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Abstract: Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human
physiology and pathology. βOX is an essential process in the energy metabolism of most human
cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis,
(b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of
many other compounds, including N-acetylglutamate—an important regulator of urea synthesis.
This review describes the current knowledge on the importance of the mitochondrial and peroxisomal
βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral
white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty
acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are
presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused
by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- andω- fatty
acid oxidation are discussed.

Keywords: beta-oxidation; peroxisomal fatty acid oxidation; acyl-CoA; fatty acid metabolism

1. Introduction

Fatty acids (FAs) are critical compounds for the health control and development of the
human body due to their participation in cellular metabolism, especially energy production
(ATP synthesis), metabolism regulation, and cell proliferation. They are (a) building blocks
for complex lipids in cellular membranes, (b) precursors for signaling molecules, such
as eicosanoids, (c) allosteric regulators of metabolic pathways, (d) substrates for protein
acylation, and (e) ligands for transcription factors. FAs are also responsible for lipotoxicity
and contribute to the release of proinflammatory molecules, which play an important
role in many diseases. Moreover, an increase in citrate, isocitrate, and malate production
associated with free fatty acid (FFA) β-oxidation (βOX) leads to increased NADPH levels in
some cells. Cytosolic isocitrate dehydrogenase (which catalyzes the conversion of isocitrate
in the presence of NADP to α-ketoglutarate and NADPH) and a cytosolic malic enzyme
(ME) (which catalyzes the conversion of malate in the presence of NADP to pyruvate and
NADPH) play an important role in NADPH homeostasis.

The most important sources of FAs found in humans include dietary supply, mainly
triacylglycerols, and de novo synthesis, mainly from glucose [1].

As already mentioned, FAs serve a predominant role as substrates for ATP production
in many human and animal organs, including the heart, skeletal muscle, kidney, and
liver. Over 20 proteins are involved in the uptake, activation, transport into the organelles
(mainly mitochondria and peroxisomes), and finally, fatty acid oxidation (FAO). The most
important process of FAO-βOX occurs primarily in the mitochondria of many organs and,
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to a lesser extent, in peroxisomes, mainly in the liver and kidney. In peroxisomes, not
only βOX but also α-oxidation takes place. Alfa oxidation produces a fatty acyl CoA,
one carbon shorter [2]. From a practical point of view, this process plays an important
role in the oxidation of phytanic acid (a compound present in the human diet, originating
mainly from ruminant animals and fish) [3]. ω-oxidation undergoes in microsomes (smooth
endoplasmic reticulum) [4]. In this process, FAs are degraded starting from the end methyl
group (so-called ω-carbon) of FAs, and the CYP (cytochrome P-450) family is involved.
ω-oxidation is considered a rescue process for some genetic diseases in humans, in which
mitochondrial and peroxisomal FA oxidation is impaired. Interestingly, phytanic acid also
undergoesω-oxidation [2].

The energy production from FAs is strictly associated with the mitochondrial βOX. The
intensity of βOX is controlled by a plethora of regulatory factors, including the supply of
nutrients and the action of several hormones, including insulin, glucagon, catecholamines,
triiodothyronine, and cortisol. The crucial regulator of FAO is peroxisome proliferator-
activated receptor α (PPARα) [5]. PPARα is a transcription factor that functions as a
heterodimer in complex with the retinoid X receptor α (RXRα) and binds via the PPARα
DNA-binding domain (DBD) to the PPRE (peroxisome proliferator response element)
sequence in the promoter region of target genes involved mainly in hepatic and cardiac
muscle FA and FAO [6]. The initiation of transcription by PPARα (similar to other PPARs)
requires its activation. Briefly, in its inactive form, the PPARα-RXRα complex is associated
with corepressors [7]. The complex activation occurs following ligand binding [8]. A
wide range of lipophilic molecules can activate PPARα. These include natural saturated,
unsaturated, and polyunsaturated fatty acids (PUFAs) and synthetic ligands, collectively
called PPARα activators [7,9]. The natural ligands show different binding affinities and
strengths of PPARα activation. The potent PPARα ligands are unsaturated fatty acids,
including omega-3 eicosapentaenoic acid (20:5, ω3), docosahexaenoic acid (22:6, ω3),
and phytanic acid [10,11]. The natural and synthetic ligands (pharmacological ligands,
for instance, fibrates) directly bind to PPARα via the ligand-binding domain (LBD). The
ligand binding to a nuclear receptor causes the release of corepressors and begins the
recruitment of coactivator complexes to the PPARα-RXRα, which enables the activation
of the expression of genes involved in FAO [7]. PPARα is expressed at the highest level
in hepatocytes, cardiomyocytes, enterocytes, and kidney proximal tubule cells, which are
involved in the increased FAO [12], as we describe in this review. Other members of the
PPARs family—PPARβ/δ and PPARγ—are involved in the regulation of different processes
generally associated with lipid metabolism. PPARβ/δ participates in the activation of
FAO [13]. It has been observed that expression of the PPARβ/δ genes increases in skeletal
muscles after fasting and endurance exercises, which promotes the transition from glucose,
as the primary source of energy substrate, to lipids [14–17]. In comparison, PPARγ plays
an important role in adipogenesis, lipid uptake, triacylglycerols (TAG) storage, and lipid
droplet formation [18].

In this review, we first described a general aspect of the FAs transport (into the cells
and then mitochondria) and activation. Then, we concentrated on FAO under physiological
and pathological conditions in the liver, heart, skeletal muscle, kidney, and other organs.
Special attention has been paid to FAO abnormalities in cancer cells and the diseases caused
by mutations in genes encoding enzymes involved in FAO.

1.1. Uptake and Activation of Fatty Acids

In blood, FAs are present as components of lipids in (a) cell membranes (mainly in
erythrocytes and white blood cells), (b) lipoproteins (mainly in chylomicrons, VLDL, LDL,
and HDL), and (c) FFAs mostly bound to albumin. The major FAs in the whole lipids in the
blood are palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2),
and arachidonic acid (C20:4) [19,20]. The concentration of FFAs in the serum increases
during exercise or fasting, and they are mainly used as FAO substrates in skeletal muscles,
the heart, liver, and kidney [21]. The physiological FFA concentration in blood is around



Int. J. Mol. Sci. 2023, 24, 14857 3 of 50

0.2–0.5 mmol/L [22]. Due to their low solubility in H2O (1–10 nmol/L, depending on FA
chain length), FFAs (mainly long-chain—LCFAs and medium-chain—MCFAs) are attached
to the albumin [23]. Binding the FFAs to the albumin (a) enables transport in the blood
and (b) protects human organs against some pathologies, including insulin resistance,
non-alcoholic fatty liver disease, atherosclerosis, and heart dysfunction [24,25]. FFAs are
translocated from the albumin FFA complex into the target cell (cells where FFAs are
metabolized) cytosol across the endothelial layer of the blood vessels [26]. In the liver,
the sinusoidal endothelial cells are fenestrated and do not have a basement membrane,
so the absorption of FFAs is much easier than in other organs [27]. The transfer of FFAs
from the blood to other cells, for instance, cardiomyocytes, seems to be more complicated
since the endothelial wall in the heart capillaries is not-fenestrated and the FFAs are
transferred through three lipid membranes: two endothelial (in and out of the endothelial
cells) and one myocyte membrane (transported into the cell). Arts et al. proposed a model
of FFA translocation across heart capillaries into cardiomyocytes, where FFAs bind to
compartment-specific carrier proteins [28]. According to this model, the crossing of the
plasma membrane remains under the control of several proteins, including (a) cluster of
differentiation-36 (also known as FA translocase—CD36), (b) FA-binding protein—FABPm,
and (c) FA-transporting protein—FATP (Figure 1). These proteins enable the cell to control
the inflow of FFAs precisely. They increase the uptake of FFAs at the beginning of muscle
contraction, even if the concentration of FFAs in the blood is low. Moreover, they also
prevent the entrance of excess FFAs into the cell and help to select FFAs according to the
cell’s demand. It should be noted that FFAs may also translocate into the target cell by a
flip-flop system driven by the FFA concentration gradient [28].

The delivery of FFAs to the cells and their activation before usage in several cellular
processes involves many proteins, including enzymes (Figure 1). Among these proteins are
FATPs, which exhibit acyl-CoA synthetase activity. These two functions of FATPs (transport
and activation) enable the immediate utilization of FFAs in the cell. Other proteins, like
FABPm, CD36, and a family of acyl-CoA synthetases (ACSs), form an integrated system
of the transport and activation of LCFAs, MCFAs, and short-chain FAs (SCFAs). FABPc
proteins are also involved in binding FFAs in the cytosol (Figure 1).

FFAs are activated by specific ACSs. After activation, some FFAs become bound by
the acyl-CoA-binding proteins (ACBPs). The binding of FFAs is responsible for channeling
acyl-CoA to particular cellular compartments and processes. Acyl-CoA’s minor pool is
deacylated by acyl-CoA diesterases (ACOTs) [29,30]. However, the physiological signifi-
cance of deacylation is unknown. Very recently, it has been reported that ACOT1 knock-out
partially protects mice from high-fat diet-induced weight gain by increasing energy expen-
diture [31]. Thus, these results suggest that inhibition of ACOT1 could prevent obesity
during caloric excess.
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Figure 1. Fatty acid transport and metabolism in the cell. CAC—acylcarnitine translocase, CP—
carnitine palmitoyltransferase, FABP—fatty acid-binding protein, LCEH—long-chain enoyl-CoA hy-
dratase, LCHAD—long-chain fatty acid hydroxy acyl-CoA dehydrogenase, LCKAT—long-chain fatty
acid β-ketothiolase, MCAD—medium-chain acyl-CoA dehydrogenase, MCKAT—medium-chain
ketoacyl-CoA thiolase, OXPHOS—oxidative phosphorylation, SCAD—short-chain acyl-CoA dehy-
drogenase, SCHAD—short-chain hydroxy acyl-CoA dehydrogenase, TCA—Krebs cycle, VLCAD—
very-long-chain acyl-CoA dehydrogenase, OCTN2—carnitine transporter, present in the heart,
skeletal muscle, and kidney (hepatocytes have a different translocator with low affinity and high
capacity), FABPm—membrane fatty acid-binding protein, FABPc—cytosolic fatty acid-binding
protein, MTP—mitochondrial trifunctional protein, MTP ? – possible involvement of MTP pro-
tein, CD-36—fatty acid translocase, FATP—fatty acid transporting protein (the acyl-carnitines are
transported across the outer mitochondrial membrane via a voltage-dependent anion channel
(VDAC) [32]).

According to the chain length, influencing the hydrophobicity and water solubility of
FFAs, four ACS families have been established: (a) short-chain acyl-CoA synthetases (AC-
SSs), (b) medium-chain acyl-CoA synthetases (ACSM), (c) long-chain acyl-CoA synthetases
(ACSLs), and (d) very-long-chain acyl-CoA synthetases (ACSVLs) [33]. An overview of the
characteristics of ACS isoforms is presented in Table 1.
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Table 1. Characteristics of acyl-CoA synthetases. ACSL—long-chain acyl-CoA synthetase,
ACSM—medium-chain acyl-CoA synthetases, ACSS—short-chain acyl-CoA synthetases, ACSVL—
very-long-chain acyl-CoA synthetase, BAT—brown adipose tissue, ER—endoplasmic reticulum,
WAT—white adipose tissue.

Name/Abbreviation Organ/Tissue Localization Subcellular Compartment References

ACSVL [FATP2] Liver, intestine, kidneys, brain Peroxisomes, ER [34]

ACSVL [FATP6] Heart Cytosol, plasma membrane [35]

ACSVL [FATP3] Lungs, gonads, adrenals ER, mitochondrial membrane [34]

ACSVL [FATP1] Skeletal muscles, BAT, WAT, heart Plasma membrane [36]

ACSVL [FATP4] Skeletal muscles, BAT, WAT,
intestine, skin Peroxisomes, ER, mitochondrial membrane [37]

ACSVL [FATP5] Liver Plasma membrane [38]

ACSL1 Liver, heart, BAT, WAT, skeletal
muscles

Mitochondria (outer mitochondrial membrane
on the cytosolic side), lipid droplets,
microsomes, plasma membrane

[39]

ACSL3 Brain, gonads, small amounts in
other tissues (liver)

Lipid droplets, the cytoplasmic face of ER, the
outer mitochondrial membrane [40]

ACSL4
Adrenals, ovaries, testes, liver,
skeletal muscles, small amounts in
the brain

Endosomes, peroxisomes, plasma membrane,
secretory vesicles, ER regions in close contact
with mitochondria—mitochondrial-associated
membranes

[41]

ACSL5 BAT, the duodenal mucosa, liver,
skeletal muscles, kidneys, lungs

The outer mitochondrial membrane on the
cytosolic side [42]

ACSL6
Ovaries, testes, brain, skeletal
muscles, small amounts in the WAT,
kidneys, the duodenal mucosa

Plasma membrane [43]

ACSM
Liver, skeletal muscles,
cardiomyocytes, colonocytes,
kidneys

Mitochondria. All ACSMs belong to a group of
enzymes called XM-ligases
(xenobiotic/medium-chain fatty acid-CoA
ligases)

[44,45]

ACSS1 Brain, blood, testes, intestine, heart,
kidneys, skeletal muscles, BAT Mitochondria. ACSS1 activates acetate [46]

ACSS2 Liver and kidneys Cytosol, nucleus. ACSS2 activates acetate.
ACSS2 is downregulated during fasting [46,47]

ACSS3 Liver
Mitochondria. ACSS3 has a higher affinity for
propionate. ACSS3 is upregulated in the
fasting state

[30,46]

Except for lauric acid, MCFAs are activated and oxidized in mitochondria [45,48].

1.2. Carnitine Shuttle
1.2.1. Carnitine Palmitoyltransferase 1 (CPT1)

The inner mitochondrial membrane is impermeable to the long-chain acyl-CoAs.
Thus, the acyl-CoAs are converted to acylcarnitine in the reaction catalyzed by carnitine
palmitoyltransferase 1 (CPT1):

acyl-CoA + carnitine→ acylcarnitine + CoASH

CPT1 is a hexamer, a part of a protein complex formed and attached to the outer
mitochondrial membrane. Other elements of that complex are ACSL and VDAC (voltage-
dependent anion channel) [49,50]. Three isoforms of CPT1 are known: CPT1A, CPT1B, and
CPT1C. CPT1A is the main CPT1 in the liver, but it is also present in minor amounts in
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the heart, skeletal muscles, brain, kidneys, lungs, spleen, intestine, pancreas, ovaries, and
fibroblasts. It is involved in transporting LCFAs and medium-chain lauric acid (C:12) into
mitochondria, though its highest activity is in lauric acid. CPT1B is the dominating form
in the skeletal muscles, heart, and testes, and like CPT1A, it is an enzyme transporting
LCFAs to mitochondria, with the highest activity in C12-C16 FFAs. CPT1C is a neural
form attached to endoplasmic reticulum (ER) membranes. Potentially, it is involved in the
neuronal control of thermogenesis in brown adipose tissue (BAT) [51,52]. CPT1C activity is
significantly (20–300 times) lower than CPT1A [53–55]. CPT1A and B share 62% similarity
in the amino acid sequence. Both isoforms differ significantly in activity and regulation [56].

A high-fat diet induces the expression of the CPT1 gene by the PPARα transcription
factors in the liver and muscles [5,57,58]. Insulin, glucagon, and triiodothyronine regulate
CPT1 activity in the liver, and the physiological status significantly influences that regula-
tion [57,59–61]. The major regulator of CPT1 is malonyl-CoA, a negative allosteric effector
of this enzyme. The intracellular level of malonyl-CoA depends on acetyl-CoA carboxy-
lase (ACC—enzyme-synthesizing malonyl-CoA) activity and malonyl-CoA decarboxylase
(MCD—enzyme-degrading malonyl-CoA) activity [62–65]. Malonyl-CoA, an intermediate
in palmitate synthesis, inhibits FAO during intensive FFA synthesis. It protects the cell
from the immediate oxidation of the newly synthesized FFAs [52]. At a negative energy
balance, when the activity of MCD is elevated, CPT1 restores its activity, leading to efficient
acylcarnitine synthesis. It should be noted that CPT1B is activated mainly by exercise and
is more sensitive to changes in the malonyl-CoA level.

Both LCFAs and MCFAs stimulate CPT1 activity during the exercises [66]. A high-fat
diet or fasting induces the expression of the CPT1 gene by the two independent systems
involving PPARα transcription factors or the PGC1α/PPARγ complex in the liver and
muscles. The binding site in the Cpt1 gene for PPARα in the rat liver is located in the second
intron and PGC1α/PPARγ in the first intron [5,57,66]. Mutations in PPRE totally eliminate
the induction of Cpt1 gene expression by both regulatory systems [5].

Carnitine is transported from the blood to the cells by the high-affinity OCTN2 carni-
tine transporter in the cell membrane of the heart, skeletal muscle, and kidney (Figure 1) [67].
It should be noted that different types of carnitine transporters with low affinity and high
capacity are present in hepatocytes.

1.2.2. Carnitine Palmitoyltransferase 2 (CPT2) and Acylcarnitine Translocase CAC
(SLC25A20)

CAC (SLC25A20) transfers acylcarnitines across the inner mitochondrial membrane [68].
CAC forms a functional complex with carnitine palmitoyltransferase 2 (CPT2) in the inner
mitochondrial membrane (Figure 1), leading to the transesterification of acyl groups from
acylcarnitines to mitochondrial CoAs according to the reaction:

acylcarnitine + CoA-SH→ acyl-CoA + carnitine

A high acylcarnitine concentration in the intermembrane space drives its translocation
into the matrix [68]. The overall role of CPT1, CAC, and CPT2 in the transport of acyl-CoA
into the mitochondrial matrix is presented in Figure 1. NO, H2S, nonenzymatic acetyla-
tions, β-lactam antibiotics, omeprazole (proton pump inhibitor), and heavy metals inhibit
CAC [69–76]. PPARα and other transcription factors or transcriptional coactivators (estro-
gen receptors, PGC1α) activate the transcription of CAC, and polyphenols (antioxidants)
increase the effectiveness of βOX. Statins, drugs lowering serum cholesterol concentration,
and retinoic acid also increase CAC activity [77–80].

1.3. Mitochondrial β-Oxidation

A few years ago, the mitochondrial βOX was described by Hounten et al. in an
excellent review [81]. Briefly, the first step of each βOX round is catalyzed by an acyl-CoA
dehydrogenase (AD), producing trans-2-enoyl-CoA. In the next step, the hydration of a
double-bond is catalyzed by enoyl-CoA-hydratase (ECH), and the following dehydrogena-
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tion by hydroxy-acyl-CoA dehydrogenase (HAD) leads to the production of 3-keto-acyl-
CoA. The last step of the cycle is thiolysis. In each round of βOX, one FAD and NAD+

accept two electrons each and change into FADH2 and NADH, respectively. The electrons
are then transferred to the mitochondrial respiratory chain, where oxidative phosphoryla-
tion (OXPHOS) occurs. The acetyl-CoA formed may enter the Krebs cycle (TCA) (mainly
in the heart, kidney, and skeletal muscle) and other processes (for instance, ketogenesis in
the liver) (Figure 1) [82,83]. The acyl-CoAs, which are shorter by two carbons compared to
the initial substrate, enter the next round of βOX. The odd-chain FFAs (present in a small
amount in human tissue) are degraded, like the even-chain acyl-CoAs, to several acetyl-
CoAs (depending on FFAs). However, propionyl-CoA arises from the methyl end of the
odd-chain acyl-CoA. Propionyl-CoA is converted via methylmalonyl-CoA to succinyl-CoA,
metabolized in the TCA, or converted to glucose in the liver. The amount of propionyl-CoA
formed from odd-chain FFAs is very small because the number of such FAs in the diet is
relatively low.

Five ADs found in human cells are involved in the first step of βOX. Characteristics of
ADs are presented in Table 2.

Table 2. Characteristics of acyl-CoA dehydrogenases. ACAD9—acyl-CoA dehydrogenase DH-9,
BCFA—branched-chain fatty acid, LCAD—long-chain acyl-CoA dehydrogenase, LCFA—long-chain
fatty acid, MCAD—medium-chain acyl-CoA dehydrogenase, MCFA—medium-chain fatty acid,
SCAD—short-chain acyl-CoA dehydrogenase, SCFA—short-chain fatty acid, VLCAD—very-long-
chain acyl-CoA dehydrogenase, VLCFA—very-long-chain fatty acid.

Enzyme Mitochondrial
Compartment

Preferred Substrates
(Acyl-CoAs) Tissue/Organ/Cell Reference

VLCAD Inner mitochondrial
membrane

LCFA (mainly palmitoyl-CoA)
and VLCFA (C14–C22)

Muscles, heart, liver,
skin fibroblasts [84]

Acyl-CoA DH-9
(ACAD9)

Inner mitochondrial
membrane

Unsaturated LCFA, VLCFA
(C16:1, C18:1, C18:2; C22:6)

Brain, liver, heart,
skeletal muscle [85]

LCAD Matrix LCFA, unsaturated MCFA,
SCFA, BCFA (in vitro)

Lungs—pulmonary
surfactant [86]

MCAD Matrix MCFA (C6:0–C12:0) Heart, skeletal muscles,
liver [87]

SCAD Matrix SCFA (mainly butyryl-CoA);
MCFA (C6:0–C12:0)

Liver, heart, skeletal
muscle [88]

1.3.1. Oxidation of Long-Chain Acyl-CoA

Oxidation of long-chain acyl-CoA is catalyzed by one of three ADs: a) very-long-chain
acyl-CoA dehydrogenase (VLCAD), b) acyl-CoA dehydrogenase DH-9 (ACAD9), and
c) long-chain acyl-CoA dehydrogenase (LCAD). VLCAD oxidizes most LCFAs entering
mitochondria. This enzyme, bound to the inner mitochondrial membrane, oxidizes C14:0–
C22:0 acyl-CoA, although the preferred substrate is palmitoyl-CoA. The presence of an
unsaturated bond in FFAs decreases the efficiency of the reaction catalyzed by this enzyme.
PPARα is the most important VLCAD regulator, increasing its gene expression. Sirtuins
(especially sirtuin 3) may also activate VLCAD through deacetylation [84–88].

ACAD9 is homologous to VLCAD and uses mostly unsaturated long-chain acyl-CoAs
as substrates. It is abundant in the brain and liver. Despite the homology of this enzyme
with VLCAD, neither enzyme can compensate for each other in their deficiency [85,89].
LCAD is localized in the mitochondrial matrix. It is mainly present in lung alveolar cells.
LCAD knockout caused pulmonary surfactant (complex substances, mainly lipids, which
play important functions in the alveoli and small airways) dysfunction and increased
susceptibility to lung infections [86]. An in vitro investigation showed that some unsatu-
rated and branched-chain acyl-CoA are the principal substrates for LCAD. This enzyme is
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exceptional among ADs because it tends to leak electrons, producing H2O2. Its function in
organs other than the lungs has not been estimated [90].

Each AD uses FAD as an electron acceptor. Formed FADH2 has to be re-oxidized, so
the electrons are translocated to a flavoprotein, electron-transferring flavoprotein (ETF), and
then ETF-dehydrogenase transfers them into coenzyme Q (CoQ) in the OXPHOS system
(Figure 1) [91,92].

The mitochondrial trifunctional protein (MTP) complex participates in the second
step of LCFA oxidation. The MTP catalyzes three different reactions in a row. The MTP
enzymatic activities are long-chain enoyl-CoA hydratase (LCEH), long-chain hydroxy acyl-
CoA dehydrogenase (LCHAD), and long-chain β-ketothiolase (LCKAT). The MTP complex
contains “a” and “b” subunits, forming an octamer bound to the surface of the inner
mitochondrial membrane due to a strong interaction with membrane phospholipids [93,94].
Subunit “a” contains the enzymatic activities of hydratase and dehydrogenase, whereas
subunit “b” contains thiolase activity. This enzymatic complex binds the enoyl-CoAs
containing 6–16 carbons, but in the liver, its activity is the highest for C10 and longer acyl-
CoAs. The final product of MTP activity is acetyl-CoA and acyl-CoA, which is shortened
by two carbons and enters the next cycle of βOX [95].

1.3.2. Oxidation of Monounsaturated and Polyunsaturated Long-Chain Acyl-CoA

Oxidation of monounsaturated long-chain acyl-CoA requires an additional enzyme
called 3,2-trans-enoyl-CoA isomerase (ECI), which catalyzes the following reaction:

trans-3-enoyl-CoA→ trans-2-enoyl-CoA

ECI exists in two isoforms: ECI1 and ECI2. ECI1 is found in mitochondria only,
whereas ECI2 is present in mitochondria and peroxisomes. ECI2 has a much higher affinity
for LCFAs [96–98]. The studies on ECI isoforms were performed using enzymes isolated
from rat liver [96] and the ECI1 knock-out mice model [97], and structural studies using
X-ray scattering were performed for a human ECI2 isoform [98].

The βOX of polyunsaturated FAs requires a) ECI and b) 2,4-dienoyl-CoA reductase,
which catalyzes the following reaction:

trans-2,cis-4-dienoyl-CoA + NADPH + H+ → tans-3-enoyl-CoA + NADP+

Formed tans-3-enoyl-CoA by 2,4-dienoyl-CoA reductase is converted to trans-2-enoyl-
CoA by ECI, as presented above.

1.3.3. Oxidation of Medium-Chain Fatty Acids

In the first cycle of MCFA mitochondrial FAO, medium-chain acyl-CoA dehydrogenase
(MCAD) catalyzes the initial step. It is a flavoprotein cooperating with ETF and ETF-
dehydrogenase. MCAD is a homotetrameric protein localized in the mitochondrial matrix.
It is abundant in the human heart, skeletal muscles, and liver [99,100]. The enzymes
responsible for the subsequent reactions are not well-defined in humans. It is possible that
human MTP participates in the oxidation of medium-chain enoyl-CoAs. However, it is
not excluded that MCFAs, which translocate from the cytosol to mitochondria, might be
activated and elongated, finally becoming the substrate for MTP [101].

1.3.4. Oxidation of Short-Chain Fatty Acids

The first step of SCFA degradation is catalyzed by short-chain acyl-CoA dehydro-
genase (SCAD), a flavoprotein cooperating with ETF/ETF-dehydrogenase. Butyryl-CoA,
formed from butyrate produced by gut microbiota, is the major substrate for SCAD, and the
product is crotonyl-CoA [102]. SCAD is abundant in the liver, heart, and skeletal muscles.
It is a matrix-localized homotetramer. In the liver and kidneys, SCAD also displays oxidase
activity, but the significance of this feature is unresolved [103,104]. The other enzymes
involved in short-chain acyl-CoA oxidation are crotonase (enoyl-CoA hydratase), medium-
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chain hydroxy acyl-CoA dehydrogenase, short-chain hydroxy acyl-CoA dehydrogenase
(SCHAD), and medium-chain ketoacyl-CoA thiolase (MCKAT), and all those activities are
localized in the mitochondrial matrix. Human crotonase uses crotonyl-CoA as a substrate.
It is also involved in the metabolism of some amino acids. Crotonase is present in signifi-
cant amounts in the liver, less in muscles and fibroblasts, and even less in the kidneys and
spleen [105,106]. Hydroxyacyl-CoA dehydrogenase is a homodimer localized in the matrix,
which produces acetoacetyl-CoA and NADH. The highest activity of this enzyme is present
in the heart, muscles, liver, and pancreas [107]. MCKAT catalyzes the last step of short-
chain FAO. The activity of MCKATs is present in the mitochondrial matrix, peroxisomes,
and cytosol. MCKATs that are present in the matrix of human mitochondria have two main
substrates: methyl-acetyl-CoA (metabolized into propionyl-CoA) and acetoacetyl-CoA
(metabolized into two molecules of acetyl-CoA).

1.4. Peroxisomal FAO

In the liver, FAO takes place both in mitochondria and peroxisomes. However, under
physiological conditions, peroxisomal FAO accounts for approx. 5% of total FAO in the
liver [108]. Peroxisomal βOX differs significantly from mitochondrial βOX [109,110]. In mi-
tochondria, acyl-CoA dehydrogenases transfer the electrons to ETF, which are subsequently
transferred to the mitochondrial respiratory chain and reduce oxygen to water, producing
energy (ATP) [82]. In contrast, peroxisome acyl-CoA oxidase 1 (ACOX1) reduces FAD, and
electrons are transported directly from FADH2 to molecular oxygen, generating hydrogen
peroxide (H2O2) [110]. CoA esters of straight-chain FAs (VLCFAs, LCFAs, PUFAs, and
dicarboxylic acids) are preferred substrates for ACOX1, whereas ACOX2 is responsible for
the oxidation of branched-chain FAs (BCFA) and the transformation of bile acid interme-
diates [111]. In addition, Ferdinandusse et al. identified a novel ACOX isoform, ACOX3,
which is involved, similar to ACOX2, in the degradation of BCFAs [112].

The oxidation of LCFAs in peroxisomes stops at the level of MCFA-CoAs [110]. MCFA-
CoAs can be hydrolyzed to FFAs by the peroxisomal thioesterases. Then, MCFAs, via
the pore-forming proteins, leave the peroxisome and are transported to the mitochondria,
where βOX is completed. The second way of MCFA oxidation uses carnitine and carnitine
acyltransferase with specificity for short- and medium-chain acyl-CoA. Formed acylcar-
nitines are transported into mitochondria via the mitochondrial CAC [113]. It should
be emphasized that peroxisomal FAO needs the participation of mitochondria not only
for the oxidation of acetyl-CoA (formed from MCFA-CoAs) but also for the oxidation of
NADH [110,114]. For a summary of mitochondrial and peroxisomal βOX, see Table 3.

Table 3. Comparison between peroxisomal and mitochondrial β-oxidation. ABCD1–4—ATP-binding
cassette sub-family D 1–4, ACADs—acyl-CoA dehydrogenases, ACOXs—acyl-CoA oxidases, BCFA—
branched-chain fatty acid, CPT1—carnitine palmitoyltransferase 1, CPT2—carnitine palmitoyltrans-
ferase 2, CAC—acylcarnitine translocase, FAs—fatty acids, VLCADs—very-long-chain fatty acids,
LCFAs—long-chain fatty acids, MCFAs—medium-chain fatty acids, PUFAs—polyunsaturated fatty
acids, SCFAs—short-chain fatty acids, H2O—hydrogen peroxide, ETF—electron-transferring flavo-
protein, OXPHOS—oxidative phosphorylation.

Peroxisomal β-Oxidation Mitochondrial β-Oxidation References

Proteins involved in the transport of
FAs to peroxisomes/mitochondria ABCD1, ABCD2, and ABCD3 Carnitine transport system

(CPT1, CPT2, CAC) [115,116]

Substrates

VLCFAs (>C22), BCFAs (e.g., pristanic
acid), PUFA, 2-hydroxy FAs, long-chain
dicarboxylic acids, bile acid
intermediates, and a number
of prostanoids

VLCFAs (≤22), LCFAs, MCFAs, and SCFAs [117,118]
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Table 3. Cont.

Peroxisomal β-Oxidation Mitochondrial β-Oxidation References

Enzyme catalyzing the first reaction

ACOXs
The transfer of electrons from FADH2 to
oxygen results in the production of
H2O2, which is subsequently cleaved by
peroxisomal catalase

ACADs
The electrons that originate from FADH2 are
transported to ETF, the ETF dehydrogenase,
and transferred to OXPHOS. Finally, they
reduce oxygen to water, which results in the
production of energy in the form of ATP

[82,110]

β-oxidation end products Acetyl-CoA, NADH, MCFAs, and
FADH2

Acetyl-CoA, NADH, and FADH2 [94,110]

It has been shown that during peroxisomal βOX (both dicarboxylic and monocar-
boxylic acids), free acetate is formed, which is preferentially exported from the hepatocyte
and used as an energy substrate in other organs [113]. It has been postulated that acetate is
formed from acetyl-CoA in a reaction catalyzed by acetyl-CoA hydrolase [92].

1.4.1. Peroxisomal α-Oxidation—Role in Phytol and Phytanic Acid Metabolism

The average Western diet contains approx. (a) 50–100 mg per day of phytanic acid,
(b) 10–30 mg per day of pristanic acid, and (c) 10 mg per day of phytol [119]. Phytol
mostly comes from nuts [120]. Phytanic acid and pristanic acid are derived primarily
from lipids found in beef, dairy products, and fish. [119]. The phytanic acid present in the
diet is derived mainly from phytol [121]. Phytol is widely distributed as a constituent of
chlorophyll present in the green leaves of plants and trees [3]. Bacteria present in the rumen
of ruminant animals cleave the phytol from the porphyrin ring of chlorophyll (the human
alimentary tract cannot do this). The released phytol can be oxidized to phytanic acid in
the ruminants [3]. Thus, it is clear that phytanic acid is present in meat and dairy products
from grass-fed cattle or other ruminants. Phytanic acid can also be derived from vegetables
(as phytol bound to chlorophyll) [122]. Moreover, phytyl FA esters are also present in the
leaves of some plants, fruits, and vegetables. These compounds are hydrolyzed in the
human gastrointestinal tract, providing phytol [123].

Subjects consuming products rich in phytol and phytanic acid oxidize these com-
pounds via α-oxidation because BCFAs containing a methyl group in the 3-position (like
phytanic acid) are not metabolized by βOX. First, phytol is oxidized to phytenal in the
reaction catalyzed by alcohol dehydrogenase. Formed phytenal is oxidized by aldehyde
dehydrogenase to phytenic acid, which in turn is converted to phytenoyl-CoA by acyl-
CoA synthetase. In the reaction catalyzed by enoyl-CoA reductase, phytenoyl-CoA is
converted to phytanoyl-CoA. Phytanoyl-CoA can also be formed from phytanic acid in the
reaction catalyzed by acyl-CoA synthetase. Formed phytanoyl-CoA undergo α-oxidation
to 2-hydroxyphytanoylo-CoA, catalyzed by phytanoyl-CoA 2-hydroxylase. This process
requires 2-oxoglutarate and Fe2+, and O2. 2-hydroxyphytanoilo-CoA is converted with the
participation of hydroxy acyl-CoA and aldehyde dehydrogenase to pristanic acid, which is
activated to pristanoyl-CoA by acyl-CoA synthetase. Next, pristanoyl-CoA undergoes per-
oxisomal βOX to 4,8-dimethyl nonaoyl-CoA, which in turn is metabolized in mitochondria
(Figure 2) [123].

Deficiency of the phytanoyl-CoA 2-hydroxylase impairs the conversion of phytanic
acid to pristanic acid (2-methyl BCFAs) and leads to Refsum disease (type IV motor and
sensory neuropathy) [124,125]. The only therapy available for that disorder is a diet low in
phytanic acid.
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1.4.2. Peroxisomes Are Essential for the Degradation of Dicarboxylic Acid Formed during
ω-Oxidation in Microsomes

VLCFAs are also oxidized in microsomes via ω-oxidation. In humans, the first step of
ω-oxidation is catalyzed by CYP (CYP4F2 or CYP4F3B). Omega-hydroxy-VLCFAs, formed
by CYP4F2 or CYP4F3B, can be oxidized to ω-HOOC-VLCFA (dicarboxylic-VLCFA) by
alcohol dehydrogenase and subsequently by aldehyde dehydrogenase. Formed HOOC-
VLCFA is then oxidized by βOX in peroxisomes. Importantly, the βOX of HOOC-VLCFA
is not affected in X-ALD (X-linked adrenoleukodystrophy) patients [2]. Thus, it has been
suggested that the peroxisomal βOX of dicarboxylic-VLCFA (formed duringω-oxidation)
can provide an alternative route of VLCFA oxidation in X-ALD patients (Figure 3) [2].
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1.4.3. Peroxisomal FAO—Potential Role in the Utilization of Toxic FFAs

Peroxisomal βOX is necessary for the oxidation of VLCFAs (≥22 carbons), both
saturated and mono- and polyunsaturated [110,113]. These FFAs need to be degraded
not because of their role in providing energy but due to the toxic effect of their excessive
accumulation (for instance, monounsaturated erucic acid C22:1, present in commonly used
canola oil) [113,126]. The βOX of VLCFAs, notably C26:0 and longer-chain FFAs, occurs
exclusively in peroxisomes [113].

Abnormalities in the biogenesis of peroxisomes are the cause of Zellweger syndrome.
This rare familial disease is characterized by muscle weakness, hepatomegaly, and brain
and kidney dysfunction. Goldfischer et al. reported that peroxisomes are absent in the liver
and kidney of patients with this syndrome [127]. Consequently, significant amounts of
VLCFAs and bile acid synthesis intermediates are accumulated in plasma [125,127–129].

Subfamily D of ABC transporters (ATP-binding cassette transporters) in mammals
comprises four distinct proteins, namely ABCD1 (adrenoleukodystrophy protein), ABCD2
(adrenoleukodystrophy-related protein), ABCD3 (70 kDa peroxisomal membrane protein),
and ABCD4 (peroxisomal membrane protein 69). Three of these, ABCD1-3, are local-
ized solely in peroxisomes and mediate the uptake of substrates into the peroxisome for
βOX [115].

ABCD1 and ABCD2 facilitate the transport of VLCFAs or their CoA derivatives into
peroxisomes. Interestingly, ABCD1 has a higher specificity for saturated VLCFA-CoA. In
contrast, ABCD2 prefers to transport PUFAs, such as C22:6-CoA and C24:6-CoA [130].
However, it is worth adding that the main substrate for ABCD2 in humans is still not
completely defined [131]. The ABCD3 transporter is important in transporting branched
chain acyl-CoA and bile acid intermediates, e.g., di- and tri-hydroxycholestanoyl-CoA
(DHCA and THCA) [132]. Abcd genes are under complex regulation at the transcriptional
level. The transcription of Abcd1, Abcd2, and Abcd3 genes is regulated by PPARα [133,134].
Leclercq et al. demonstrated that the hepatic expression of Abcd2 and Abcd3, but not Abcd1
and Abcd4, exhibits a high degree of sensitivity toward dietary PUFA intake [135].

1.4.4. Peroxisomal FAO Related to the Synthesis of Cholesterol and Phospholipids

Acetyl-CoA formed during FAO in peroxisomes can be used for synthesizing choles-
terol and phospholipids (mainly plasmalogen) [136]. For instance, the first two steps of
plasmalogen biosynthesis occur in peroxisomes from the acetyl-CoA derived from perox-
isomal FAO [137]. Recent studies indicate that peroxisomal βOX stimulates cholesterol
biosynthesis in the liver of diabetic mice [138]. Moreover, it has been reported that the
inhibition of peroxisomal βOX suppresses cholesterol biosynthesis and consequently low-
ers plasma cholesterol concentration. Based on these data, the authors suggest that the
upregulation of peroxisomal cholesterol biosynthesis related to βOX may contribute to
diabetes hypercholesterolemia [138].

1.4.5. Peroxisomal FAO—Inhibition of Lipophagy

Lipophagy involves the encapsulation of lipid droplets into the autophagosome,
which fuses with the lysosome, resulting in the hydrolysis of triacylglycerols catalyzed
by lysosomal acid lipase A [110,139–141]. Peroxisomal FAO in the liver promotes hepatic
steatosis by inhibiting lipophagy [141]. Supplied by FAO, acetyl-CoA is involved in the
acetylation of Raptor, a component of mTORC1, a metabolic regulatory complex that
inhibits autophagy [141].

1.4.6. Peroxisomal FAO—Regulation of Mitochondrial β-Oxidation

Peroxisomal βOX increases the cellular NADH/NAD+ ratio, which inhibits the
SIRT1/AMPK pathway. The inhibition of that pathway leads to increased ACC activ-
ity. It causes elevation of malonyl-CoA levels in the cytosol, inhibiting CPT1 and the
transport of LCFAs into mitochondria, decreasing mitochondrial βOX [110,142].
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1.4.7. Peroxisomal FAO As a Process Associated with the Production of
H2O2—An Important Signaling Molecule and Toxic Substance

As mentioned above, peroxisomal FADH2 formed during βOX is involved in H2O2
production. H2O2 is an important signaling molecule that regulates many cellular pro-
cesses by modulating the activity of several proteins via cysteine oxidation [143]. Under
physiological conditions, catalase converts most of the H2O2 formed during peroxisomal
βOX to H2O and O2 [144]. However, when catalase activity is decreasing, for instance,
during aging, part of H2O2 formed via peroxisomal βOX diffuses out the peroxisome
(it is a relatively stable ROS) and may modulate the activity of redox-sensitive protein,
which in turn triggers a complex network of signaling processes leading to regulation
of (a) NF-κB activation, (b) E cadherin expression, (c) the secretion of matrix metallopro-
teinases, (d) mTORC activity, and (e) autophagy [144,145]. However, it is generally believed
that reactive oxygen species (ROS) play a dual role. At physiological conditions, they are
required for many signaling processes, affecting proliferation, differentiation, and aging,
but there are also toxic byproducts of aerobic metabolism, including products of FFA oxida-
tion [146]. H2O2 can be converted to highly reactive hydroxyl radicals, causing damage
to proteins, lipids, and DNA, leading to many diseases, including atherosclerosis, cancer,
diabetes, and rheumatoid arthritis [147]. Thus, it is tempting to speculate that microsomal
βOX, via H2O2 production, may affect aging processes and aging-related diseases.

1.4.8. Microsomal Fatty Acidω-Oxidation

Under physiological conditions, FA ω-oxidation accounts for no more than 10% of
total fatty oxidation in the liver [2]. In this process, the terminal methyl group (ω carbon)
of FFAs is oxidized to the carboxyl group. The first step of ω-oxidation is catalyzed by
the CYP family present in the microsome (including CYP4F2 and CYP4F3B), which re-
quires NADPH and O2. Formed ω-hydroxy-FFAs are oxidized to ω-oxo-FFAs by cytosolic
alcohol dehydrogenase. Finally,ω-oxo-FFAs are oxidized by cytosolic aldehyde dehydro-
genase to carboxy-FFAs. Formed carboxy-FFAs (dicarboxylic-FAs) can be excreted into
the urine or transported into mitochondria or peroxisomes, where they are metabolized
via βOX. It should be noted that phytanic acid (described above) can also be oxidized via
ω-oxidation [2]. Moreover, it has also been postulated that microsomalω-hydroxylase is
involved in (a) the synthesis ofω-hydroxylated arachidonic acid in the human liver and
kidney, which regulates cardiovascular function (as vasoconstrictor), (b)ω-oxidation, and
consequently the inactivation of leukotriene B4 (LTB4) in human leukocytes, and (c) the
ω-oxidation of MCFAs and some xenobiotics [2].

2. The Function of FAO in Selected Organs
2.1. Liver

In the liver, FAO takes place in mitochondria and peroxisomes [148]. In a condition
of low dietary carbohydrate supply or a prolonged fasting state, the activity of FAO
increases significantly in the liver mitochondria, which is associated with a significant
amount of energy production. In the liver, FAO is also the predominant source of acetyl-
CoA, the substrate for ketone bodies (KBs) synthesis, and an important substrate for
cholesterol synthesis, II phase detoxication, protein acetylation, and the synthesis of many
other compounds, including N-acetylglutamate (NAG) synthesized by N-acetylglutamate
synthase [149–153].

When intensive FAO occurs in the liver, acetyl-CoA and acetoacetyl-CoA (products
of FAO) are used in the mitochondrial matrix to synthesize KBs. Acetoacetyl-CoA can
also be formed by condensing two acetyl-CoA molecules in a reaction catalyzed by acetyl-
CoA acetyltransferase 1. Subsequently, mitochondrial 3-hydroxy-3-methylglutaryl-CoA
synthase 2 (HMGCS2) catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA,
generating 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which is cleaved by HMG-CoA
lyase (HMGCL), yielding acetoacetate (AcAc) and acetyl-CoA. AcAc can be reduced to D-
β-hydroxybutyrate (BHB) by D-β-hydroxybutyrate dehydrogenase 1 (BDH1). In addition,
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AcAc can undergo spontaneous decarboxylation to acetone [82,154]. The plasma concen-
tration of KBs under physiological conditions in humans is low (0.05–0.1 mmol/L) and
significantly rises during prolonged starvation, ketogenic diet consumption, or insulin defi-
ciency to 5–8 mmol/L and even 20 mmol/L in severe diabetic ketoacidosis [154]. Of the total
pool of circulating KBs, BHB accounts for about 70% and is the most abundant [152,154].
The BHB to AcAc synthesized ratio is proportional to the mitochondrial NADH/NAD+

equilibrium [155]. The formed BHB and AcAc are alternative energy sources for extrahep-
atic tissues, particularly skeletal muscle, heart, kidneys, and the nervous system during
diminished glucose availability [154,155]. The main regulatory steps of ketogenesis include
(a) the availability of FFAs to hepatocytes, (b) the transport of acyl-CoA into mitochondria,
and (c) HMGCS2 activity, a rate-limiting enzyme in ketogenesis. HMGCS2 is regulated at
the level of gene transcription and by post-translational modifications [154]. The increased
level of ketogenesis also occurs in subjects on a ketogenic diet and patients with severely
uncontrolled diabetes [151,152]. KBs produced during ketogenesis are AcAc, BHB, and
acetone [152].

2.1.1. Mitochondrial FAO As a Regulator of Gluconeogenesis

In carbohydrate-deficient states, gluconeogenesis is the primary source of blood glu-
cose. The stimulation of gluconeogenesis is attributed to mitochondrial FAO in connection
with the production of acetyl-CoA and NADH. Acetyl-CoA is an allosteric activator of pyru-
vate carboxylase, a key gluconeogenic enzyme, whereas NADH is used to form 3-phosphate
glyceraldehyde (precursor of glucose) from 1,3-bisphosphoglycerate [156]. Furthermore,
the acetyl-CoA is an activator of pyruvate dehydrogenase kinase, which phosphorylates
and consequently inhibits the pyruvate dehydrogenase complex (PDC), inhibiting the
conversion of pyruvate into acetyl-CoA and further into the TCA [155,157]. Accumulating
pyruvate can be converted by pyruvate carboxylase to oxaloacetate, a glucose precursor.

2.1.2. Mitochondrial FAO As a Source of Acetyl-CoA for Protein Acetylation

Protein acetylation is a reversible post-translational modification of proteins, which
involves the transfer of the acetyl group from acetyl-CoA to the ε-amino group of ly-
sine [150]. Acetylation is catalyzed by lysine acetyltransferase using acetyl-CoA as one of
the substrates (the second substrate is a non-acetylated protein). Acetylation can also occur
non-enzymatically, and this process increases with increasing pH [150]. The acetyl-CoA
necessary for acetylation is formed during mitochondrial βOX. It was shown that the
hyperacetylation of liver protein depends on βOX since mice deficient in βOX cannot
increase the acetylation of proteins [158]. Deacetylation is catalyzed by lysine deacety-
lase [150]. Protein acetylation and deacetylation are important regulatory mechanisms that
modulate more than 2000 proteins (Figure 4) [159]. Interestingly, enzymes regulated by
acetylation/deacetylation include FAO enzymes (LCAD and MCAD). LCAD is acetylated
and consequently inactivated at lysine 42. Deacetylation and, consequently, the activation
of LCAD is catalyzed by SIRT3—an NAD+-dependent protein deacetylase [160]. MCAD
is acetylated and inactivated at lysine 318 and 322 [161]. It should be noted that liver
mitochondrial enzymes regulated by acetylation and deacetylation are also (a) enzymes
involved in ketogenesis and (b) enzymes involved in urea synthesis [162–165].
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Figure 4. The role of free fatty acids in the acetylation of proteins.

2.1.3. The Potential Role of Mitochondrial FAO in the Regulation of Ureagenesis

Human adults produce approximately 1 mol (approx. 17 g) of toxic ammonia daily,
most of which, via carbamoyl phosphate, is converted to nontoxic urea (at physiological
concentrations) in the urea cycle [166]. It is well known that the synthesis of urea in humans
and most animals requires, among others, four molecules of ATP per one formed molecule
of urea as a source of energy and NAG as a positive allosteric activator of carbamoyl
phosphate synthetase I (CPS1), a key regulatory enzyme in the urea cycle [167]. In theory,
mitochondrial βOX may be involved in the production of both ATP and NAG. Indeed,
some data indicate that an increase in liver FAO was associated with increased NAG
level [168]. Therefore, stimulation of the liver FAO may likely increase acetyl-CoA level, a
substrate for NAG synthesis and a key activator of CPS1. Thus, one can conclude that liver
mitochondrial FAO plays an important role in the regulation of ureagenesis. In this manner,
liver FAO appears necessary to prevent the accumulation of free ammonia, a neurotoxic
compound, in blood and other tissues, including the brain. This conclusion is confirmed by
published data, indicating that the defect of liver mitochondrial βOX is associated with
hyperammonemia [169].

2.1.4. The Potential Role of Mitochondrial FAO in Phase II Detoxication

The liver requires a lot of ATP to perform detoxication of xenobiotics and endogenously
produced substances (for instance, the conversion of ammonia to urea described above).
ATP is needed mainly to synthesize uridine diphosphate glucuronic acid, glutathione,
3′-phosphoadenosine-5′-phosphosulfate, and S-adenosylmethionine, compounds playing
a key role in phase II of detoxication. Energy can be provided by βOX. Moreover, acetyl-
CoA in phase II detoxication can be formed during liver mitochondrial βOX. N-acetyl
transferases (NATs), also known as arylamine N-acetyl transferases, play an important
role in the phase II detoxication of xenobiotics, including drugs and detoxication [153]. In
humans, the acetylation of xenobiotics is catalyzed by NAT1 and NAT2. These enzymes are
responsible for transferring the acetyl group from acetyl-CoA to convert aromatic amines
to aromatic amides or hydrazines to hydrazides [153]. It should be noted that in humans,
acetylation is an important route of biotransformation for many arylamine and hydrazine
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drugs, as well as for the biotransformation of carcinogens present in the diet, cigarette
smoke, and environment.

2.1.5. Hepatic Manifestations of FAO Disorders (FAOD) Caused by Genetic Defects

One of the frequent manifestations in patients with FAOD is liver dysfunction. It
is mainly associated with deficiencies of VLCAD, LCHAD, MCAD, CPT1, CPT2, and
CAC [82,170]. Symptoms are triggered by extended fasting, exercise, fever, sepsis, and
other metabolic stress causes. Liver dysfunction resulting from abnormal FAO usually
appears early in life. It may include hypoketotic hypoglycemia or liver dysfunction re-
sulting from hepatocyte damage, including Reye syndrome. Hepatic symptoms may also
occur later in life [170]. Hypoglycemia in patients with FAOD occurs when glycogen
stores are depleted, possibly due to increased peripheral glucose uptake. It may result
from impaired energy production from FFAs and the reduced synthesis of KBs by the
liver [171]. It may also be a consequence of reduced hepatic gluconeogenesis [172]. FAOD
can lead to the sudden death of newborns, mainly due to the limited glycogen reserves
and high metabolic rate [171]. Most of the liver damage observed in FAOD is due to the
toxic effects of accumulating FFAs and their carnitine derivatives. These toxic effects are
related to (a) the inhibition of the mitochondrial respiratory chain and energy deficiency, (b)
increasing reactive oxygen species (ROS) formation, and an imbalance in calcium homeosta-
sis, leading to mitochondrial damage and further apoptosis or necrosis of cells [171,173].
Symptoms of Reye-like classified hepatic-presenting FAOD include hepatic encephalopathy,
hepatomegaly, hyperammonemia, and microvesicular steatosis of the liver [170].

2.2. Heart and Skeletal Muscles

The heart requires enormous quantities of ATP to maintain its contraction capacity
and ion homeostasis. ATP and phosphocreatine stored in cardiomyocytes ensure the heart
works properly for only a few seconds. Therefore, ATP must be constantly synthesized
(from ADP and Pi), mainly through oxidative phosphorylation, providing approx. 95% of
ATP, with anaerobic glycolysis providing the rest. A healthy subject’s heart is metabolically
flexible and readily shifts between energetic substrates [174]. In the resting state, βOX
contributes to the synthesis of approx. 50–70% of ATP. The remaining is mainly provided
by glucose oxidation. KBs (mainly BHB) are the third supplier of ATP (10–15%), whereas
amino acids contribute 1–2% for energetic purposes [175]. During exercise or myocardial
stress, lactate may also be an important fuel for the myocardium [176].

Significant changes in heart mitochondrial energy metabolism are related to patho-
logical conditions. In diabetes, the ratio of FAO to glucose oxidation is increased due to
elevated FAO and lowered glucose oxidation [177]. The inhibition of glucose utilization
by FFAs occurs at multiple levels, including glucose uptake by cells, the rate of glycolysis,
and mitochondrial oxidation. Recent research suggests that cardiac metabolic overload
with oleate or palmitate leads to increased global protein acetylation, which inhibits glu-
cose transporter type 4 (GLUT4) translocation to the plasma membrane and consequently
inhibits glucose uptake [178]. Lipid abnormalities leading to atherosclerotic plaque for-
mation in the vascular wall also induce a remodeling of the energy metabolism in cardiac
myocytes toward accelerated FFA and branched-chain amino acid oxidation. Redirection
toward FAO increases the oxygen cost of ATP formation and may become maladaptive and
reduce myocyte survival rates under acute oxygen deprivation [179]. The administration
of trimetazidine (a competitive inhibitor of LCKAT), etomoxir, or perhexiline (inhibitors
of CPT1) resulted in a cardioprotective effect in humans with heart failure (HF), probably
through the inhibition of FAO and an increase in glucose oxidation [174,180]. In general,
these data suggest that reduced FAO might improve cardiac function under pathological
conditions.

However, the downregulation of LCAD or MCAD in patients with HF and animals
during HF progression was detected. Moreover, impaired FAO contributes to the progres-
sion of HF by altering cardiac energy metabolism after myocardial infarction [181]. Thus,
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the problem of whether a reduction in FAO improves or worsens cardiac function is still an
open question.

Inconsistent results have also been reported regarding the level of malonyl-CoA (as a
natural inhibitor of FFA oxidation) and its role in cardiac function. The inhibition of MCD,
increasing the malonyl-CoA level (inhibitor of CPT1, and consequently FAO), improved
cardiac function by increasing cardiac output. The promising results of MCD inhibition
were associated with the reduced production of protons due to enhanced coupling between
glycolysis and glucose oxidation [182]. However, ACC inhibition, resulting in a decrease in
the malonyl-CoA level, which stimulates the oxidation of FFAs, was also associated with a
cardioprotective impact in the failing mouse heart [183].

Animal studies showed that increased FAO (caused by ACC2 deletion) did not induce
cardiac dysfunction [184]. In addition, it was demonstrated that increased FAO in the
heart protects against cardiomyopathy in chronically obese mice [183]. However, a strong
correlation between decreased cardiac efficiency and an over-dependence on FAO has been
reported in ob/ob mice and obese humans [185,186].

Increased cardiac FAO has been considered to cause elevated ROS production in
mitochondria and subsequent oxidative damage of mitochondria, contributing to cardiac
dysfunction in obese rodent models [187,188]. The molecular mechanisms responsible
for FAO-induced lipotoxic cardiomyopathy are also unclear [184]. Several pathogenetic
pathways have been proposed, such as mitochondrial dysfunction and oxidative stress, ER
stress, and apoptosis induced by toxic lipids.

Levels of acyl-CoA are reduced in failing human hearts and hypertrophic mouse
hearts. The heart-specific ACSL1 overexpression in mice causes an increase in acyl-CoA
levels and a stable turnover of TAG with the preservation of all cardiac functions after
pressure overload surgery. Therefore, it was suggested that therapies aimed at enhancing or
mimicking the effects of ACSL1 could positively impact the treatment of chronic HF [189].

Cardiac dysfunction due to inborn errors in LCHAD, MTP, neonatal CPT2, VLCAD,
and MCAD is the most common [190,191]. This FAOD may manifest in the neonatal period
with severe symptoms, including cardiomyopathy, hepatic dysfunction, and hypoketotic
hypoglycemia.

Patients with FAOD may develop hypertrophic cardiomyopathy due to an inadequate
energy supply to the heart and the subsequent inefficient contraction [170]. Arrhythmias
in FAOD patients are often multifactorial but mainly occur as LC-FAO defects. Conduc-
tion disturbances and atrial tachycardia were detected in patients with CPT2, CAC, and
LCHAD/MTP deficiency [192]. Ventricular tachycardias were observed in patients with
FAO deficiency [193]. It is critical to quickly and correctly identify significant signs and
symptoms in patients with FAOD to manage metabolic decompensation and reduce pos-
sible comorbidities. Cardiac arrhythmias and hypoglycemia are often observed in the
early postnatal period and may lead to sudden infant death syndrome. Therefore, inborn
errors of FAO should be considered in all instances of sudden unexplained death [170]. In
infancy and early childhood, FAOD may manifest as cardiac, skeletal muscle, and liver
dysfunction and may also cause fasting or exercise-induced hypoketotic hypoglycemia,
Reye-like syndrome, cardiomyopathy, and recurrent rhabdomyolysis [190]. Muscular symp-
toms, especially rhabdomyolysis and cardiomyopathy, are most common in adolescents or
adults [194].

Heart failure associated with FAO deficiency is difficult to treat. Moreover, available
treatments need to address the fundamental pathologies of LC-FAODs. Using medium
even-chain triacylglycerols (MCT oil), which provided the MCFA source (mainly octanoate),
did not eliminate symptoms of LC-FAO defects due to a deficit of TCA intermediates [190].
Triheptanoin (UX007, Ultragenyx Pharmaceuticals) is a triacylglycerol composed of seven
carbon (C7:0). It was reported that the oral administration of triheptanoin resulted in a
significant and rapid beneficial effect on cardiac function in children with various genetic
FAO disorders (VLCAD, MTP, LCHAD, or CAC deficiency) [195]. Vockley et al. demon-
strated after a long-term study that triheptanoin treatment was associated with significant
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improvements in glucose homeostasis and cardiomyopathy. Moreover, episodes with rhab-
domyolysis were also reduced but with less effect than the other symptoms, which may
suggest different pathophysiologic mechanisms that require additional therapy [196,197].

FAODs with skeletal myopathy occur most frequently in LCHAD, MTP, VLCAD,
and CPT2 defects. Lack of energy production during the FAO process in skeletal muscles
results in fatigue, which manifests as myalgia, muscle weakness, myoglobinuria, physical
intolerance, and episodes of rhabdomyolysis. Myopathy usually begins due to excessive
endurance exercise, anesthesia, or a viral illness in adolescents or adults but can also
appear earlier. A significant deficiency of ATP in muscle cells leads to rhabdomyolysis,
which, consequently, causes the release of myoglobin into the extracellular fluid and
circulation [190]. It was demonstrated that bezafibrate, a PPARα agonist, might reduce
rhabdomyolysis episodes in patients with CPT2 deficiency [198]. However, a different
study demonstrated no beneficial effect of bezafibrate on FAO or physical ability [199]. Due
to the absence of highly effective therapies to prevent rhabdomyolysis associated with FAO,
patients with these disturbances should reduce prolonged and intense physical activity.

Increased skeletal muscle FAO has been proposed as a potential mechanism leading to
impaired muscle insulin sensitivity [200]. Gavin and colleagues revealed that patients with
poorly controlled type 2 diabetes (T2D) have elevated incomplete skeletal muscle FAO com-
pared with well-controlled T2D patients [201]. Moreover, incomplete FAO was inversely
related to muscle insulin sensitivity and glycemic control. The experiment also indicated
that elevated HbA1c is associated with the upregulation of FAO gene expression in the
skeletal muscle of T2D patients. Lipid overloading promotes incomplete FAO, increasing
acylcarnitine levels in T2D patients’ plasma, possibly resulting in insulin resistance.

FAO is also dysregulated in the skeletal muscles of obese individuals. Several studies
comparing metabolism in the muscles of obese and lean individuals demonstrated that in
obesity, the skeletal muscle metabolic capacity is primarily involved in FA esterification and
storage rather than oxidation [202,203]. In the skeletal muscle of obese women, maximal
CPT1 activity was decreased by 27–35% compared to lean women. Moreover, the ratio of
muscle CPT1 activity to FABPm protein in obese individuals was half the level detected in
lean individuals [204]. This may suggest that in obesity, FAs can be taken up from plasma
but cannot be further used as an energy source due to the muscle-reduced capacity for FA
oxidation. Aerobic exercises seem appropriate to improve FAO and lipid metabolism in
healthy and insulin-resistant obese individuals [203].

2.3. Kidney

Removing waste from the blood, reabsorbing glucose and other nutrients, regulating
the balance of electrolytes and fluid, maintaining acid-base homeostasis, and regulating
blood pressure by the kidney requires the continuous synthesis of ATP. FFAs serve as key
substrates for energy production in the kidney [205]. Low βOX may contribute to the
development and progression of kidney diseases due to low ATP levels and the excessive
accumulation of triacylglycerols, leading to cellular lipotoxicity and the development of
tubulointerstitial fibrosis [206–208]. The proximal tubule cells prefer FAO over glycolysis
as a process of synthesizing ATP and display low metabolic flexibility between FAO and
glycolysis, which make these cells more sensitive to acute and chronic hypoxia [209,210].
In contrast, the distal tubule cells are less susceptible to ischemic injury and nephrotoxins
because they may switch from FAO to glycolysis during hypoxic/ischemic conditions [210].

The system of delivering FFAs to kidney cells is generally similar to other organs
(presented above). Briefly, FFAs can be taken up by the proximal tubular cells by special
FFA transporters (CD36, FABPs, FATPs) or reabsorbed from the glomerular filtrate by the
endocytosis of receptor-mediated FA-bound albumin [210,211].

The downregulation or deficiency of CPT is crucial to impaired FAO in experimental
models of acute kidney injury or diabetic nephropathy [210,212,213]. It has been shown
that impaired lipid metabolism may be linked directly to kidney fibrosis [212,214]. Usu-
ally, kidney fibrosis is associated with the transforming growth factor (TGF-β) and is the
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final pathological process of any ongoing chronic kidney disease (CKD) or maladaptive
repair. The changes in CPT1 expression significantly ameliorated FAO metabolism in the
kidney [212]. Patients with CKD present decreased activity of CPT1 and an increased
accumulation of short- and middle-chain acyl-carnitines due to impaired FAO. Therefore,
strategies that can improve the mitochondrial structure and function, overcome the nega-
tive effect of TGF-β on the oxygen consumption rate, and promote tubular epithelial cell
differentiation are postulated as potent therapeutics for kidney fibrosis in CKD [212,215].
In general, TGF-β takes part in many physiological and pathological processes, including
(a) angiogenesis, (b) apoptosis, (c) the division of mesenchymal cells, (d) the regulation
of the synthesis and the degradation of extracellular matrix protein. At the molecular
level, TGF-β1 inhibits the expression of CPT1 and decreases FFA catabolism. Moreover,
TGF-β1 also represses the synthesis of mRNA encoding the upstream regulators of CPT1,
namely PPARα and PPARγ coactivator-1α (PGC1α) [216,217]. Genome-wide transcriptome
studies revealed that enzymes and regulators of FAO are reduced in the kidneys of patients
with CKD and experimental models of kidney fibrosis [217]. Mice with kidney injury
treated with etoxomir (a specific inhibitor of CPT1) display a higher expression of fibrosis
markers [218]. In addition, treating mice with C75, a synthetic compound that increases
CPT1 activity, decreases the apoptosis rate in the kidney [217]. The above-presented data
suggest that CPT plays a key role in kidney physiology and pathology.

It has been postulated that restoring FAO by regulating the level or activity of PPARα
and TGF-β may improve the treatment of kidney disorders [219]. PPARs and PGC1α
are the critical transcription factors/coactivators that regulate the expression of proteins
involved in the uptake and oxidation of FFAs [220]. The administration of fenofibrate, the
agonist of PPARα, strongly induces the expression of genes encoding FAO enzymes (Cpt1,
2 and Acox1, 2). Mice with kidney insufficiency injected with fenofibrate demonstrated
a decreased expression of caspase 3, a reduced apoptosis rate, reduced fibrosis, reduced
kidney injury, and improved renal function. This suggests that fenofibrate treatment
restores FAO-related enzyme expression and may prevent lipid metabolism abnormalities
in kidney diseases [217,220]. The protective effect of Wy-14643 (the PPARα ligand) was also
demonstrated in cisplatin-induced renal failure. Cisplatin causes a significant reduction
in proximal tubule FAO. PPARα ligands prevent acute tubular necrosis by ameliorating
the cisplatin-induced inhibition of two distinct metabolic processes, MCAD-mediated FAO
and PDC activity [219,221]. Also, the ketogenic diet enhanced FAO in mice with kidney
fibrosis, reducing fibrosis in this organ [222]. Overall, βOX provides enough energy to
support various kidney functions and ensures the kidney’s structural integrity [223].

2.4. Lungs

Recent studies indicate that βOX can also play an important role in pulmonary fibrosis,
especially idiopathic pulmonary fibrosis (IPF), a fatal fibrotic disorder of unknown etiol-
ogy [224]. Increased activity of FAO was observed in IPF lungs, which suggests that βOX
can be involved in fibrinogenesis, mainly via macrophage activation [225]. Furthermore,
βOX provides ATP, which is believed to promote macrophage M2 polarization, which plays
a key role in fibrogenesis [226]. It has also been shown that macrophage CD36, involved in
FFA transport, plays an important role in fibrogenesis since the loss of CD36 inhibits lung
fibrosis [227]. Overall, the data presented above indicate that FAO can play an important
role in developing IPF.

2.5. Enterocytes and Colonocytes

Glutamine and glutamate are the main energetic substrates for enterocytes. However,
enterocytes can also oxidize FFAs entering the cells from the plasma and intestinal lumen.
FFAs derived from the intestinal lumen (directly derived from dietary lipids, mainly TAG)
provide more energy to enterocytes (approx. 60%) than FFAs derived from the plasma
(approx. 40%) [228]. A high-fat diet significantly induces FAO in enterocytes. However,
when animals are fed a high carbohydrate diet, FFAs are not an important energy source
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for enterocytes. It has been proposed that in addition to energy production, FAO in the
small intestine (enterocytes) could be a sensor that affects eating behavior [228]. However,
further studies are required to confirm this suggestion.

Colonocytes mainly oxidize SCFAs, including acetate, propionate, and butyrate, which
are produced by gut microbiota. Butyrate is the main energy source of colonocytes and uses
more than 70% oxygen for butyrate oxidation [229]. Any impairment of SCFA oxidation
leads to a disturbance in colonocyte function. For instance, it has been shown that reducing
SCFA oxidation by ibuprofen (a nonselective and nonsteroidal anti-inflammatory drug)
may cause an ulcerative [230].

2.6. βOX in Other Organs/Tissues/Cells
2.6.1. Adipocytes

It was suggested that increased FAO in adipocytes might be a promising therapeutic
strategy for chronic inflammatory diseases, including obesity and T2D [231]. An experiment
with chickens revealed that fasting rapidly increases FAO in white adipose tissue (WAT)
by upregulating the expression of genes involved in this process. Enhanced oxidation
precedes the high level of FFAs in serum, indicating that FAO is induced at the early stages
of lipolysis. Therefore, it may act as an adaptive response to elevated intracellular FFA
levels in adipocytes [232]. Gonzalez-Hurtado et al. demonstrated that FAO is critical not
only for adipose bioenergetics but also for the browning of WAT and BAT survival under
acute thermogenic activation and during periods of BAT quiescence [233].

2.6.2. Brain

It is generally believed that glucose and KBs during starvation, but not FFAs, are
energy substrates for the brain. It has been suggested that a lack of active βOX in neurons
may protect these cells against excessive ROS production and hypoxia [234]. As was already
discussed, both processes’ intensity (excessive ROS production and hypoxia) increase in the
cells oxidizing FFAs. However, some recent studies indicate that βOX can provide up to
20% of the energy used by the entire rat brain [235]. Moreover, it has been shown that FFAs
can be transported through the blood–brain barrier and oxidized by astrocytes [236–239].
Acetyl-CoA, formed as the end product of the βOX in astrocytes, can be used as a substrate
for KB production. Formed KBs can be transported to neurons, where they serve as an
energy substrate [240]. Additionally, FFAs that are peroxidized in hyperactive neurons can
be transported to astrocytes and stored in lipid droplets or oxidized in βOX [241]. Our
recent review extensively discussed the function of FAO in the brain [242].

2.6.3. Endothelium

Endothelial cells (ECs) produce more than 85% of the energy needed in anaerobic
glycolysis [243]. However, it was demonstrated that in proliferating ECs, acetyl-CoA
produced during βOX contributes a significant portion of the carbons required for the TCA
intermediates—precursors of substrates necessary for de novo dNTP synthesis [243,244].
Furthermore, Kalucka et al. demonstrated that quiescent ECs upregulate FAO enzymes to
maintain the TCA for redox homeostasis through NADPH by isocitrate dehydrogenase 2
(IDH2) and ME3 [245]. Summing up, one can say that βOX takes place in ECs and plays
an important role in some processes, including de novo dNTP synthesis and maintaining
redox homeostasis.

2.6.4. Placenta

A very early work from our department demonstrated palmitoyl–carnitine oxidation
in mitochondria isolated from the human term placenta [246]. Later, it was demonstrated
that FAO enzyme activity in the human placenta was higher early in gestation and lower in
term [247,248]. Moreover, it has been shown that a deficiency in FAO may result in placental
dysfunction, leading to gestational complications [249]. An increased expression of genes
associated with βOX has been observed in the human placenta in pre-eclampsia [250].
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Recent studies also indicate the important role of βOX in the placenta for normal fetal
development, although the expression of genes related to βOX in the term human placenta
is about 20 times lower than in the liver [251,252]. Recently published data indicate that
human placental FAO can be inhibited by high glucose concentration in pregnant women
with diabetes. Based on these data, it has been suggested that inhibiting FAO can lead to an
increase in lipid transfer to the fetus and, consequently, excessive fetal growth [253]. The
results presented above suggest that FAO plays an important role in developing the human
placenta and the normal course of pregnancy.

2.6.5. Peripheral White Blood Cells

Glycolysis and glutaminolysis provide enough ATP for the normal function of periph-
eral white blood cells [254]. However, it has been shown that FFAs are also oxidized by
human white blood cells. Moreover, it has been demonstrated that βOX is not significantly
affected by sex or acute exercise, but genetic factors play a significant role in determining
the level of FAO [255]. Interestingly, in healthy subjects’ peripheral blood cells, specific
carnitine esters (different from other tissue) are accumulated [256]. Accordingly, differ-
ent amounts and patterns of acylcarnitine esters were found in patients with defects of
βOX [256,257]. It may have practical significance since analyzing βOX intermediates in
peripheral blood cells may allow the identification of FAO defects.

2.6.6. Steroidogenic Cells

It has been shown that FAO is also active in steroidogenic tissues. Moreover, it has
been demonstrated that FAO activity in steroidogenic cells is regulated by translocator
protein (TSPO), also known as the peripheral benzodiazepine receptor [258]. This protein is
located in the outer mitochondrial membrane, and its depletion leads to increased (a) FFA
uptake by mitochondria, (b) FAO, and (c) ROS production. TSPO depletion in cells induces
a shift in substrate oxidation from glucose to FFAs for energy production. The authors
suggest that TSPO can play an important role in modulating FAO not only in steroidogenic
tissue but also in cells active in lipid storage and metabolism [258].

2.6.7. Osteoclast

Bone formation by osteoblasts and bone resorption by osteoclasts play a crucial role
in skeletal remodeling. These processes require a large amount of ATP produced by
glucose, FA, and amino acid oxidation [259,260]. Several years ago, it was shown that
active osteoclasts exhibit HAD activity [261], suggesting that βOX takes place in these cells
(active osteoclast). Some data indicate that βOX is involved in osteoclastogenesis [262]. It
has also been shown that the cell membrane of osteoclast possesses transporters involved
in LCFA uptake [263,264]. Moreover, it has been reported that the high energy state of an
active osteoclast (osteoclast in the active bone resorption state) could be supported by lipid
catabolism [265].

Recent studies showed (a) a significant increase in LCFA oxidation during osteoclast
differentiation. This was associated with increased mRNA and protein levels of enzymes
involved in βOX [266]. Thus, mitochondrial FAO is important for normal osteoclast forma-
tion and function. Based on these data, one can conclude that FFAs are key energy sources
necessary for bone remodeling, and their inhibition may lead to a disturbance in osteoclast
formation and function [266]. For instance, some authors suggest the role of osteoclast
energy metabolism in the development of osteoporosis [260]. Very recently, the upregu-
lation of CPT1A and increased FAO in osteoclast precursors of patients with rheumatoid
arthritis has been shown [267]. Moreover, enhanced FAO influences osteoclastogenesis and
promotes cell–cell fusion during osteoclast maturation. In contrast, the knockdown of the
CPT1A gene or the inhibition of CPT1A activity by etomoxir (pharmacological inhibitor
of CPT1A) blocked osteoclastogenesis. Based on these data, the authors conclude that
increasing FAO in osteoclast precursors participates in joint destruction in patients with
rheumatoid arthritis [267]. The results presented above indicate that FAO plays an impor-
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tant role in providing energy for osteoclastogenesis and, consequently, skeletal remodeling.
Disturbance in FAO in active osteoclasts might lead to osteoporosis, whereas osteoclast
precursors lead to joint destruction in rheumatoid patients.

2.6.8. Pancreatic β-Cell

FAO in the pancreatic β-cell is involved in the regulation of insulin secretion [268].
Many years ago, it was shown that FFA catabolism via mitochondrial βOX is an important
energy source for pancreatic β-cells [269]. It is also well known that energetic substrates,
mainly glucose, regulate insulin secretion by pancreatic β-cells. However, FFA and amino
acids also stimulate glucose-induced insulin secretion [270]. Glucose metabolism plays
a crucial role in the stimulation of insulin secretion by pancreatic β-cells. It is generally
believed that glucose metabolism in pancreatic β-cells (via a sequence of the following
events: an increase in the ATP/ADP ratio→ closure of the ATP-sensitive K channels→
the cell membrane depolarization and opening of voltage-sensitive Ca2+ channels) raises
intracellular Ca2+ concentration and triggers exocytosis of insulin-containing granules [271].
FFAs have also been shown to stimulate glucose-induced insulin secretion by pancreatic β-
cells over short-time exposure [271]. However, the mechanism by which FFA may stimulate
insulin secretion by pancreatic β-cells is still unknown. By combining several data, Prentki
et al. created a comprehensive model called the “trident model of pancreatic β-cells lipid
signaling” to explain the role of FFAs in stimulating insulin secretion by pancreatic β-
cells [272]. In a nutshell, the model takes into account three interdependent processes. Two
of them are strictly related to the intracellular metabolism of FFAs and the third is related
to membrane FFAR (the free fatty acid receptor present in pancreatic β-cells) activation.
The first intracellular process proposed in this model is associated with elevated levels of
LC-CoA in pancreatic β-cells. It occurs via a sequence of the following events: glucose
metabolism (glucose→→ pyruvate→ acetyl-CoA→ malonyl-CoA), which leads to an
increase in malonyl-CoA, which inhibits CPT1 and consequently slows down FAO. As a
consequence of FAO inhibition, an intracellular increase in LC-CoA takes place. LC-CoA
regulates many pancreatic β-cell functions, including (a) the activation of some types of
protein kinase C (PKC), which plays a crucial role in glucose-stimulated insulin secretion
by pancreatic β-cells, (b) the modulation of ion channels (also involved in insulin secretion),
the modulation of protein acylation channels (also involved in insulin secretion), and
(d) the regulation of some gene transcriptions [271]. The second intracellular process of the
trident model is associated with glucose metabolism, which (a) promotes FFA esterification
by providing glycerol 3-phosphate and malonyl-CoA (as a physiological regulator of CPT1;
see discussion above) and lipolysis (providing FFA), leading to an increase in intracellular
DAG and phospholipids levels in pancreatic β-cells. Increased intracellular DAG and Ca2+

lead to insulin secretion by pancreatic β-cells mediated by PKC [271]. The third mechanism
of the postulated trident model is associated with the binding and activation of FFAR1
(GPR40) by FFAs, which causes an increase in intracellular Ca2+, leading to insulin secretion
by pancreatic β-cells. As mentioned, all these complex processes (two intracellular and one
extracellular) stimulate insulin secretion by pancreatic β-cells.

The effect of FFAs on insulin secretion by pancreatic β-cells depends on exposure
time, concentration, and the type of FFA [271,273]. Acute exposure caused an increase,
whereas chronic exposure caused the suppression of insulin secretion by pancreatic β-
cells [271]. Interestingly, mainly saturated FFAs (palmitate and stearate) synergize with
elevated concentrations of glucose to cause pancreatic β-cell death (lipotoxicity), whereas
oleate is practically nontoxic [273]. One possible explanation of the unfavorable effect of
saturated FFAs on insulin secretion by pancreatic β-cells could be the negative regulation
of Idx-1 by saturated FFAs and the suppression of genes transactivated by IDX-1, including
GLUT2, glucokinase, and insulin [274]. The inhibitory effect of FFAs (palmitate) strictly
depends on βOX since it was prevented by inhibiting CPT1 [274].

Overall, the results discussed above indicate that mitochondrial βOX occurs in pan-
creatic β-cells and plays an important role in regulating insulin secretion.
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In the pancreatic β-cells, similar to other organs, FAO occurs in mitochondria and
peroxisomes [275,276]. However, it is not known to what extent peroxisome FAO con-
tributes to FFA oxidation in pancreatic β-cells. Nevertheless, one has to remember that
catalase, which is responsible for potentially toxic H2O2 (formed during peroxisome βOX)
degradation, is practically not detectable in pancreatic β-cells, which might contribute to
the development of T2D due to increased plasma FFA concentrations [276]. Moreover, it has
been shown that the overexpression of catalase in the peroxisomes (but not in mitochondria)
of insulin-producing cells (RINm5F cells with low catalase activity and good model cells for
the study of H2O2-mediated lipotoxicity) (a) decreased the H2O2 level and (b) protected the
cells against FFA-induced toxicity. Based on these data, it was postulated that peroxisomal
βOX is involved in lipotoxicity via the synthesis of H2O2 [276].

3. FAO in Cancer

One of the distinctive features of cancer cells is a significant increase in ATP produc-
tion. In cancer cells, ATP is needed to synthesize many micro- and macromolecules (often
called biomass) that are essential for cell division and proliferation [277]. In most cancer
cells, an increase in ATP synthesis is associated with an increase in glycolysis and glu-
taminolysis [278]. However, carcinogenesis is also related to significant lipid metabolism
disturbances [279–281]. An upregulation of FAO enzymes has been reported in many
malignancies [282–288]. The data presented in Table 4 indicate that gene-encoding FAO
enzymes or proteins associated with FAO (e.g., FABPs) are upregulated in many, but not
all, human cancers.

Table 4. Changes in FAO enzymes and fatty acid-binding protein gene expression in various can-
cers. ACAD9—acyl-CoA dehydrogenase DH-9, ACSL4—long-chain acyl CoA synthetase 4, AR—
androgen receptor, CPT—carnitine palmitoyl transferase, ECH—enoyl-CoA-hydratase, EHHADH—
enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase, ESR—estrogen receptor, FABP—fatty
acid-binding protein, HADH—3-hydroxyacyl-CoA dehydrogenase, HADHA—hydroxyacyl-CoA
dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit,
LCAD—long-chain acyl-CoA dehydrogenase, SCAD—short-chain acyl-CoA dehydrogenase.

Gene/Enzyme Nature of Change Type of Evaluation Cancer Type References

ACAD9 Upregulated mRNA level Glioblastoma multiforme [289]

ACSL1

Downregulated mRNA level Lung cancer, breast cancer [290,291]

Upregulated mRNA level Rectal adenocarcinoma, colon
cancer, hepatocellular carcinoma [290,292–294]

ACSL3

Downregulated mRNA level Ovarian cancer [290]

Upregulated
mRNA level Melanoma, ESR-negative breast

cancer [290,295]

Protein level Large-cell lung cancer, small-cell
lung cancer [296]

ACSL4

Downregulated
mRNA and protein levels Gastric cancer [297]

mRNA level Lung cancer [290]

Upregulated

mRNA level

Colorectal cancer, ESR-negative
breast cancer, triple-negative
breast cancer, AR-negative
prostate, hepatocellular carcinoma

[290,292,298–301]

Protein level Prostate cancer [302]

mRNA and protein levels Colon adenocarcinoma,
hepatocellular carcinoma [303,304]
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Table 4. Cont.

Gene/Enzyme Nature of Change Type of Evaluation Cancer Type References

ACSL5
Downregulated

mRNA level Breast cancer [290]

mRNA and protein levels Small intestine cancer [305]

Upregulated mRNA level Bladder cancer, colorectal cancer [290,306,307]

ACSL6
Downregulated mRNA level Leukemia [290]

Upregulated mRNA level Colorectal cancer [290,308]

CPT1A Upregulated
Protein level Gastric cancer [309]

mRNA level Glioblastoma multiforme [289]

CPT1B Upregulated
mRNA and protein levels Prostate cancer [310]

mRNA level High-grade bladder cancer [311]

CPT1C Upregulated mRNA level Gastric cancer, lung cancer,
papillary thyroid carcinoma [312–314]

CPT2
Downregulated mRNA level Hepatocellular carcinoma,

colorectal cancer, ovarian cancer [308,315,316]

Upregulated mRNA level Glioblastoma multiforme [289]

ECH1 Downregulated mRNA level Colorectal cancer [317]

EHHADH
Downregulated mRNA and protein levels Hepatocellular carcinoma [318]

Upregulated mRNA level Osteosarcoma [319]

FABP3 Upregulated mRNA and protein levels Non-small-cell lung cancer [320]

FABP4

Downregulated
mRNA level Stomach adenocarcinoma [321]

mRNA and protein levels Hepatocellular carcinoma [322]

Upregulated

Protein level

High-grade serous ovarian
carcinoma, pancreatic ductal
adenocarcinoma,
gastric adenocarcinoma

[323–325]

mRNA and protein levels Non-small-cell lung cancer,
prostate cancer [320,326]

FABP5 Upregulated Protein level Gastric adenocarcinoma [325]

HADH

Downregulated

Protein level Gastric cancer [327]

mRNA level Gastric cancer, kidney renal clear
cell carcinoma [328–330]

Upregulated mRNA level Colon cancer, acute myeloid
leukemia [331,332]

HADHA Downregulated mRNA level Breast cancer [333]

LCAD Downregulated mRNA level Hepatocellular carcinoma [334]

MCAD Upregulated Protein level Glioblastoma, squamous cell
carcinoma of the head and neck [335,336]

SCAD Downregulated mRNA level Colorectal cancer [317]

On this basis, it is conceivable that under conditions in which cancer cells require an
additional amount of ATP, FAO can play an important role in ATP synthesis. Indeed, it has
been shown that activated FAO increases ATP levels and promote cell survival in breast
cancer cells and other tumor cells [337–340]. Moreover, it has been reported that CPT1C
promotes cell survival and tumor growth under conditions of metabolic stress [313]. On
the other hand, the inhibition of CPT1 resulted in a reduced proliferation of many cancer
cells [341]. All results mentioned above indicate the important role of FAO in various cancer
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cells’ survival and growth. A potential role of FAO in cancer cell survival and growth
is presented in Figure 5. As shown in Figure 5, FAO can provide not only ATP but also
NADPH, an important compound for cancer cells’ growth and survival.
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Figure 5. The role of FAO in cancer cell survival and growth. FFAs—free fatty acids, OAA—
oxaloacetic acid, IDH—isocitrate dehydrogenase, ME—malic enzyme.

In cancer cells (similar to noncancer), NADPH is required for the generation of new
building blocks, mainly FFAs (necessary for membrane phospholipids synthesis) and
cholesterol (an important element of cells membranes), to sustain cell growth and prolifer-
ation [278,279,342]. Moreover, NADPH is also used to maintain cellular redox potential,
mainly to keep a physiological level of reduced glutathione (GSH). GSH is a scavenger of
toxic oxidative metabolites in the cancer cells and is involved in the conversion of excess
harmful H2O2 to H2O. A disturbance in NADPH production in the cells increases sensitiv-
ity to ROS and, consequently, cell death [343]. Overcoming metabolic stress is an important
process for tumor cell growth. Indeed, it has been shown that FAO may provide NADPH
for defense against oxidative stress and glioblastoma cell death [344]. Similar results have
been obtained using lymphoma cells (a subset of diffuse large B cells) and other carcinoma
cells [313,339,340,342]. Therefore, increased NADPH production associated with FAO en-
hances redox buffering capacity and consequently protects cancer cells from ROS-induced
damage. Overall, the data discussed above and presented in Figure 5 indicate the relevance
of FAO for some cancer cell functions associated with ATP and NADPH production.

Several other data also suggest the contribution of FAO to cancer cell function. For
instance, the uptake of FFAs from surrounding adipocytes promoted FAO in breast and
colorectal cancers [345–347]. Moreover, some studies suggest that increased FAO may
promote cancer metastasis by increasing ATP levels, allowing cancer cells to avoid apop-
tosis and facilitating epithelial-to-mesenchymal transition [341]. Recent studies reported
that osteopontin, protein secreted by many cells, including adipocytes, upregulates the
expression of CPT1A in prostate cancer tumor cells. The knockdown of CTP1A diminishes
prostate cancer cells’ proliferation and invasiveness capacity. Furthermore, patients with
the highest osteopontin gene (SPP1) expression had the worst prognostic outcome [348].
Some FAO genes were also altered in glioblastoma multiforme (GBM), the most aggressive
brain cancer in adults [349]. The expression of CPT1A, CPT1B, and ACAD9 was elevated
in recurrent gliomas compared to primary tumors, whereas there was no difference in
the expression of VLCAD and SCAD between primary and recurrent GBM. Moreover, the
overexpression of CPT1B, LCAD, and MCAD was associated with lower overall survival of
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patients with GBM [289]. Various ACSL isoforms are overexpressed in colorectal, breast,
prostate, and other cancers [290,350].

FAO may also increase the drug resistance of cancer cells, which was proven for dexam-
ethasone, L-asparaginase, and tamoxifen [351–353]. Moreover, FAO may be essential in the
chemoresistance and radioresistance of GBM and triple-negative breast cancer [208,289].

Moreover, the LCAD expression level was proposed as a hepatocellular carcinoma
(HCC) patient mortality predictor [334,354]. The overexpression of ACSL in tumors of
colorectal cancer patients is associated with a poorer prognosis [355]. Overall, one can
conclude that FAO could be involved in invasiveness capacity, chemoresistance, and
radioresistance, the promotion of cancer metastasis in some cancers, and be a mortality
predictor.

The above-presented data suggest that FAO could be a potential therapeutic target,
and its inhibition may reduce cancer cell proliferation, metastasis, and drug resistance.
Table 5 presents examples of cancer cell FAO as potential therapeutic targets.

Table 5. Cancer cell FAO as a potential therapeutic target. ACSL—long-chain fatty acid synthetase,
ACSVL—very-long-chain fatty acid synthetase, CPT—carnitine palmitoyltransferase, ECHS—enoyl-
CoA hydratase short chain 1, MCAD—medium-chain acyl-CoA dehydrogenase, PP2—4-amino-5-(4-
chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine.

Targeted
Enzyme

Inhibitor/Interfering
Compound Experimental Models Effects References

ACSL4

Rosiglitazone Breast cancer cell lines Inhibition of cancer cell growth [356]

PRGL493 Breast cancer cell lines,
prostate cancer cell lines

Inhibition of cancer cell growth
and sensitization to
chemotherapy

[357]

ACSL5
Triacsin C Glioma cell lines Inhibition of cancer cell survival [358]

Small interfering RNA Lung cancer cell lines Inhibition of cancer cell growth [359]

ACSVL3 Small interfering RNA Glioblastoma cell lines Inhibition of cancer cell growth
and tumourigenicity [360]

CPT1

Avocatin B Primary myeloid leukemia
cells Inhibition of cancer cell survival [361]

Etomoxir

Leukemia, breast, prostate,
colorectal cancer cell lines,
and the xenograft model

Inhibition of cancer cell growth,
survival, and tumourigenicity [288,362–365]

Lung cell lines Sensitization to radiation [366]

Oxfenicine Melanoma cell lines Inhibition of cancer cell growth [367]

Small interfering RNAs Brest cancer cell lines Inhibition of cancer cell survival [368]

CPT2

Aminocarnitine Glioma cell lines Inhibition of cancer cell growth [369]

Perhexiline Gastrointestinal cancer cell
lines

Inhibition of cancer cell survival
and sensitization to
chemotherapy

[370]

ECHS1 Small interfering RNA,
PP2 Breast cancer cell lines Inhibition of cancer cell survival [371]

MCAD Hairpin RNA
interference Glioblastoma cell lines Inhibition of cancer cell survival [335]

Using different cell lines, attempts have been made to inhibit the transformation at
the stage catalyzed by ACSL. The inhibition of ACSL in cancer cells is associated with cell
growth inhibition (Table 5). As CPT1 is the rate-limiting enzyme of FAO, most studies
were looking for potential anticancer drugs focused on this enzyme. In mice with colon
adenocarcinoma, the administration of etomoxir, an irreversible pharmacological CPT1 in-
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hibitor, significantly delayed tumor growth and induced apoptosis [365]. It was also shown
that inhibiting FAO by etomoxir enhanced the anticancer effect of cisplatin in HCT116
colon cancer cells [372]. Combining etomoxir with radiotherapy improved its effectiveness
in an in vitro lung epithelial and prostate cancer cell model [366]. Moreover, some data
indicate that CPT1 inhibition may prevent metastasis [288]. However, high concentrations
of etomoxir can also inhibit complex I of the mitochondrial respiratory chain and reduce
cell proliferation independently of FFA oxidation [373]. It should be noted that a more
selective CPT1 inhibitor, teglicar, was developed, which is a reversible CPT1 inhibitor with
less toxicity than etomoxir that prevented MYC-driven lymphomagenesis [374]. Perhex-
iline is an inhibitor of the CPT1 and CPT2 isoforms, and its use sensitizes cancer cells
to the anticancer effect of oxaliplatin and increases their apoptosis [370]. Like other CPT
inhibitors, perhexiline inhibits FFA oxidation, and enhanced ROS accumulation allows
classical chemotherapeutic drugs to kill more CRC cells [370]. The results presented above
and summarized in Table 5 indicate that FAO inhibitors have a potential role in cancer
therapy. Importantly, some compounds presented in Table 4 (for instance, perhexiline, an
inhibitor of CPT1, is approved for human use for the treatment of some diseases [278]).
Therefore, these findings may represent an important step toward improving some cancer
treatments in the near future.

It has been shown that a ketogenic diet or fasting limits tumor progression by different
mechanisms, such as (a) lowering blood glucose and insulin concentrations, altering lipid
metabolism, and (c) increasing BHB concentrations [375–377]. The recently published result
indicates that the inhibition of succinyl-CoA:3-oxoacid-CoA transferase (SCOT), which
plays a crucial role in KB oxidation, also reduces tumor volume and inflammation in the
Lewis cancer model [378]. The reaction catalyzed by this enzyme is presented below:

acetoacetate + succinyl-CoA→ acetoacetyl-CoA + succinate

It suggests that KB oxidation can increase ATP production for the growth of cancer
cells. Thus, one can suppose that FAO via an increase in KB synthesis may support cancer
growth. The inhibition of SCOT may cause (a) a decrease in ATP synthesis and (b) an
increase in BHB (precursor of acetoacetate) concentrations. Both a decrease in ATP synthesis
and an increase in BHB may limit tumor progression by a different mechanism (BHB via
Hcar2-Hops signaling) [377].

Together, the results presented above suggest that FAO may promote tumor growth,
whereas the inhibition of FAO can lead to a reduction in tumor growth.

However, it should be emphasized that the involvement of FAO in cancer cells’ growth
and function is still a debated issue because some data suggest that FAO is not necessarily
relevant for ATP synthesis in certain cancer cells. The data presented in Table 4 indicate
that gene-encoding FAO enzymes are downregulated in some human cancers. For instance,
in HCC with a high ACSL expression, most genes encoding enzymes involved in FAO were
significantly downregulated [293]. Similarly, in vitro and in vivo studies suggested that the
downregulation of MCAD and LCAD enhances tumor proliferation and aggressiveness.
Also, ACSL1 is reported to be downregulated in non-small-cell lung cancer [290].

4. The Pathogenic Genetic Make-Up of FAO Genes

The diseases caused by mutations in gene-encoding FAO enzymes are rare or even very
rare (for details, see Supplementary Table S1). Pathogenic changes may include sequence or
copy-number variants. Some variations in FAO genes are part of more significant genetic
disturbances. Associations between specific single-nucleotide polymorphisms (SNPs) in
FAO genes and various biological traits or pathological conditions like T2D, cardiovascular
disease, and CKD (for details, see Supplementary Table S2) have been reported [379–385].

MCAD deficiency is the most frequent disorder of FAO [386,387]. More than 500
sequence variations of MCAD have been reported so far; almost half of them are pathogenic
or likely pathogenic. However, approximately 80% to 90% of the disease-causing sequence
variations in caucasian patients are due to a single-base mutation: c.985A > G [388,389].
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Compared to other variants, homozygosity for this mutation is associated with the most
severe phenotype, including sudden infant death [386,390]. Moreover, the same single-base
mutation in MCAD (c.985A > G) was observed in patients with Reye syndrome and Reye-
like syndromes. However, the consequences and importance of these associations are not
fully understood [391–393].

LCHAD deficiency (LCHADD) is diagnosed when a mutation in the alpha sub-
unit of mitochondrial trifunctional protein (HADHA) causes an isolated deficiency of
LCHAD. The most abundant pathogenic mutation is c.1528-G > C. This missense variation
causes a loss of enzyme activity without changing the conformation and assembly of the
MTP complex [394,395]. Although the worldwide LCHADD prevalence is estimated at
1/250,000 in Baltic Sea areas, the frequency is higher, especially in the Pomeranian district
(1/20,000) [396].

Mitochondrial trifunctional protein deficiency (MTPD) is diagnosed when mutations
in HADHA or HADHB (a beta subunit of mitochondrial trifunctional protein) genes lead
to a deficiency of all enzyme activities in the MTP complex. According to the Orphanet
database, MTPD has been reported in less than 100 cases (Orphanet). Although the clinical
manifestations of pathogenic variants of HADHA and HADHB are similar, it is more likely
that patients with HADHA mutations will have a severe/lethal phenotype [397]. Moreover,
the survival rate for MTPD is lower than LCHADD [398,399]. In some cases, HELLP
syndrome (hemolysis, elevated liver enzymes, lowered platelets) may occur in pregnant
women carrying a fetus with HADHA or HADHB pathogenic mutations [400,401].

Most of the pathogenic variants of CPT1A result in undetectable or extremely low
enzymatic activity [402,403]. Although CPT1 deficiency is very rare in the general pop-
ulation, the frequency of the milder phenotype c.1436C > T (p.P479L) is much higher in
Inuit, Alaskan Native, and Canadian First Nations (even up to 1.3/1000) [404,405]. Spastic
paraplegia 73 is a neurodegenerative disorder characterized by slow, gradual, and progres-
sive weakness, and spasticity of the lower limbs is caused by mutations in CPT1C. Up to
2019, only two families were diagnosed with it. Minimal data suggested that pathogenic
mutations destabilize the interaction between the regulatory and catalytic domains of the
enzyme [406,407].

CPT2 deficiency has three clinical forms: lethal neonatal, severe infantile, and myo-
pathic (which may manifest from infancy to adulthood). The myopathic form is the most
common and the least severe [408,409]. In some individuals, even heterozygous pathogenic
mutations may give symptoms of the myopathic form when accompanied by specific
triggers (e.g., excessive exercise) [410]. Moreover, some single-base mutations in CPT2 are
associated with susceptibility to infection-induced acute encephalopathy 4 [411,412].

A lack of a functional OCTN2 carnitine transporter in cell membranes leads to primary
carnitine deficiency, an autosomal recessive disorder of FAO, which has a frequency of
1:40,000–1:100,000 in newborns. The absence of the cell membrane carnitine transporter
causes (a) urinary carnitine wasting, (b) a significant decrease in intracellular carnitine
concentration, and (c) decreased plasma-free carnitine (0–5 µmol/L in patients with primary
carnitine deficiency versus 25–50 µmol/L in healthy patients) and acylated carnitine [67].
Younger children with primary carnitine deficiency display problems with (a) feeding,
(b) respiratory infection, and (c) acute gastroenteritis (so-called metabolic syndrome). Later
on, patients become lethargic and have hepatomegaly. Laboratory examination usually
reveals (a) hypoglycemia with minimal or no KBs in urine and (b) hyperammonemia. Older
patients dominate cardiomyopathy. Sometimes, older patients display both metabolic and
cardiac symptoms. Moreover, a few patients with primary carnitine deficiency have been
completely asymptotic for all of their lives. Primary carnitine deficiency can be successfully
treated by carnitine supplementation (usually 100–400 mg per kg body weight per day) if
the treatment is started before organ damage occurs. Unfortunately, a high dose of carnitine
has side effects, like diarrhea and intestinal discomfort [67].

In SCAD deficiency (SCADD), mild, moderate, and severely decreased enzyme func-
tion can be observed despite no correlation between the clinical phenotype and the degree
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of SCAD dysfunction. The most common variations in SCADD patients, c.511C > T and
c.625G > A, are also present in approximately 14% of the general population. The rarity of
ACADS inactivating variants and the lack of clinical significance in many patients lead to
questions regarding the clinical relevance of SCADD as a hereditary disease [386,413–415].

Upon closer examination, all patients diagnosed with LCAD dehydrogenase deficiency
before 1992 were shown to have a defect in VLCAD [416–418]. More than 90 pathogenic
variations in VLCAD were identified, with the c.848T > C pathogenic variant as the most
frequent [419]. Sequence variations associated with a complete loss of function result in
death in the first few days of life [386].

The prevalence of mitochondrial short-chain enoyl-CoA hydratase 1 deficiency (ECHS1D)
remains unknown since it is a sporadic disease with less than 50 cases worldwide (data until
2020) [420,421]. Pathogenic variants of ECHS1 lead to a decrease in enzyme activity. The
degree of function loss can vary and determines the severity of clinical symptoms [422,423].
In some patients with Leigh syndrome, a severe neurological disorder was caused by
mutations in succinate dehydrogenase complex and/or genes related to the oxidative
phosphorylation pathway, and sequence variations in ECHS1 were also observed [424–426].
Moreover, ECHS1D has also been described in rare cases of patients with severe neonatal
lactic acidosis, cardiomyopathy, cutis laxa, and exercise-induced dystonia [427–430].

Fanconi renotubular syndrome is a family of related diseases characterized by the
dysfunction of proximal tubular epithelial cells, leading to the urinary leak of essential
metabolites, and the different syndrome types indicate in which gene the mutation occurred.
In Fanconi renotubular syndrome type 3, a single base substitution in enoyl-CoA hydratase
and 3-hydroxyacyl CoA dehydrogenase (EHHADH) leads to a missense mutation. Mutated
EHHADH can localize mainly in mitochondria rather than peroxisomes and functionally
disrupt the MTP complex [431,432]. EHHADH deficiency may also lead to clinical symp-
toms resembling Zellweger syndrome, a rare peroxisome biogenesis disorder [433,434].

As a consequence of a better understanding of the biochemical traits (especially activ-
ity toward substrates with different chain lengths) of mitochondrial types of HAD, many
patients initially diagnosed with SCHAD deficiency based on their symptoms were suffer-
ing from HAD deficiency (HADD) [386,435]. Pathogenic mutations in the coding sequence,
introns, or regulatory regions severely reduce HAD activity, mainly in the liver [436–438].
Mutations in HAD are observed in less than 1% of all familial hyperinsulinemia hypo-
glycemia cases [439–441].

Peroxisomal acyl-CoA oxidase deficiency occurs due to the defects in ACOX1. As a
consequence of clinical and biochemical features resembling neonatal adrenoleukodystro-
phy, this disorder is also known as pseudoneonatal adrenoleukodystrophy (pseuso-NALD).
Until 2022, only around 30 patients with pseudo-NALD were reported in the literature [442].
Pseudo-NALD causes increased levels of VLCFAs in the tissues and plasma of the patients,
while BCFAs remain at normal levels [443].

X-ALD is an X-linked inherited disease associated with severe morbidity and mortality
in most affected subjects. It is characterized by impaired peroxisomal βOX of VLCFAs (C22
and more), which is reduced to approx. 30% of healthy subjects [444]. It is a disease with
a frequency in 1:17,000 newborns and is caused by mutations in the ABCD1 gene located
on the X-chromosome [445,446]. Mutations in the ABCD1 gene (approx. 600 different
mutations have been identified so far) cause the absence or dysfunction of this transporter.

Consequently, the accumulation of VLCFAs in plasma and tissues/organs, including
the brain’s white matter, the spinal cord, and the adrenal cortex, occurs. Accumulated
VLCFAs in tissue/organs are toxic because they disrupt cell membranes’ structure, sta-
bility, and function. So far, there is no treatment for most patients with X-ALD [447].
However, studies conducted on Abcd1 knock-out mice and human and mouse X-ALD
fibroblasts revealed that overexpression of abcd2 or abcd3 may restore peroxisomal VLCFA
β-oxidation [448].
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5. Conclusions

The data presented in this review indicate the importance of βOX in an increasing
number of tissues and organs, even those previously not considered important. Distur-
bances in βOX and the α- and ω-oxidation of FAs, including those caused by genetic
defects, play an important role in developing various diseases. Several studies also indicate
that carcinogenesis is associated with significant disturbances in βOX. Thus, deeper knowl-
edge of the mechanisms linking a disturbance in βOX to several pathologies, including
carcinogenesis, is needed to identify novel diagnostic markers and potential therapeutic
interventions that may optimize the clinical management of patients with βOX and the α-
andω-oxidation of FA-related disorders.
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