Notably, in hepatocytes, IR-A is more effective than IR-B in increasing glyco-
gen synthesis, glycogen synthase activity, and glycogen storage [67]. The biological effects
of ligand binding are also remarkably influenced by the isoform involved. For instance,
in 32D cells, IGF-II binding to IR-A induced mitogenic and antiapoptotic signals while
binding to IR-B stimulated differentiation signals [68]. In mouse fibroblasts lacking IGF-1R
and transfected with the IR-A, insulin binding leads to metabolic effects, while IGF-II
triggers mitogenic effects [69].

2.2. IGFR
2.2.1. Type 1 Insulin-Like Growth Factor Receptor (IGF-1R)

The IGF-1R gene located on chromosome 15q26.3 encodes both the α and β subunits of
the IGF-1R. After the translation of IGF-1R mRNA, the pro-IGF-1R protein product (210 kDa)
undergoes endoproteolytic cleavage by the pro-protein convertases such as furin and pro-
protein convertase 5. This cleavage results in the generation of the α chain (706 amino
acids) and β chain (627 amino acids) [70]. The mature IGF-1R forms a heterotetramer
consisting of two α chains and two β chains [71]. Notably, both IGF-1R (154 KDa) and IR
share structural similarities as heterodimeric tyrosine kinase receptors, each composed of
two α-subunits and two β-subunits [72,73].
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The α chain of the IGF-1R receptor contains a fused Fibronectin III domain, including
FnIII1 (491–609) and FnIII2 (610–708), and the first two amino acids of FnIII3 (735–828). On
the other hand, the β chain begins with the rest of FnIII3, followed by FnIII4 (834–927) and
a long protein kinase region (999–1274). Similar to the IR β subunit, the IGF-1R β chain
consists of an extracellular domain (741–935), a transmembrane helical domain (936–959),
and an intercellular cytoplasmic domain (960–1367). Comparably, IGF-1R receptors are
homologous to IRs by 45–65% in the ligand-binding domains and by 65–85% in the tyrosine
kinase and substrate recruitment domains [72,74].

Upon insulin binding to its receptor IR, the receptor becomes activated and plays a
crucial role in modulating glucose homeostasis, glycogen synthesis, protein synthesis, and
lipogenesis, among other processes [75]. Similarly, IGF-1R gets activated by its special
ligands IGF-1 (195 amino acids) and IGF-2 (180 amino acids), primarily produced by the
liver and to a lesser extent by extrahepatic sites. Ligand binding induces a conformational
change in the receptor, transmitting a signal that plays a significant role in normal human
growth [76] (Table 1).

2.2.2. Type 2 Insulin-Like Growth Factor Receptor (IGF-2R)

In contrast to IR and IGF-1R, IGF-2R (2491 AA ≈ 250 kDa) is a mannose 6-phosphate
(MP6) receptor that lacks tyrosine activity. IGF-2R can be divided into three regions: a large
extracellular region (2304 amino acids) facing the lumen, known as the lumenal region,
a helical region (23 amino acids), and a cytoplasmic region. The lumenal region comprises
a 40-residue amino acid signal sequence and 15 homologous repeat domains, each ranging
between 124 and 192 amino acids [77].

IGF-2R is a multifunction transmembrane glycoprotein that binds both IGF-2 and
MP6-marked lysosomal enzymes at various domains [78–80] (Table 1). Upon binding,
IGF-2R mediates several processes, including the transportation of newly synthesized lyso-
somal enzymes from trans-Golgi to the endosome [79], suppression of IGF-2 proliferative
actions [81], and cleavage of growth factors, yielding an effective growth inhibitory role for
almost all cell types [82]. Indeed, IGF-2R is responsible for transporting IGF-2 to the cell
for degradation, thereby regulating its circulating and tissue amount [77]. The receptor is
expressed widely in fetal and neonatal tissues, contributing to the regulation of cell growth.
However, its expression decreases after childbirth [83]. Importantly, IGF-2R expression
can be observed in adipocytes originating from both subcutaneous and visceral adipose
tissues [84].

In addition, IGF-2R effectively clears apoptotic cells, thus maintaining the stability of
tissue environments [85], and activates transforming growth factor beta (TGFβ) [86], which
is involved in immune regulation, extracellular matrix synthesis, as well as the proliferation,
differentiation, and development regulation of various types of cells [87]. Hence, there is a
prevailing notion that IGF-2R plays a role in suppressing tumors, and any changes in its
expression, as elaborated in the subsequent section, could contribute to carcinogenesis.

2.3. Hybrid Receptor (HR)

In many cells, both isoforms of the IR are co-expressed, enabling them to form ho-
modimers, resulting in IR-A and IR-B, or heterodimers, giving rise to IR-A/IR-B hybrid
receptors [10]. These hybrid receptors are formed randomly within the cells [57,88]. Simi-
larly, when IR and IGF-1R are co-expressed, IR isoforms can heterodimerize with the IGF-1R
receptor where the hemi-receptor of α- and β-IR subunits combine with the α- and β-IGF-
1R hemi-receptor subunits [57]. Because of the existence of two IR isoforms, the formed
IR/IGF-1R hybrids can be either IR-A/IGF-1R or IR-B/IGF-1R. This heterodimerization
occurs efficiently as homodimerization due to the homology between the two receptors.
Consequently, the proportion of hybrid receptors depends on the mole fraction of each
individual receptor [89]. Therefore, the less abundant receptors (IR or IGFR) in any cell
type are commonly found in hybrids rather than in classical homodimers.
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The IR/IGF-1R hybrid receptor possesses two ligand-binding sites: the first comprises
the L1 domain of the IR and the α CT segment of the IGF-1R, while the second involves
the L1 domain of the IGF-1R and the α CT segment of the IR [90]. Remarkably, the hybrid
receptor binds IGF-2 with similar affinity to IGF-2 receptors, whereas the affinity of the
hybrid receptor to insulin is lower than the IRs [91,92]. When comparing IR-A/IGF-1R
hybrids to IR-B/IGFR hybrids, the former exhibits significantly higher ligand affinity [52].
However, the specific details concerning the signaling pathways and the role of hybrid
receptors in carcinogenesis extend beyond the scope of this review.

3. Receptor Activation and Signaling Pathway

As previously mentioned, IR and IGF-1R exhibit a significant level of similarity in
their molecular structure. Upon binding with their respective ligands, these receptors acti-
vate common intracellular mediators that play crucial roles in regulating cell metabolism,
proliferation, and survival [93–95]. Typically, IRs primarily mediate anabolic effects, while
IGF-1R predominantly modulates antiapoptotic, mitogenic, and transforming effects. How-
ever, it is now evident that IRs also have mitogenic and transforming functions. This
segment will examine the receptor activation mechanisms, the pertinent signaling routes,
and the ensuing downstream ramifications.

3.1. Activation of Receptor Tyrosine Kinase (RTK) Superfamily

The activation of RTKs occurs when a ligand binds to their extracellular domain,
leading to the activation of their intracellular tyrosine kinase domain. Unlike most RTK
receptors, the IR superfamily, including the IR and IGF-1R, exists as a covalent disulfide-
linked dimer in the absence of a ligand. Upon ligand binding to the dimerized RTK, the
kinase domain undergoes activation through the transphosphorylation of β-subunits, re-
sulting in the specific tyrosine amino acid residue within the intracellular domain becoming
phosphorylated. The phosphorylated residues then serve as binding sites for signaling
partner proteins that possess homology 2 (SH2) domains. Subsequently, these partner
proteins get phosphorylated by the kinase, initiating an intracellular signal transduction
cascade [39,96,97].

3.1.1. Proposed IR Activation Mechanisms

When no ligand is bound to the ectodomain, the IR exists as an apo monomeric
form. Although recent research has provided detailed structures of the extracellular and
intracellular domains of the insulin and IGF-1 receptors, a complete structure of the lig-
anded and unliganded receptors remains elusive. As a result, the specific mechanism
by which extracellular ligand binding activates the intracellular kinase domain is not yet
fully understood. However, various hypotheses have been proposed in the literature
(Figure 3). One hypothesis, put forward by Ward et al. [40] suggests that ligand-induced
conformational changes lead to the descent of the kinase domains, akin to a yo-yo, from
their constrained position near the membrane, where they are partially surrounded by
the juxtamembrane region. This release allows the kinases to approach each other and
undergo transphosphorylation. The model finds partial support from the 3D structure of a
juxtamembrane-inhibited kinase domain [98]. On the other hand, Lee et al. hypothesized
that ligand binding (insulin) causes the separation of the transmembrane domains within
the receptor, which were held together in the inactive form of the receptor [99]. However, no
structural studies have yet been conducted to support this hypothesis. Another hypothesis,
proposed by Kavran et al. [100], suggests that the activation mechanism involves separation
of the transmembrane domains, enforced by the unliganded extracellular domain, which
maintains the receptor in its inactive state. When the ligand binds, it removes the inhibition
by disturbing the L1-FnIII2′-3′ interaction. According to this view, ligand binding removes
the inhibition rather than directly stimulating the activity of the phosphorylated receptor,
which contradicts the mechanism speculated by Lee et al. A more recent mechanism pro-
posed by Maruyama suggests that ligand binding to the extracellular domain stimulates a
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rotation of the transmembrane domains, followed by rearrangement and/or activation of
the intracellular domain [97]. However, further research is needed to fully elucidate the
exact activation process.
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3.1.2. Intracellular IR Signal Transduction Network

Upon ligand binding to the extracellular domain, the IR-tyrosine kinase is activated
through the triphosphorylation of its activation loop. The activated kinase then proceeds
to phosphorylate specific tyrosine residues, creating binding sites for signaling protein
partners containing SH2 or PTB (phosphotyrosine-binding) domains. Unlike other RTKs,
the IR and IGF-1R do not directly bind to signaling proteins. Instead, a family of large
docking proteins called insulin receptor substrates (IRSs) [94,101,102] and adapter proteins
like Shc, Gab1, Cbl, APS (associate protein substrate), and members of the signal regulatory
protein family [103] associate with phosphorylated tyrosine residues in the juxtamembrane
domain (Figure 3).

Six types of IRSs are identified as IRS1 through IRS-6, serving as scaffolds to organize
and mediate signaling complexes [102,104–106]. Although these IRSs have similar tyrosine
phosphorylation motifs, they exhibit distinct functions in vivo. For instance, IRS-1 is crucial
for myoblast differentiation and glucose metabolism in skeletal muscle [107,108]. IRS-1
knockout (KO) mice show growth retardation and impaired insulin action, though they
maintain normal glucose tolerance [109]. Additionally, IRS-1 KO preadipocytes show
defects in differentiation [110,111]. Conversely, IRS-2 KO mice display growth reduction
in specific tissues such as neurons and islet cells and exhibit defective insulin signaling in
the liver, potentially leading to diabetes when combined with beta cell loss [112]. IRS-2
KO preadipocytes differentiate normally but have impaired insulin-stimulated glucose
transport [110,111]. In skeletal muscles, IRS-2 is important for lipid metabolism and ERK
activation [107,108]. IRS-3 and IRS-4 have more restricted tissue distribution patterns. IRS-3
is highly abundant in various tissues in rodents, but it is a pseudogene in humans and thus
does not produce any protein [113]. IRS-4 mRNA is present in the skeletal muscle, liver,
heart, and kidney [114]. IRS-4 KO mice show minimal growth retardation and glucose
intolerance [115]. IRS-5 and IRS-6 have limited tissue expression and act as relatively poor
substrates for IR [116]. Insulin effects are primarily mediated through the interaction of IRS-
1 and IRS-2 and Shc with the IR [117–119]. IRS proteins possess an N-terminal pleckstrin
homology (PH) domain adjacent to the PTB domain, which facilitates their recruitment to
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the activated IR. The central and C-terminal parts of IRS proteins contain multiple potential
phosphorylation sites that bind to signaling proteins with SH2 domains [39].

Insulin signaling involves two main pathways. The first pathway operates through
the phosphatidylinositol 3-kinase (PI3K)/AKT (also known as the protein kinase B (PKB))
pathway, which generates the metabolic effects of insulin and is connected through IRSs.
The second pathway involves the Raf/Ras/MEK/MAPK (mitogen-activated protein kinase,
also known as extracellular signal regulated kinase (ERK)) pathway, which regulates gene
expression and, along with the PI3K pathway, controls cell growth and cell differentia-
tion [118].

3.1.3. PI3K Signaling Pathway

The regulatory subunit of PI3K has different isoforms encoded by three different genes.
Pik3r1 encodes around 65–75% of all regulatory subunits, primarily in the form of p85α,
along with the splice variants p55α and p50α. Pikr2 encodes p85β, accounting for 20% of
the regulatory subunits. Pik3r3 encodes p55γ, structurally similar to p55α but expressed at
lower levels in most tissues [116]. Activation of the PI3K pathway occurs when the p85
or p55 regulatory subunits of PI3K bind to IRS-1 and IRS-2, leading to the activation of
the p110 catalytic subunit. This activation results in the phosphorylation of phosphatidyli-
nositol 4,5-bisphosphate (PIP2) to form the lipid second messenger phosphatidylinositol
(3,4,5)-triphosphate (PIP3). The formation of PIP3 activates three isoforms of AKT/PKB
through an enzyme called phosphoinositide-dependent protein kinase 1 and 2 (PDK-1
and PDK-2). PDKs are activated by binding to inositol 1,4,5-trisphosphate (IP3) in the cell
membrane [118,120,121].

There are four important downstream substrates of AKT/PKB. The first is the mam-
malian target of rapamycin (mTOR), a serine/threonine kinase involved in regulating
protein synthesis. mTOR stimulates protein synthesis by phosphorylating eukaryotic
translation initiation factor 4E binding protein 1 (4EBP1) and p70 ribosomal protein S6
kinase (p70S6K). When mTOR phosphorylates 4EBP1, it releases eIF-4E, which allows it
to interact with eIF-4G, thereby activating cap-dependent mRNA translation [122]. The
second substrate is glycogen synthase kinase 3 (GSK3), a serine/threonine protein kinase
that regulates glycogen synthesis by inhibiting glycogen synthase. GSK3 is inhibited when
phosphorylated by AKT/PKB [123]. The third substrate is the forkhead box-containing
protein, O superfamily (FoxO), a transcription factor involved in the regulation of gluco-
neogenic and adipogenic genes. In the absence of insulin, FoxO translocates to the nucleus
and induces the expression of genes such as PEPCK (phosphoenolpyruvate carboxykinase),
a key enzyme in gluconeogenesis, and cyclin G2, an atypical cyclin that blocks the cell cycle.
Insulin inhibits FoxO1 by phosphorylating it with AKT, leading to its sequestration in the
cytoplasm. FoxO1 also plays a critical role in metabolism and longevity under the name
daf16 [124]. The fourth one is AS160, an AKT substrate of 160kDa, which is involved in
glucose transport [125].

3.1.4. The MAPK-ERK Signaling Pathway

The adaptor protein known as Grb2 (growth factor receptor-bound protein 2) binds
to IRSs and Shc, forming a complex with the SOS (son of sevenless), a guanine nu-
cleotide exchange factor that stimulates GDP/GTP exchange on the small G protein
p21 [126]. This complex triggers the activation of a cascade of serine/threonine kinases
(Raf/MEK/ERK1/ERK2). Upon activation, the serine/threonine kinase Raf phosphory-
lates the dual-specificity kinase MAPK (MEK1), which in turn phosphorylates ERK1/2.
The phosphorylated ERK1/2 dissociates from MEK1 and translocates to the nucleus, where
it phosphorylates several transcription factors. Additionally, it targets stress- and mitogen-
activated protein kinases [10,127,128]. It is noteworthy to mention that RAS activation also
activates the PI3k pathway by activating p110 independently of p85 [129].



Int. J. Mol. Sci. 2023, 24, 15006 11 of 34

3.1.5. Intracellular Domain Pathway (LYKi)

In addition to the conventional tyrosine-dependent signaling pathway, a novel intra-
cellular domain-dependent pathway, known as ligand and tyrosine kinase-independent
(LYKi), has been recently described [130]. This domain spans residues 989 and 1276 in
the β-subunit of the IR. A restricted number of mechanisms have been posited to explain
the activation of LYKi signaling: firstly, the direct effects of IR in various compartments
as it traverses the cell, and secondly, the interaction of the IR with other proteins in the
cell in a kinase-independent manner [131,132]. A further mechanism involves the direct
transcriptional control of the IR in the nucleus [133]. The precise activation of LYKi remains
to be investigated. The activation of the LYKi pathway facilitates the IR to perform essential
functions even in the absence of ligands, owing to the occurrence of multiple phosphoryla-
tion events. Nagao et al. [130] showed that this pathway is responsible for the upregulation
of genes involved in extracellular matrix (ECM) organization and cholesterol biosynthesis,
as well as the increased expression of proteins such as collagen and fibrillins. Moreover,
it downregulates several immune/interferon-related genes and proteins, including those
involved in cytokine, interferon, and JAK/STAT signaling. LYKi signals also augment the
sensitivity to apoptosis through both intrinsic and extrinsic pathways. Additionally, it
regulates the cell cycle and ATM signals and inhibits the cellular senescence phenotype, as
well as the secretion of senescence-associated secretory phenotype (SASP).

3.1.6. Activation and Signaling Pathway Differences between IR Isoforms

The signaling pathways activated by IR-A and IR-B are similar, but the relative ac-
tivation of these pathways varies depending on the ligand bound, the specific isoform
involved, and the target tissue. For example, in pancreatic β-cells, the type of IR to which
insulin binds leads to the transcription activation of different target genes. The binding of
insulin to IR-A promotes signaling through PI3K class Ia/p70s6k, resulting in insulin gene
transcription, while binding to IR-B activates PI3K class II-like activity and PKB, leading to
glucokinase gene transcription [134]. Furthermore, in neonatal hepatocytes expressing IR-B
alone, there is more caspase-8 and caspase-3 induction, leading to subsequent apoptosis,
whereas cells expressing IR-A alone stimulate the mitochondrial pathway of apoptosis.
Interestingly, in the same cells, the co-expression of IR-A and IR-B protects cells from
apoptosis [135]. In cells lacking IGF-1R but expressing IR-A, both insulin and IGF-II induce
nuclear translocation of IRS-1, while in cells lacking IGF-1R but expressing IR-B, there is no
IRS-1 nuclear translocation [136]. Moreover, the activation of a specific IR isoform results
in different downstream effects by inducing various signaling pathways, depending on
the ligand bound to it. For instance, IGF-2 promotes faster IR-B endocytosis, regulating
its mitogenic action through endosomes, while insulin stimulation leaves IR-B at the cell
membrane, enabling IR-B-dependent metabolic responses [137,138]. Although both insulin
and IGF-2 induce the ERK1/2 and Akt pathways at similar peaks upon binding IR-A, the
duration of stimulation differs. IGF-2 activation leads to a longer-lasting ERK1/2 pathway,
whereas insulin prolongs Akt activation [49]. Similarly, studies have shown that IGF-2 is
less effective than insulin in inducing the IRS/PI3K pathway but more effective in induc-
ing the ShC/ERK pathway [47,139]. Additionally, IGF-2 binding to IR-A induces higher
p70S6K:Akt and ERK1/2:Akt ratios than insulin, resulting in enhanced cell migration.
On the other hand, insulin-induced activation of the PI3K/Akt pathway has more potent
anti-apoptotic effects than IGF-2 [49,139]. In summary, while both IR-A and IR-B activate
similar signaling pathways, their tissue distribution and affinity for insulin and IGF-2 can
lead to different downstream effects in various cell types and physiological contexts.

3.1.7. Intracellular IGFR Signal Transduction Network

The binding of IGFs to the α subunit of IGF-1R induces a conformational change in the
β subunit, leading to the activation of RTK activity [140]. The β subunit contains multiple
tyrosine residues that undergo phosphorylation upon ligand binding. This phosphorylation
is facilitated by the tyrosine kinase of another β subunit within the tetrameric IGF-1R,
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a process known as autophosphorylation. Autophosphorylation further activates the
tyrosine kinase of the β subunit. When the tyrosine 950 residue of the NPXY motif in
the JM domain is phosphorylated, docking proteins like IRSs with the PTB domain can
recognize this motif and bind to the β subunit, thereby becoming phosphorylated by the
IGF-1R [141–144]. Phosphorylation of tyrosine residues, such as 1131, 1135, 1136, and
1221, activates receptor kinase, leading to cellular transformation and migration [145–149].
Additionally, phosphorylation of tyrosine 1250 and 1251 plays important roles in the
internalization and degradation of the receptor [150,151].

Upon the binding of IGF-1 or IGF-2 to IGF-1R, the receptor becomes activated. Ligand-
activated IGF-1R first binds to intracellular adaptor proteins, including Shc1 [152], Gab [153],
and Crk [154] but predominantly IRS1 [155]. These adaptor proteins are crucial for trans-
mitting downstream signals through the P13K-Akt1-mTOR pathway. When IGF-1R binds
to IRS1, the latter interacts with the p85 regulatory subunit of P13K, initiating signals to
Akt1 and mTOR. Activation of this pathway results in pleiotropic effects, including inacti-
vation of the pro-apoptotic protein BAD [156–160]. Simultaneously, IGF-1R binds to Shc,
which, in turn, interacts with the Grb2-SOS complex to activate the MAPK pathway [154].
Activation of the MAPK pathway leads to the transcription of several genes, such as Cyclin
D, which drives cellular proliferation and differentiation. Cyclin D/Cyclin-dependent
kinase 4 (CKD4) complex activation promotes E2F-dependent transcription, after liberating
the E2F transcription factor from the retinoblastoma protein (Rb), facilitating G1/S-phase
transition during cell-cycle progression [161–163]. Notably, the Akt pathway stabilizes
cyclin D by acting on cell-cycle regulatory proteins and the inhibitory phosphorylation of
glycogen synthase kinase-3 beta, p21, and p27 [164–166]. Moreover, it enhances cyclin D
function by preventing the inhibition of the mammalian target of rapamycin complex 1
(mTORC1) by tuberous sclerosis complex (TSC) proteins, leading to ribosomal biogenesis
and more efficient translation of cell-cycle progression-specific mRNAs essential for cellular
growth and proliferation [167,168]. Furthermore, IGF-1R promotes cellular motility by
activating IRS2, which, through poorly understood mechanisms involving the small G
protein RHOA, focal adhesion kinase (FAK), and Rho-kinase (ROCK), influences integrin
expression [156,157].

As for IGF-2R, it acts as a repository for IGF-2 and does not possess intracellular
signaling activity. Therefore, IGF-2R functions as a tumor suppressor gene. When IGF-2R
loses its function, IGF-2 can bind to IGF-1R and promote tumorigenesis [158] (Figure 4).
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4. Role of IR and IGFR in Carcinogenesis
4.1. Role of IR Isoforms in Carcinogenesis

The IR plays a significant role in both metabolism and oncogenic effects, particu-
larly in clinical scenarios characterized by compensatory hyperinsulinemia resulting from
metabolic pathway resistance, such as obesity and diabetes. In many malignancies, IR is
preferentially overexpressed as the IR-A isoform, as indicated in Table 2. The overexpres-
sion of IR-A is associated with various factors contributing to its carcinogenic effect. For
instance, IR isoform overexpression may contribute to cancer cell stemness, tumor develop-
ment, and resistance to targeted therapies by interacting with IGFs [169]. Local production
of IGF-2 by epithelial and stromal cancer cells, along with an increased IR-A: IR-B ratio,
supports the mitogenic response of cancer cells to insulin. The IGF-2/IR-A loop encour-
ages cancer cell growth, migration, and self-renewal [90,169,170]. Moreover, IR regulates
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transcription factors involved in the epithelial–mesenchymal transition (EMT) process such
as p53, Oct-4, and Nanog, promoting carcinogenesis and pluripotency. IR activation leads
to the phosphorylation and inhibition of p53, which in turn inhibits both Oct-4 and Nanog,
resulting in persistently activated Oct-4 and Nanog, ensuring cell survival [171–173].

Table 2. IR isoform expression in various cancer types.

Hormone-dependent cancer

Cancer Cell type IR IR-A IR-B IR-A:IR-B ratio IGFR References

Breast
h-BC ↑ ↑ ↓ ↑ _ [174–176]

h-BC ↑ ↑ ↓ ↑ ↓ [175]

Endometrial
Adenocarcinoma _ ↑ ↑ ↑ ↑ [177]

Ovarian h-OV cell lines _ ↑ ↑ _ _ [178]

Prostate
(Androgen-Dependent)

h-PC ↑ _ _ _ _ [179]

h-PC ↑ ↑ ↑ _ _ [180]

h-PC ↑ _ _ ↑ ↓ [181]

LNCaP and VCaP ↑ ↑ ↓ _ _ [182]

Hormone-independent cancer

Cancer Cell type IR IR-A IR-B IR-A:IR-B ratio IGFR References

Bladder h-BLC specimens ↑ ↑ _ _ _ [183]

Colon m-PCA, h-CC ↓ _ ↓ _ _ [184]

Liver

h-HCC ↑ ↑ ↓ ↑ _ [185]

r-HCC ↑ _ _ _ ↑ [186]

m-HCC ↑ ↑ _ ↑ ↓ [187]

Lung h-NSCLC _ ↑ ↓ ↑ _ [188]

Osteosarcoma h-OS _ ↑ _ _ ↑ [189]

Prostate
(Androgen-Independent)

DU145 _ ↓ ↑ ↓ _ [182]

PC3 _ ↑ ↓ ↑ _ [182]

Thyroid h-TC _ ↑ _ _ ↑ [170]

↑: increased; ↓: decreased; _: no available information.

In a study by Nowak-Sliwinska et al., it was revealed that IR-A is upregulated on the
angiogenic vasculature in various human tumors, which correlates with poor prognostics
and patients’ survival [190]. Similarly, Benabou et al. reported that an increased IR-A-
to-IR-B ratio in hepatocellular carcinoma is associated with stem/progenitor cell features
such as cytokeratin-19 and α-fetoprotein, as well as shorter patient survival after curative
resection [191]. Interestingly, in the aforementioned study, it was the dysregulation of the
IR-A-to-IR-B ratio rather than the upregulation of ligand expression that was commonly
observed in cancers.

Recent discoveries have shown that the function and expression of IGF-1R and IR
are significantly regulated by epithelial discoidin domain-containing receptor 1 (DDR1),
a tyrosine kinase receptor for nonintegrin collagen crucial for embryonic development,
extracellular matrix modification [192], and cell migration, survival, proliferation, and
differentiation [193–196]. Dysregulated DDR function has been linked to the development
of several human illnesses, including cancer, arthritis, and fibrosis. In the most aggressive
cancers, IR-A is currently the most prevalent IR isoform expressed, and recent studies
have indicated that DDR1 has the potential to modulate the IGF-2/IR-A loop [197]. The
predominance of isoform A observed in cancer is attributed to abnormalities in both mRNA
transcription and post-transcriptional processes, as shown in Table 3 [169].
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Table 3. Summary of mechanisms of dysregulated IR expression in cancer.

Alteration of Transcription

IR Dysregulated
Expression Molecular

Pathways
Function Dysregulation

Consequences Cancer Type References

Sp1, HMGA1, FOXO1 IR transcription gene IR upregulation

Breast, gastric,
ovarian, liver,

colorectal,
prostate

[169,198,199]

p53 inactivation Tumor suppression gene IR upregulation [25]

Post-Transcriptional Dysregulation Due to Alternative Splicing Regulatory Factor and Non-Coding RNAs

(A) Alternative Splicing Regulatory factor

I. CUG-BP1 increase
1. Splice silencer
2. Facilitates exon 11 exclusion
3. Monitors the translation

Increased
IRA:IRB ratio

since it favors IRA
expression

Breast, lung,
colorectal [22,25,200–203]

II. hRNP H increase

1. Interferes with CUG-BP1 to inhibit
the splice of IR exon 11

2. Involved in pre-mRNA splicing,
exporting mRNA, mRNA stability,
and mRNA translation

3. Engages in an interaction with
CUG-BP1 that maximizes the
inhibition of IR exon 11 inclusion

Increased
IRA:IRB ratio [25,204–206]

1. hRNP A1
- Represses the inclusion of exon 11

by attaching to the intron
11 5′ splice site

Increased
IRA:IRB ratio NSCLC [24,207]

2. hRNP A2/B1 - Is a nuclear RNA-binding protein
responsible for mRNA splicing

Increased
IRA:IRB ratio

Multiple
myeloma,

NSCLC, PDAC,
HCC, breast

[208–211]

III. Loss of SRSF3
(Serine/arginine-rich
protein 3)and SRp20

1. Alternative splicing regulatory
proteins that promote exon inclusion

2. Also regulate mRNA export and
translation

3. SRSF3 with SRp20 promotes exon
inclusion at exon 11

Loss of SRSF3 and
SRp20 causes

increased IRA:IRB
ratio since

favoring IRA
expression

HCC [212–214]

IV. Muscleblind-like
(MBNL) protein
downregulation

1. Splicing enhancers of pre-mRNA
2. Counteracts CUG BP1’s effects
3. Involved in exon 11 inclusion by

engaging with HnRNP H
4. Favors IR-B isoform

When
downregulated,

IR-B levels
decrease,

increasing
IRA:IRB ratio

Breast, HCC,
lung, renal [25,215,216]

V. mir-128
downregulation

1. Post-transcriptional modulation of
gene expression

Increased
IRA:IRB ratio

Breast, melanoma,
ALL [217,218]

VI. mir-15b/16-2
downregulation

- Primarily through base pairing to
3′-untranslated sections (UTRs),
causes destruction of mRNA
transcripts and/or repression
of translation

Increased
IRA:IRB ratio

Lymphocytic
leukemia [219]

VII. mir-1
downregulation

Its deletion can affect cyclin D2 and IGF-R;
thus, it controls the apoptosis of β cells

Increased
IRA:IRB ratio Bladder cancer [220]

(B) Non-Coding RNAs

Enhanced
IRES-mediated IR

mRNA translocation to
the ribosomes

Initiates translocation IR upregulation [221]
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Endothelial cells undergoing sprouting express a multifunctional proteoglycan known
as decorin, which preferentially inhibits the physiologic responses of IR-A that are mediated
by IGF-2 while leaving insulin- or proinsulin-dependent signaling unaffected. Decorin
expression aids in capillary development and cell survival [222]. Therefore, depletion of
decorin could impact the development and spread of tumors that rely on the IGF-2/IR-A
autocrine loop [223].

In addition to surface receptors, several oncogenic fusion proteins arising from chro-
mosomal translocations communicate with IRS adaptor proteins to promote tumor growth.
Examples include the ETV6-NTRK3 gene fusion associated with pediatric spindle cell
sarcomas and secretory breast cancer, the RET-PTC3 gene fusion linked to papillary thyroid
cancer, and the NPM-ALK gene fusion linked to anaplastic large-cell lymphoma, which is
a transforming oncogene [224–226]. The anaplastic lymphoma kinase (ALK) is present in
neuroblastoma, pancreatic and breast cancer, and melanoma and has been found to be a
rate-limiting factor for the development of glioblastoma, communicating through the IRS
proteins [227].

4.2. Role of IGFRs in Cancer

IGFRs play a critical role in development, growth, and cell survival, and their involve-
ment in the pathogenesis of certain malignancies has been well established [228]. Increased
expression of IGF-1R has been reported in various cancers, including Ewing sarcoma, breast
cancer, prostate cancer, pancreatic cancer, melanoma, and other tumor types, contributing
to faster tumor progression and, in some cases, poor prognosis [229–231]. Functional
IGF-1R is essential for malignant transformation [232]. Interestingly, IGF-1R localization in
the cytoplasm indicates receptor activation, while nuclear IGF-1R transmits tumorigenic
signals [233–235]. Elevated expression of IGFRs has shown negative prognostic impacts
(Tables 4 and 5). In many cases, IGF-1R overexpression is a consequence of the loss of
tumor suppressors, such as p53, breast cancer gene-1 (BRCA1), von Hippel–Lindau protein,
and Wilms’s tumor suppressor WT1 [236–238]. However, it is the presence of ligands rather
than receptor aberrations alone that drives IGF signaling in tumor cells [236]. Interestingly,
low circulating IGF-1 concentration can protect against tumorigenesis [239,240]. Activated
IGF-1R can also stabilize integrins and promote epithelial–mesenchymal transition (EMT),
thereby facilitating cancer metastasis [241]. Uninhibited IGF/IGF-1R signaling can also
result from decreased levels of insulin-like growth factor binding protein-3 (IGFBP-3),
which competitively inhibits IGF/IGF-1R binding. Reduction in IGFBP-3 is often caused
by proteolysis, and higher plasma proteolysis incidence has been observed in women
with advanced stages of breast cancer [242,243]. Similarly, in prostate cancer, the tumor
marker prostate-specific antigen (PSA) can cleave IGFBP-3 [244]. IGF-1R overexpression
was shown also to be caused by NRF2 activation [245,246]. NRF2 is a well-known regulator
of antioxidant response, as well as various metabolic and cellular functions, and has been
identified as a key driver in the progression of cancer, metastasis, and chemoresistance. It
has been demonstrated that NRF2 activation interacts with SP1, a potent transactivator of
the IGF1R gene, thereby promoting the expression of IGF-1R and facilitating cancer pro-
gression. Interestingly, it has also been shown that oncogenic RAS signals can upregulate
NRF2 [247], rendering the initiator of this vicious cycle questionable.

Similarly, IGF-2R is associated with various malignancies with prognostic implica-
tions (Table 5). In the development of cancer, defects in IGF-2R are reportedly caused
by loss of imprinting [248]. Given its role in clearing IGF-2, IGF-2R functions as a tumor
suppressor, where the loss of its function can lead to an accumulation of IGF-2, promot-
ing tumorigenesis. In fact, IGF-2R also regulates cell proliferation, apoptosis, migration,
angiogenesis, and invasive ability [249]. Moreover, decreased IGF-2R induces lysosome
dysfunction and inhibits autophagy [250,251]. The loss of monoallelic gene regulation
renders the receptor susceptible to multiple mutations, resulting in an inactive gene copy
and the absence of functional protein [252]. Additionally, genetic polymorphisms affecting
IGF-2R clearance of IGF-2 ligands have been linked to a higher probability of developing
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oral, colon, and hepatocellular carcinoma [253–255]. Furthermore, several studies reported
that IGF-2R knockdown suppressed the tumorigenic properties of tumors [256]. Though
some studies reported increased expression of IGF-2R (Table 5), the contribution of IGF-2R
overexpression to tumor development is still unclear. In cervical cancer, it was shown that
upregulation of IGF-2R helped cells escape lysosomal-dysfunction-induced apoptosis via
the transport of M6P-tagged cathepsins [251]. Similarly, in hemangiomas, high levels of
IGF-2R were reported in a proliferative phase where the knockdown of IGF-2R signifi-
cantly diminished the proliferative activity and induced apoptosis and cycle arrest with
decreased expression of PCNA, Ki-67, Bcl-2, Cyclin D1, and E and increased the expression
of Bax [257].

Table 4. Studies showing prognostic impact of overexpression of IGF-1R in various cancer types.

Cancer Type Tissue Types/Cell
Lines

Quantification
Method

Causes of the
Overexpression Prognostic Implications References

Breast Cancer

Breast tissue
subtypes:

Luminal type a
and type b

Gene expression
profiling (microar-

ray)/Molecular
profiling

Overexpression
was hormonally

driven

IGF-1R overexpression was
predominantly seen in
ER-positive (+) tumors

contributing to
chemoresistance, and

reducing IGF-1R levels
significantly reduced ER+

tumor size

[258–260]

Triple-negative
breast cancer N/A

IGF-1R expression was found
to be associated with a lower

disease-free survival rate
(p = 0.031).

[261]

Colorectal
Cancer Electrophoresis

IGF-1R has a
relation to SNP
implication in

CRC

There was a significant
association between IGF-1R

rs2229765 polymorphism and
advanced CRC (AA/AG vs.

GG: OR = 3.06, p = 0.004)

[262]

Esophageal
Cancer

Esophageal cells
CE48T/VGH

cell line

Northern blot
analysis and

ligand-binding
assay

N/A

Overexpression of IGF-1R and
autocrine growth regulation
may concertedly control the
proliferation of esophageal

carcinoma

[263]

Gastric
Carcinoma (GC) N/A Immunohistochemistry N/A

IGF-1R overexpression
positively correlated with

MRP-1 overexpression
(rp = 0.39, p < 0.01). IGF-1R
and MPR-1 overexpression
was correlated with poor
prognosis of GC (p < 0.01)

[264]

Head and Neck
Squamous Cell

Carcinomas
(HNSCCs)

Squamous cell IHC N/A

OS and DSS were reduced in
patients whose tumors

contained high membrane
IGF-1R

[234]

Lung Cancer Small-cell lung
cancer (SCLC)

NA (serum and
lung cancer

histological tissues
from small-cell
lung carcinoma

(SCLC))

N/A

IGF-1R overexpression leads
to increased cell survival and

suppressed cell apoptosis,
whereas IGF1R silencing

mediated by RNAi abrogates
this response of NCI-H446

[265]
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Table 4. Cont.

Cancer Type Tissue Types/Cell
Lines

Quantification
Method

Causes of the
Overexpression Prognostic Implications References

Osteosarcoma
Human primary
and metastatic
osteosarcomas

Reverse
transcriptase

polymerase chain
reaction

N/A _ [266]

Prostate Cancer Malignant
epithelia IHC N/A High IGF-1R was associated

with high risk of metastasis [233]

DSS: Disease-specific survival; OS: Overall survival; DFS: Disease-free survival; SNP: Single-nucleotide polymor-
phism; MRP-1: Multidrug resistance-associated protein-1.

Table 5. Studies showing prognostic impact of altered expression of IGF-2R in various cancer types.

Cancer Type Tissue Types/
Cell Lines

Quantification
Method Expression

Causes of
Altered

Expression
Prognostic Implications References

Bladder
Cancer

Bladder
carcinoma qPCR and IHC

↓ in 70%
vs.

↑ in 30%
N/A

Low expression is
associated with poor

prognosis.

- Lower OS
(p = 0.022)

Worse
clinicopathological

features including higher
histology grade

(p = 0.001), higher tumor
stage (p = 0.033), and LN

metastasis (p < 0.001)

[267]

Bladder
carcinoma PCR, FISH ↑

Autophagy-
associated

circular RNA
hsa_circ_0007813

upregulation
sponge

hsa-miR-361-3p
to regulate

IGF-2R
expression

Unfavorable prognosis [268]

Breast
Cancer

Triple-negative
breast cancer IHC ↑ N/A

Patients with
IGF-2R-positive

expression had lower OS
(p < 0.001) and DFS rates

than those with
IGF-2R-negative

expression (67.8% vs.
78.5%, p = 0.023)

[269]

Cervical
Cancer

Cervical cancer
tissue and
cell lines

DNA
microarray, IHC ↑ N/A

Poor prognosis
Lower OS compared to
cases with intermediate-

and high-IGF-2R
expression, p < 0.05 and
p < 0.01, respectively, in

Stage I

[251]
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Table 5. Cont.

Cancer Type Tissue Types/
Cell Lines

Quantification
Method Expression

Causes of
Altered

Expression
Prognostic Implications References

Colon Cancer
Adenocarcinoma

malignant
tissue

RNase
protection assay ↑ N/A _ [270]

Liver Cancer Primary HCC PCR ↓ LOH of
M6P/IGF-2R

Poor Prognosis

- OS (24.9% vs.
65.5%; p = 0.04)

DFS (17.8% vs. 59.3%;
p = 0.03)

[271]

Lung Cancer NSCLC tissue
and cell lines IHC

↓ in 56%
vs.

↑ in 44%
N/A

Low IGF-2R expressions
had a poorer prognosis

than those with high
IGF-2R expressions

- With ↓ expressions,
PFS and OS are
shorter (6.8 ± 2.1
vs. 8.8 ± 2.4,
months, p < 0.001
and 11.1 ± 7.2 vs.
17.1 ± 2.8, months,
p < 0.001)

↓ Expressions are
associated with later

tumor stage (p = 0.0013)
and poorer

differentiation status
(p < 0.001)

[249]

Oral Cancer

Squamous cell
carcinoma

tissues from
patients

PCR ↓

Gly1619Arg
polymorphism of

M6P/IGF-2R
domain 11
(rs62989)

Loss of IGF-2R function
increased risk of

advanced stage of OSCC
by 3-fold

[253]

Osteosarcoma Various cell
lines

Flow cytometry
analysis ↑ N/A N/A [272]

Pancreatic
Cancer

Islet cells,
acinar cells, and

ductal cells
ISH ↑ N/A _ [273]

DSS: Disease-specific survival; ISH: In situ hybridization; PFS: Progression-free survival; OS: Overall survival;
DFS: Disease-free survival; HCC: Hepatocellular carcinoma; LN: Lymph node; N/A: not applicable for the study.

5. Role of IR and Igfrs in Chemoresistance
5.1. Role of IR Isoforms in Chemoresistance

Numerous studies suggest that the overactivation of the IR-A pathway, induced by
insulin and IGF-2, plays a direct and crucial role in cancer development and may contribute
to resistance against various anti-cancer drugs. For instance, Heidegger et al. demonstrated
the significant involvement of both IGF-1R and IR-A upregulation in prostate cancer
carcinogenesis and its chemoresistance [274]. They also found that the downregulation of
IR-A led to enhanced response to docetaxel and cycloheximide. Despite these findings, the
exact mechanism underlying chemoresistance remains poorly understood.

Interestingly, the overactivation of the IGF-2/IR-A loop in cancer cells is a mecha-
nism of adaptive resistance to anti-IGF-1R drugs [47,139,170,178,180,275]. Compensatory
crosstalk between IGF-1R and IR has been observed, contributing to resistance against
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IGF-1R targeted therapies. Inactivation of IGF-1R pharmacologically has been shown to
upregulate IR expression. Additionally, antitumor treatments may stimulate IGF-2 pro-
duction, increasing drug resistance through IR-A binding. Consequently, IR can mediate
primary resistance to IGF-1R target therapy, as IR overexpression leads to elevated levels
of IR-A, which binds IGF-2 with high affinity, promoting tumor development. To combat
this resistance, co-targeting IR and IGF-1R together has been proposed to enhance ther-
apy efficacy and inhibit resistance against selective anti-IGF-1R drugs [276–280]. Dual
inhibitors like OSI-906 have already been developed and tested in clinical trials [281].
Another approach involves targeting both IR and IGF-1R simultaneously using an artificial
E3 ubiquitin ligase capable of recognizing specific proteins of interest. This engineered
ubiquitin ligase comprises an IGF-1R/IR binding domain (the PTB domain of IRS-1) and
a functional ubiquitin ligase domain, facilitating ubiquitin-mediated proteolysis. This
strategy has potential benefits as cancer cells often overexpress multiple oncoproteins,
making it challenging to overcome survival pathways with single-target therapies [282,283].
Therefore, dual inhibitors targeting both IR and IGF-1R hold promise in inhibiting tumor
progression effectively without impairing IR’s normal function [274].

5.2. Role of IGFRs in Chemoresistance

IGFRs play a significant role in contributing to chemoresistance by counteracting the
effect of anti-cancerous medications. One way IGFRs promote chemoresistance is through
their involvement in DNA repair, thereby preventing the full effects of anti-cancer drugs that
target DNA damage from taking place [284]. Additionally, IGFRs can render anti-epidermal
growth factor receptor (EGFR) treatments ineffective. EGFR is a tyrosine kinase receptor
that drives cellular proliferation, growth, and survival through downstream signaling
pathways, and it is often upregulated in cancers [285]. While anti-EGFR therapies consist
of neutralizing monoclonal antibodies and selective tyrosine kinase inhibitors that inhibit
oncogenesis [286,287], IGFRs interact with these antibodies, allowing the continuous action
of the EGFR/HER2 kinase family signaling pathways. Furthermore, IGFRs can hinder the
effectiveness of drugs targeting increased estrogen in ER-positive breast cancer, promoting
chemoresistance [288,289]. In breast cancer, IGF-1R has also been shown to resist the effect of
trastuzumab, an anti-EGFR/HER2 antibody, by inhibiting the SRC/FAK/FoxM1 signaling
pathway [290]. The overexpression of IGFR receptors can impact the used inhibitors in
clinical therapy [291]. This aspect must be considered when devising strategies to combat
the effects of IGFR in order to improve the clinical outcomes of chemotherapy [291–293].
Consequently, many medications have been developed as therapeutic agents targeting
IGFR, as its increased levels are considered a challenge in cancer patients. For example, the
anti-insulin-like growth factor 1 receptor antibody EM164, a monoclonal antibody, can be
used as a therapeutic agent in childhood neuroblastoma [294]. It is noteworthy that the
expression of IGF-1R in chemoresistant cells exhibits a pulsatile pattern [295]. Specifically,
it is observed to be overexpressed upon initiation of chemotherapy; however, its level
subsequently diminishes as cancer cells attain complete resistance. A study by Dhave
et al. [296] showed that transcriptional regulators like Runt-related transcription factor 1
(RUNX1) and Forkhead Box O3 (FOXO3a) collaboratively drive the dynamic modulation
of IGF-1R expression by binding the IGF1R promoter, producing a transcriptional surge
during the onset of resistance. In the same study, it was demonstrated that upon attaining
complete resistance, cellular co-operation between RUNX and FOXO3 ceases, leading to a
reduction in IGF-1R expression due to the diminished negative feedback signals originating
from AKT-FOXO3a.

Compared to IGF-1R, the role of IGF-2R in chemoresistance is poorly studied. How-
ever, a study by Tian et al. [249] showed that low IGF-2R levels in non-small-cell lung
cancer (NSCLC) contribute to poor response to cisplatin. Similarly, Sun et al. showed that
IGF-2R inhibition by Trop2 contributed to NSCLC resistance to gefitinib [297]. Conversely,
Takeda et al. [251] demonstrated that upregulated IGF-2R in cervical cancer is associated
with poor response to cisplatin.
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6. Challenges of Quantification Methodologies and Future Insights
6.1. Quantification of IR Isoforms

Currently, the evaluation of IR isoform mRNA expression is primarily conducted
at the tissue level, and more recently, advancements have allowed for assessment at the
cellular resolution in situ. Flannery et al. developed a highly specific qRT-PCR assay to
quantitatively measure the levels of human IR isoforms and IGF-1R on the same scale [298].
The assay involved the design of human-specific primers for IR-B, IR-A, and IGFR RT-PCR,
targeting IR and IGFR sequences. Common reverse primer annealing with exon 12 is used
along with isoform-specific forward primers that anneal across exon–exon junctions on
each respective isoform. For IGFR primers, the aim is to target regions of low IR homology.
Another technique, single-cell RNA sequencing (RNA-Seq), aims to identify the presence
of IR isoforms in single cells. However, RNA-Seq remains technically challenging due
to the low levels of IR mRNA expression and the minimal base-pair differences between
the two isoforms [299]. It is important to note that mRNA expression may not accurately
reflect the actual protein levels in cells and tissues [63].

While Western blotting (WB) and immunostaining are commonly used to assess IR
protein levels, attempts to develop isoform-specific antibodies have been challenging. This
difficulty is likely due to the small difference between the two isoforms and the fact that
the 12 differential amino acids reside in a poorly accessible area of the receptor [300]. In
addition, WB and immunohistochemistry have certain limitations, including being both
semi-quantitative with moderate sensitivity, and their results rely on antibodies that may
not possess sufficient specificity.

6.2. Quantification of IGFR

IGF-1R and IGF-2R levels in tissue samples are commonly measured using methods
like WB and IHC. Ligand-binding assays, such as ELISAs and radioimmunoassays, can also
be employed to determine the concentration of IGFRs in biological fluids, including IGF-1R
and IGF-2R. However, it is important to note that these techniques may be influenced by
staining variability, tissue heterogeneity, non-specific binding, or interferences from other
substances in the sample, such as circulating ligands or binding proteins, which can lead
to inaccurate results. Flow cytometry has been utilized to measure IGFR levels on the cell
surface and subsequent intracellular signaling in various cancer types, such as Ewing’s
sarcoma, osteosarcoma, and breast cancer [301–303]. Flow cytometry is a fluorescence-
based immunoassay, and its results can be affected by factors such as non-specific binding,
cell autofluorescence, and antibody cross-reactivity. Another common method is IHC,
which enables visualizing IGFRs in tissue samples.

6.3. Future Insights

Recent advancements in super-resolution imaging techniques, such as single-molecule
localization microscopy (SMLM) [304] and stimulated emission depletion microscopy
(STED), offer the potential for high-resolution imaging of IGFRs in living cells and tissues.
In SMLM, the target protein is labeled with a fluorescent dye, with the labeling process
varying depending on the specific SMLM imaging technique [305]. However, these methods
are still in the early stages of development and validation, and there are doubts about their
ability to quantify IR isoforms using antibodies.

Visualizing IR isoforms in live cells would be intriguing as it could provide a better
understanding of ligand binding to the IR isoforms at the cell membrane. One potential
approach is to use small molecules like aptamers, which can differentially bind to the
IR isoforms, conjugated with fluorescent dyes to visualize endogenous IR receptors in
living cells. This could provide insights into intracellular dynamics during health and
disease. Aptamers have demonstrated the ability to block IR-mediated signaling in an
isoform-specific manner in vitro [306], showing their potential for IR isoform detection.

Mass-spectrometry-based methods, such as multiple reaction monitoring (MRM) and
parallel reaction monitoring (PRM), as well as targeted proteomics, also hold promise for
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quantifying IR isoforms. Liquid chromatography-tandem mass spectrometry (LC-MS)
can ionize and analyze analytes of interest based on their mass/charge ratio, offering
greater specificity, linearity, reproducibility, and lower limits of quantification compared to
conventional methods [307]. Mass spectrometry overcomes some of the antibody specificity
issues associated with techniques like WB and ELISA, as it measures unique peptides from
each protein, enabling absolute quantification rather than just relative quantification. While
these methods require specialized equipment and expertise, they have been successfully
used to develop various assays for protein isoforms [308].

7. Conclusions

In spite of extensive research, the exact mechanism by which both IR isoforms and
IGFRs contribute to carcinogenesis and chemoresistance remains poorly understood. This
review aims to explore the intricate roles of IR isoforms and IGFRs within the insulin
and IGF signaling (IIS) pathway. The study delves into the extensive network of ligands,
receptors, and binding proteins that together orchestrate a multitude of functions, with
implications for diverse processes such as carcinogenesis and chemoresistance.

A detailed genetic analysis of IR and IGFR structures has revealed a fascinating array
of isoforms arising from alternative splicing, each exhibiting distinct affinities for ligands.
The complexity of this system is underscored by the connection between overexpression
of the IR-A isoform and critical factors such as cancer stemness, tumor development, and
resistance to targeted therapies. Similarly, heightened expression of IGFRs accelerates
tumor progression and chemoresistance, thereby underscoring the critical role they play in
disease pathology.

This review not only highlights the intricate interplay between IRs and IGFRs but also
elucidates their contributions to resistance against chemotherapeutic and anti-IGFR drugs
as well as the prognostic implications of these receptors in various tumors. In light of this,
we propose the potential for a more effective therapeutic strategy by concurrently targeting
both receptors to overcome the challenges posed by chemoresistance.

However, a significant hurdle to understanding how the dysregulation of these recep-
tors contributes to carcinogenesis and chemoresistance is the currently used quantification
methods. With the emerging technological advancements, it is hoped that many obscurities
will be unraveled.
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