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Abstract: Frontal temporal dementia (FTD) is a neurological disorder known to have fewer thera-
peutic options. So far, only a few biomarkers are available for FTD that can be used as potential
comorbidity targets. For example, genes such as VCP, which has a role in breast cancer, and WFS1,
which has a role in COVID-19, are known to show a role in FTD as well. To this end, in the present
study, we aim to identify potential biomarkers or susceptible genes for FTD that show comorbidities
with diseases such as COVID-19 and breast cancer. A dataset from Gene Expression Omnibus contain-
ing FTD expression profiles from African American and white ethnicity backgrounds was included
in our study. In FTD samples of the GSE193391 dataset, we identified 305 DEGs, with 168 genes
being up-regulated and 137 genes being down-regulated. We conducted a comorbidity analysis for
COVID-19 and breast cancer, followed by an analysis of potential drug interactions, pathogenicity,
analysis of genetic variants, and functional enrichment analysis. Our results showed that the genes
AKT3, GFAP, ADCYAP1R1, VDAC1, and C4A have significant transcriptomic alterations in FTD along
with the comorbidity status with COVID-19 and breast cancer. Functional pathway analysis revealed
that these comorbid genes were significantly enriched in the pathways such as glioma, JAK/STAT
signaling, systematic lupus erythematosus, neurodegeneration-multiple diseases, and neuroactive
ligand–receptor interaction. Overall, from these results, we concluded that these genes could be
recommended as potential therapeutic targets for the treatment of comorbidities (breast cancer and
COVID-19) in patients with FTD.

Keywords: frontal temporal dementia; comorbidity; breast cancer; COVID-19; differential gene
expression analysis

1. Introduction

Frontotemporal disorder or frontal temporal dementia (FTD) is a disease with symp-
toms such as impaired thinking, reasoning, memory, and other functions leading to inter-
ferences in performing daily activities, causing diverse brain degeneration [1,2]. In the
USA, FTD is a prevalent neurodegenerative dementia with the lowest survival rate of only
3–14 years after the onset and is known to be most prevalent among individuals aged
≤65 years. To date, there are no effective therapies available for treating FTD or decreasing
its progression [3].

Currently, there are several factors that confer susceptibility risk to FTD. Among them,
genetic risk factors such as non-coding hexanucleotide repeat expansion (HRE) located in
the C9orf72 gene known to be prevalent [4,5]. Other risk factors include mutations in the
genes such as GRN and MAPT. Several new therapeutic strategies targeting these genes
are under development, and some of them are moving into clinical trials [6]. Though
clinical subtypes and genetic factors that confer risk for FTD have been recently identified,
molecular mechanisms driving its pathogenesis are not much understood. In recent years,
transcriptomic studies and network biology methods targeting the disrupted pathways
have been instrumental in understanding the molecular mechanisms in neurodegenerative
disorders.
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FTD patients show a significantly lower prevalence of cancer [7] and exhibit reciprocal
phenomena with gene C9orf72, which has non-coding hexanucleotide repeat expansion
that causes FTD genetically. Hexanucleotide repeat expansions of more than 10 repeats
located in the gene C9orf72 were found to be a risk for high pathogenicity of COVID-19
phenotypes, indicating a shared genetic profile between FTD and COVID-19. The molecular
mechanisms driving such behavior or the genes conferring this comorbidity are unknown,
specifically among the racial/ethnic groups such as the African Americans (AA) and white
populations. A recent study on gene co-expression network analysis of FTD-related genes
in the frontal and temporal cortices of FTD patients showed enrichment of pathways related
to DNA metabolism, transcriptional regulation, and DNA protection. These results indicate
that network-based approaches could offer valuable insights into the pathogenesis of FTD,
thereby aiding the identification of potential treatment targets [8]. Therefore, in the current
study, we aim to utilize gene expression data from the public domain databases to identify
differentially expressed genes (DEGs), followed by the identification of their comorbidity
status in breast cancer and COVID-19 using bioinformatics approaches.

2. Results
2.1. Differential Expression Analysis of FTD Genes

The flowchart of the overall data analysis performed in our study is shown in Figure 1.
Differential expression analysis between the control (n = 8) and FTD (n = 8) samples
from African American (AA) and white populations (Table 1) from the GSE193391 dataset
showed that 305 DEGs were found to be significant at a p-value < 0.05 with 168 genes being
up-regulated and 137 genes being down-regulated (Supplementary Table S1). Among
these DEGs, genes RAB3A (1.91), NEFL (1.89), KCNV1 (1.88), BDNF (1.86), YWHAH
(1.66), GABRG2 (1.62), SH3GL2 (1.58), SYN2 (1.57), RIMS1 (1.56), and PAK1 (1.53) were
found to be significantly up-regulated, and the genes GFAP (−3.08), C4A/B (−2.71), CD44
(−2.36), ENTPD2 (−2.27), CD163 (−1.94), PLXNB3 (−1.76), IL18 (−1.65), SPARC (−1.60),
NWD1 (−1.60), and GSN (−1.59) were found to be significantly down-regulated based on
the log2fold change value. These significant DEGs were represented using the box plot
(Supplementary Figure S1A) and shown in the volcano plots (Supplementary Figure S1B).

Table 1. Samples from the GEO dataset GSE193391 that were considered for our study.

Control Samples

Accession Age Sex Race APOE Status

GSM5799484 52 Female White E3/4
GSM5799495 59 Male Black E2/3
GSM5799498 57 Male White E3/3
GSM5799485 78 Female White E3/3
GSM5799504 56 Male White NA
GSM5799489 70 Male Black E3/3
GSM5799493 75 Female White E3/3
GSM5799506 74 Female White E3/3

FTD Samples

Accession Age Sex Race APOE Status

GSM5799499 81 Male White E3/3
GSM5799500 60 Female White E3/4
GSM5799501 64 Male White E3/4
GSM5799488 71 Male White NA
GSM5799505 56 Female White NA
GSM5799490 65 Female White E2/3
GSM5799492 65 Female White NA
GSM5799494 63 Male White E3/3
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involved in autophagy (Figure 1), indicating that this gene is essential for survival, 
differentiation, development, and homeostasis in FTD. Further, results from the Variation 
effect on Protein Structure and function (VAPROS) [9] database analysis on the Autophagy 
database showed that the genes AKT3, GFAP, UBE2N, and VDAC1 were also found to be 
involved in autophagy (Figure 1). Gene AKT3 showed a cluster of 540 genes located in the 
cytoplasm, nucleus, and cell membrane. Gene GFAP showed a cluster of 675 genes located 
in the cytoplasm. Gene UBE2N showed a cluster of 483 genes in an unknown location. 
Gene VDAC1 showed a cluster of 205 genes located in the mitochondrion outer 
membrane. Among these identified Autophagy genes, GFAP is treated as a measure for 
astrogliosis—a known pathological process in FTD and GFAP, whose levels are found to 
be associated with the intensity, progression, and survival of the disease. Furthermore, 
GFAP reduction is known to be associated with the WFS1 gene, which is found to be 
reduced in the FTD samples. 

  

Figure 1. Flow chart of the bioinformatics analysis performed in this study.

2.2. Analysis of DEGs Involved in Autophagy

Results from human autophagy database analysis showed that among the DEGs
that are significantly expressed across AA and white populations, MAPK9 was found to
be involved in autophagy (Figure 1), indicating that this gene is essential for survival,
differentiation, development, and homeostasis in FTD. Further, results from the Variation
effect on Protein Structure and function (VAPROS) [9] database analysis on the Autophagy
database showed that the genes AKT3, GFAP, UBE2N, and VDAC1 were also found to be
involved in autophagy (Figure 1). Gene AKT3 showed a cluster of 540 genes located in the
cytoplasm, nucleus, and cell membrane. Gene GFAP showed a cluster of 675 genes located
in the cytoplasm. Gene UBE2N showed a cluster of 483 genes in an unknown location.
Gene VDAC1 showed a cluster of 205 genes located in the mitochondrion outer membrane.
Among these identified Autophagy genes, GFAP is treated as a measure for astrogliosis—a
known pathological process in FTD and GFAP, whose levels are found to be associated
with the intensity, progression, and survival of the disease. Furthermore, GFAP reduction
is known to be associated with the WFS1 gene, which is found to be reduced in the FTD
samples.
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2.3. Analysis of the Genes Involved in COVID-19

For the genes that were found to be involved in autophagy, we performed DisGeNET
analysis (Supplementary Table S2) to identify their respective association with COVID-19.
Results from the DPI analysis showed that the genes GFAP and RTN4 were found to be
involved in COVID-19 with a score of 0.885 and 0.692. DSI analysis showed that the gene
GFAP had a DSI value of 0.421, and the gene RTN4 had a DSI value of 0.621. Furthermore,
gene GFAP had a pLI value of 0.00000146, and gene RTN4 had a pLI value of 0.45318. Both
the genes GFAP and RTN4 were found to be tolerable to protein truncating variation.

2.4. Evaluation of FTD DEG Expression in Breast Invasive Carcinoma and Survival Analysis

We then evaluated the expression of FTD DEGs in breast invasive carcinoma and
non-cancer tissues. Results demonstrated that the gene AKT3 (0.88), which is significantly
up-regulated in FTD, is significantly down-regulated in breast invasive carcinoma patients
(Figure 2A), whereas the genes UBE2N (0.766) and VDAC1 (0.96) were significantly up-
regulated in FTD are significantly up-regulated in breast invasive carcinoma patients also
(Figure 2A). Further, the genes ADCYAP1R1 (−1.166) and GFAP (−3.088) were signifi-
cantly down-regulated in FTD and were also down-regulated in breast invasive carcinoma
(Figure 2B), whereas C4A (−2.71), which is significantly down-regulated in FTD, is sig-
nificantly up-regulated (Figure 2B) and expressed in breast invasive carcinoma patients
compared to the normal controls at a p-value < 0.05. Overall, these results indicate that
these genes play a significant role in breast cancer. Results from the survival analysis
showed that the up-regulated genes AKT3 and VDAC1 and the down-regulated genes
ADCYAP1R1, GFAP, and C4A were found to be significantly associated with the overall
survival of the patients with breast invasive carcinoma (Figure 3). The overall heat map
of FTD-Breast cancer comorbid gene expression in metastatic, solid tissue of normal and
primary tumors of the TCGA datasets is shown in Figure 4. Further, we evaluated the
immunotherapeutic drug interactions for these FTD-breast cancer comorbid genes as the
immunotherapy is effective both in advanced and early setting phase 3 clinical trials of
Breast cancer. Results from immunotherapeutic drug interactions analysis showed that
AKT3 has interactions with the 22 drugs (Supplementary Table S3). GFAP has interactions
with 25 drugs (Supplementary Table S3). VDAC1 and ADCYAP1R1, on the other hand, had
interactions with three drugs (Supplementary Table S3). Additionally, we evaluated the
list of RNA-binding proteins (RBPs) interacting with these FTD-Breast cancer comorbid
genes. Results showed that there are 11 RBPs (EIF4A3, FBL, FMR1, IGF2BP1, IGF2BP2,
IGF2BP3, MOV10, NOP56, NOP58, RBM47, SRSF1) interacting with AKT3, 2 RBPs (EIF4A3,
IGF2BP2) interacting with VDAC1, 1 RBP (DGCR8) interacting with ADCYAP1R1, 2 RBPs
(DGCR8, FUS) interacting with GFAP, and 27 RBPs (AUH, BCCIP, BUD13, CSTF2T, EIF4A3,
FAM120A, GTF2F1, HNRNPA1, HNRNPC, HNRNPK, HNRNPUL1, IGF2BP1, IGF2BP3,
LARP7, LIN28B, PRPF8, RBFOX2, SF3A3, SF3B4, SLTM, SMNDC1, SND1, SRSF1, SRSF7,
SRSF9, TRA2A, U2AF1) interacting with C4A (Supplementary Table S4). We then conducted
an analysis of respective gene interactions with RNA. Our results showed that AKT3 has
the highest, whereas GFAP has the lowest interaction for RBP (Supplementary Table S5).
We have also conducted mRNA–RNA interaction analysis for the FTD-Breast comorbid
genes. Results showed that VDAC1 had the highest interaction, and the genes ADCYAP1R1
and GFAP had the lowest interaction among the five genes (Supplementary Table S6).
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Figure 4. Heat map of FTD-Breast cancer comorbid genes expression in the metastatic, solid tissue
normal and primary tumors of TCGA datasets. Metastatic is shown in purple, Solid Tissue Normal in
shown in red, and Primary Tumor is shown in blue. The significance of the DEGs was measured in
log2(normal count + 1), representing red as the stronger the correlation and blue as the weaker the
correlation.

2.5. Pathogenicity Analysis of FTD-Breast Cancer Comorbid Genes

We analyzed the pathogenicity for the FTD-Breast cancer comorbid genes (Supplemen-
tary Table S7). Results showed that the tools CADD, DANN, ReMM, and fitCons expressed
the most “likely pathogenic” pathogenicity scores for the FTD-Breast comorbid genes. Tool
fitCons showed that all five genes were “likely pathogenic”. DANN showed that the genes
AKT3, VDAC1, GFAP, and C4A were “likely pathogenic”. CADD and ReMM tools showed
that the genes VDAC1, GFAP, C4A, and ADCYAP1R1 were “likely pathogenic”. LINSIGHT,
GenoCanyon, Eigen, Eigen_PC, regBase PAT, and FATHMM-MKL tools showed that one
or two genes were “likely pathogenic”. The CDTS tool did not show any of the five genes
as “likely pathogenic” (Supplementary Table S7).

2.6. Genetic Alteration Analysis in FTD-Breast Cancer Comorbid Genes

For the five FTD-Breast cancer comorbid genes (AKT3, GFAP, C4A, VDAC1, AD-
CYAP1R1), we analyzed the alterations in the genetic profiles among the different subtypes
of Breast cancer. Results showed that the AKT3 gene has the highest alterations in the
genetic biomarker at 11%, while VDAC1 has the lowest alterations at 0.8%. ADCYAP1R1
(3%), GFAP (2.5%), and C4A (2.3%) have similar percentages of genetic alterations. In all
the genes, many of the alterations are mostly composed of amplification and deep deletion
(Figure 5). To analyze these genes at the single-cell level, we performed the t-sne analysis
in the Breast cancer subtypes, Triple Negative A (TNA), Triple Negative B (TNB), Luminal
A (LA), Luminal B (LB), and Basal-like (BL) and H-subtype. Results showed that the gene
VDAC1 is highly expressed in all the subtypes, whereas AKT3 is expressed in TNA, TNB,
and H-subtypes (Supplementary Figure S2), indicating that these genes have a significant
role in Breast cancer at the single-cell level.
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Figure 5. cBioPortal “oncoprint” representation of alterations in FTD genes identified in Breast cancer
consisting of 31,500 samples (amplification, red; deletion, blue; mutation, green). Numbers represent
the combined frequency of all alterations. TCGA datasets selected are shown above.

2.7. Clinical Association of FTD-Breast Comorbid Genes

We investigated whether common genetic variants of AKT3 and GFAP genes have
any direct relationship or clinical association with the pathology of FTD by identifying
3′aQTR on 3′aQTL-atlas (https://wlcb.oit.uci.edu/3aQTLatlas/index.php,) (accessed on
16 December 2022). Data of 3′aQTL variants from brain frontal cortex tissues for genes
AKT3 and GFAP was collected (Supplementary Table S8). Using the Gene/SNP search
query on the brain frontal cortex tissue, the AKT3 gene yielded 11 significant variants
with single nucleotide variants (rs2502342, rs2998662, rs2998661, rs12077950, rs9725721,
rs6429391, rs6429389, rs12075066, rs12078540, rs12073551, rs12087532) (Supplementary
Figure S3). None of the transcript variants showed that the AKT3 gene posed a significant
association with FTD [10]. The GFAP gene yielded 10 significant variants (rs12941832,
rs34902223, rs9895349, rs4793148, rs3764840, rs3760382, rs4426386, rs2337848, rs9893320,
rs9911454) in the human brain frontal cortex tissue (Supplementary Figure S4). The genetic
consequence of several of these 3′UTR variants affects the promoter region of the gene and
encodes the candidate tumor suppressor gene, ADAM11. ADAM11 is a highly conserved
gene involved in biological pathways, including fertilization, muscle development, and
neurogenesis (https://www.ncbi.nlm.nih.gov/gene/4185) (accessed on 20 November 2022).
The ADAM11 gene was found to be associated with the molecular pathology of Breast
cancer, epilepsy, and familial frontotemporal lobe [11].

2.8. Pathway Enrichment Analysis

We further explored the interaction between the FTD-Breast comorbid genes (AKT3,
GFAP, C4A, VDAC1, ADCYAP1R1) and their different aspects of biological pathways in
relation to neurological changes by finding the pathways on https://www.kegg.jp/kegg/
pathway.html (accessed on 6 January 2023) [12]. Results showed that the AKT3 gene
is enriched with multiple pathways of glial cells impacting the brain (Supplementary
Figure S5), such as cytokine–cytokine receptor interaction, ErbB signaling, mTOR signal-
ing, calcium signaling, MAPK signaling, p53 signaling, cell cycle, cell growth, and cell
proliferation. GFAP was enriched with the JAK/STAT signaling pathway (Supplementary
Figure S6), C4A was enriched with the pathways such as JAK/STAT signaling, cytokine-

https://wlcb.oit.uci.edu/3aQTLatlas/index.php
https://www.ncbi.nlm.nih.gov/gene/4185
https://www.kegg.jp/kegg/pathway.html
https://www.kegg.jp/kegg/pathway.html
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cytokine receptor interaction, B cell/T cell receptor signaling (Supplementary Figure S7),
VDAC1 was enriched with neurodegeneration pathways of multiple diseases such as
Alzheimer’s, Parkinson’s, Amyotrophic lateral sclerosis, Huntington’s, Spinocerebellar
ataxia, and Prion’s (Supplementary Figure S8), and the ADCYAP1R1 gene was enriched
with neuroactive ligand–receptor interaction pathway (Supplementary Figure S9).

3. Discussion

FTD is a neurodegenerative disease affecting behavior and language and connects to
the pathology in the brain’s frontal and temporal lobes [13]. FTD patients show a decline in
survival rates and show comorbidities with several other diseases. The correlation of the
diseases, such as COVID-19 and Breast cancer, to FTD and survival at the molecular level
is unknown [14]. So far, there is no known cause for FTD and no actual therapies for the
treatment of FTD patients.

Additionally, Breast cancer affects 230,480 women in the USA alone, with 39,520
of these women reaching mortality [15]. These statistical factors are important for our
study as we measured the comorbidity of FTD and Breast cancer to find the possible
overlap between these two diseases. Valosin-containing protein (VCP) is known to be a
prognostic biomarker in breast carcinoma [16], and mutations in VCP are known to show
clinical phenotype for FTD. In this study, we aim to identify such genes which show a
role in both Breast cancer and FTD. Furthermore, the development of new diagnostic and
prognostic genetic biomarkers for patients with FTD is urgently needed. Differentially
expressed genes among racial/ethnic groups have been extensively explored in recent
years and may harbor some of the new diagnostic and prognostic genetic biomarkers
for FTD. To this end, we performed DEG analysis for the FTD among AA and white
patients, and the sample size of these participants is limited. We found 305 DEGs to be
significant at a p-value < 0.05 (Supplementary Table S1). We then analyzed their potential
to be involved in autophagy and found the genes MAPK9, AKT3, GFAP, UBE2N, and
VDAC1 were involved in autophagy (Figure 1). We then validated whether these five
genes have molecular underpinnings of COVID-19-specific comorbidities and identified
two genes, GFAP and RTN4, involved in COVID-19 and FTD (Supplementary Table S2).
SARS-CoV-2, an etiological agent of COVID-19, is found to occupy the RTN4 gene, thereby
enhancing the development of virally induced double-membrane vesicles, which is crucial
for the replication of the viral genome. Increased concentrations of GFAP in patients with
COVID-19 are found to increase the mortality risk and can be used as a possible biomarker
for COVID-19 severity [17]. Then, we analyzed whether any of these FTD DEGs play a
key role in Breast cancer prognosis and survival. We found that the FTD DEGs, AKT3,
UBE2N, VDAC1, ADCYAP1R1, C4A, and GFAP showed significant comorbidity in breast
invasive carcinoma patients at a p-value < 0.05 (Figure 2). We analyzed immunotherapeutic
drugs interactions (Supplementary Table S3), RBP interactions (Supplementary Table S4),
pathogenicity (Supplementary Table S7), genetic alterations (Figure 5), clinical association
(Supplementary Table S8), and pathway enrichment (Supplementary Figures S5–S9) of
these five novel FTD-Breast cancer comorbid genes. Our findings from these analyses
suggested that these five FTD-Breast cancer comorbid genes were novel and play a crucial
role in both FTD and Breast cancer.

Overall, we found two novel FTD-COVID-19 comorbid genes, GFAP and RTN4, and
five novel FTD-Breast cancer comorbid genes, AKT3, GFAP, ADCYAP1R1, VDAC1, and
C4A, in this study. The AKT3 gene plays a role in AKT-kinase, which correlates with serine
and threonine stressors. In relation to FTD, this causes deterioration in keeping balance and
destroys DNA [18]. The VDAC1 gene interacts with IP3 receptors that work with sigma-1
receptors, and mutated SOD1 acts upon these receptors. The sigma-1 receptor disrupts the
IP3 receptor pathway of taking Ca2+ from the endoplasmic reticulum to the mitochondria,
and this disturbance from the sigma-1 receptor causes the mutation of SOD1 to take place
and impair the endoplasmic reticulum mitochondria signaling [19]. GFAP is known to
correlate with the process of FTD, called astrogliosis, which is the process of trying to
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amend neurological damage to the brain [20]. The C4A gene is involved in inflammatory
processes associated with Alzheimer’s and plays a role in the pathology of FTD. Several
studies, such as mice and human postmortem, have shown the up-regulation of FTD. The
C4A gene works in changing the structure and the number of copies in genetic biomarkers.
In response to the exposure of C4A gene expression, the nuclear ribonucleoprotein gives a
transactive response to DNA protein binding [21]. The ADCYAP1R1 gene is involved in the
regulation of adrenocorticotropin and catecholamine hormones. Depletion of catecholamine
compounds is linked to various underlying neurological health complications, including
loss of or impaired motor function and distinct behavioral changes [22] which are consistent
in FTD phenotypes. Up-regulation of the ADCYAP1R1 gene is likely to influence the
pathology of FTD by causing a disruption of adrenocorticotropin and catecholamine levels
in the body.

Collectively, the above findings demonstrated that alterations of the FTD-COVID-19
and FTD-Breast cancer comorbid genes, AKT3, GFAP, ADCYAP1R1, VDAC1, and C4A, were
associated with the pathogenesis of FTD, COVID-19, and Breast cancer. These genes could
be utilized as potential therapeutic targets for the treatment of comorbidities among these
three diseases.

Limitations of our study: our study has a few limitations, and some of these limitations
are as follows. There are only a limited number of samples, with eight samples per group.
Our study is also limited due to the number of samples from African American backgrounds
being very low. We will address these limitations in our future studies by including more
datasets and performing RNA sequencing experiments on a comparable number of samples
from different ethnic groups for both normal and diseased conditions. In our future studies,
we aim to combine different datasets and perform meta-analysis to identify the genes that
could serve as possible biomarkers for FTD.

4. Materials and Methods
4.1. Data Collection and Identification of Differentially Expressed Genes in FTD

The Gene Expression Omnibus (GEO) dataset (GSE193391) from the GEO database [23]
with AA and white ethnic background (Table 1) was selected for our study. The samples
selected from this study are from the human dorsolateral prefrontal cortex of postmortem
brain tissue [24]. These samples have an APOE status, which plays a key role in COVID-19
outcomes by down-regulating the ACE2 and misbalancing the RAS pathway [25]. For
the downloaded dataset, we performed differential gene expression (DEG) analysis using
the GEO2R tool available on the GEO database. For the identification of differentially
expressed genes, log2(fold change [FC]) value > 2, p-value < 0.05, and Bonferroni false
discovery rate (FDR) < 0.05 parameters were considered as the cut-off threshold values in
our study. Box plots between the samples from the control and FTD groups were created
using the GEO2R (Supplementary Figure S1A).

4.2. Identification of Autophagy Genes

Autophagy is a lysosomal degradation pathway required for survival, differenti-
ation, development, and homeostasis and is known to play a crucial role in diverse
pathologies, such as cancer, infections, aging, and neurodegeneration. To understand
the autophagy genes in the identified DEGs, we submitted the DEGs that are significant
between the healthy controls and the FTD samples to the Human Autophagy Databases
(http://www.autophagy.lu/index.html; http://www.tanpaku.org/autophagy/) (accessed
on 9 November 2022) [26].

4.3. Identification of COVID-19-Associated Genes

To identify the DEGs that are comorbid between FTD and COVID-19, we submitted
the DEGs that are significant between the healthy controls and the FTD samples to Dis-
GeNET (http://www.disgenet.org/). DisGeNET is a discovery platform that integrates
data from curated repositories of experts, GWAS catalogs, animal models, and their respec-

http://www.autophagy.lu/index.html
http://www.tanpaku.org/autophagy/
http://www.disgenet.org/
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tive scientific literature. It contains 1,134,942 gene–disease associations (GDAs) between
various genes, diseases, disorders, traits, clinical or abnormal human phenotypes, and their
respective variant associations [27]. DisGNET measures the Disease Pleiotropy Index (DPI),
Disease Specificity Index (DSI), and the probability of being loss-of-function intolerant
(pLI). DPI is measured by two variables: the value of different disease classes for a disease
of interest and the total number of disease classes in DisGeNET, which is 29. DPI ranges
from 0 to 1. DSI is the variable that measures the gene or variant association with a disease.
DSI ranges from 0 to 1 and has an inversely proportional relationship to the disease number
in accordance with the specified gene. pLI, on the other hand, measures how tolerant
or intolerant a gene is for the protein truncating variation (variation of nonsense, splice
acceptor/donor). A pLI value close to 1 means the gene is intolerant.

4.4. Verification of FTD DEGs in Breast Cancer

To verify the expression of identified FTD DEGs with statistically significant differences
in Breast cancer based on a large sample size, we performed analysis using GEPIA [28]
(http://gepia.cancer-pku.cn/) (accessed on 13 November 2022). For the genes that were
significantly expressed in Breast cancer, we used the KM-plotter [29] (https://kmplot.com/
analysis/) (accessed on 16 November 2022) to analyze the influence of genes on Breast
cancer survival under low and high expression.

4.5. Identification of the Alteration in the DEGs

To analyze the alterations in the identified DEGs on large-scale cancer genome datasets,
we submitted them to cBioPortal (http://cbioportal.org) (accessed on 13 November 2022),
a web server for integrative analysis of complex cancer genomics and clinical profiles
(http://cbioportal.org) (accessed on 18 November 2022) [30]. The Genomic Alteration Types
and putative copy-number alterations were downloaded for each of the identified DEGs.

4.6. Expression Analysis of FTD-Breast Cancer Comorbid Genes

To integrate, analyze, and visualize the expression of public genomic data with the
FTD-Breast cancer comorbid genes, we used the UCSC Xena server [31] (https://xena.ucsc.
edu/welcome-to-ucsc-xena/) (accessed on 20 November 2022). Xena browser allows us
to explore the functional genomic datasets to perform the correlations between variables
related to genotype or phenotype. To determine the differences in FTD-Breast cancer
comorbid gene expression between tumor and normal tissues, we performed the clustering
analysis using heatmaps to compare their gene expression, exon expression, and DNA
methylation.

4.7. Identification of RNA Interactions for the FTD-Breast Cancer Comorbid Genes

To identify and analyze respective RNA Interactomes for the FTD-Breast cancer comor-
bid genes, we used ENCORI (The Encyclopedia of RNA Interactomes) (https://rnasysu.
com/encori/index.php) (accessed on 24 November 2022), a database with millions of RBP–
RNA, RNA–RNA interactions, functions, and mechanisms in human diseases assessed
through CLIP-seq and various high-throughput sequencing data [32].

4.8. Single-Cell Transcriptome Profiling of FTD-Breast Cancer Comorbid Genes

To identify the transcriptome profile of FTD-Breast cancer comorbid genes at the
single-cell level, we have submitted the genes to a single-cell atlas (http://bcatlas.tigem.it)
(accessed on 1 December 2022). Single-cell atlas is a web-based server consisting of 35,276 in-
dividual cells from 32 Breast cancer cell lines clustered according to either genomic variants
or copy number variations. It allows us to study tumor heterogeneity and drug response of
Breast cancer cell lines at a single-cell level [33].

http://gepia.cancer-pku.cn/
https://kmplot.com/analysis/
https://kmplot.com/analysis/
http://cbioportal.org
http://cbioportal.org
https://xena.ucsc.edu/welcome-to-ucsc-xena/
https://xena.ucsc.edu/welcome-to-ucsc-xena/
https://rnasysu.com/encori/index.php
https://rnasysu.com/encori/index.php
http://bcatlas.tigem.it


Int. J. Mol. Sci. 2023, 24, 14910 11 of 13

4.9. Prediction of Potential Therapeutic Drugs

Identification of potential immunotherapeutic drugs for the genes will provide clues
for drug development and can be translated into clinical applications. To identify interaction
information about the approved and immunotherapeutic drugs for the FTD-Breast cancer
comorbid genes, we used the drug–gene interaction database (DGIdb, https://www.dgidb.
org/search_interactions) (accessed on 8 December 2022) —a web resource that provides
information on drug–gene interactions, databases, druggable genes, and other web-based
sources [34]. We selected the drugs with an interaction score greater than one as the cut-off
criterion [35].

4.10. Pathogenicity Gene Score Analysis

For a given variant, pathogenicity allows us to check if it increases an individual’s
susceptibility or predisposition to a certain disease or disorder. Therefore, for each of
the identified DEGs, we performed tolerance or pathogenicity gene score analysis using
the Vanno Portal (http://www.mulinlab.org/vportal) (accessed on 12 December 2022).
Respective pathogenicity scores were taken from various tools such as Combined An-
notation Dependent Deletion (CADD), Deep and Neural Network (DANN), base-wise
annotation (regBase PAT), spectral approach for coding and non-coding genetic variants
(Eigen), finds point mutation (FATHMM-MKL), simpler meta score based on direct, known
genes (Eigen_PC), Regulatory Mendelian Mutation score (ReMM), fitness consequence
(fitCons), whole genome functional annotation (GenoCanyon), linear model for functional
genomic data with probabilistic model (LINSIGHT), and Context-Dependent Tolerance
Score (CDTS) in the Vanno portal.

4.11. Interpretation of Genetic Variants

To identify phenotypic variation influenced by DEGs, we conducted a genetic variant
analysis using 3′aQTL-atlas (https://wlcb.oit.uci.edu/3aQTLatlas) (accessed on 16 De-
cember 2022) [10] search by gene/SNP across the human brain frontal cortex tissue. The
resulting variants of the queried genes were refined for association with changes in untrans-
lated regions or 3′UTR alternative polyadenylation (APA) site usage based on statistical
significance p-value < 0.05. Boxplots depicting the allele frequencies of the common genetic
variants were extracted from the 3′aQTL-atlas browser to determine genotypic influence
and functional interpretation of genetic variations of the genes.

4.12. Enrichment of Functional Pathways

To perform functional and pathway enrichment analysis, we have submitted the FTD-
Breast cancer comorbid genes to the Database for Annotation, Visualization, and Integrated
Discovery (DAVID, https://david.ncifcrf.gov/) (accessed on 6 January 2023) [36]. DAVID
offers systematic and integrative functional annotation for researchers to unravel the
biological meaning of the submitted genes. Using DAVID, gene ontology (GO) annotation—
including the biological process (BP), molecular function (MF), and cellular component—
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis [12]
were performed on the selected genes.

4.13. Statistical Analysis

For comparing the group control and FTD using the GEO2R, we used Benjamini and
Hochberg (False discovery rate) for the adjustment of p-values. All the statistical procedures
provided in the study were performed at a significance level cut-off of p-value < 0.05. For
comparing the expression genes, we considered the log2 fold change value. For KEGG
enrichment analysis, the genes that were significant at a p-value < 0.05 were considered
as a threshold. For the analysis using GEPIA, we used the following parameters: log2
fold change cut-off 1, p-value cut-off 0.05, log-scale log2(TPM + 1), and Jitter size 0.4. For
KM-plotter, we used multiple testing correction tools that included the statistical tests

https://www.dgidb.org/search_interactions
https://www.dgidb.org/search_interactions
http://www.mulinlab.org/vportal
https://wlcb.oit.uci.edu/3aQTLatlas
https://david.ncifcrf.gov/
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Bonferroni, the Holm (step-down), and the Hochberg (step-up) corrections, and allowed
the calculation of the False Discovery Rate (FDR) and q-values.

5. Conclusions

In conclusion, the genes AKT3, VDAC1, ADCYAP1R1, C4A, and GFAP play a crucial
role in the pathogenesis and clinical association of FTD. These genes could be used as novel
diagnostic and prognostic biomarkers and therapeutic targets for patients with FTD.
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