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Supporting information 

1. Molecular weight analysis of demulsifiers 

Fig. S1 shows the gel permeation chromatography of different demulsifiers, transverse axis is the logarithmic 

value of molecular weight, vertical axis is the weight-normalized area of the slice (dwt/d(logM)) and 

cumulative percentage of the area (Ht%). The absolute value of the area of the slice is divided by the slope of 

the calibration curve at the adjusted elution volume of the slice. The ratios of area to slope for all the slices 

are summed, and then each ratio is divided by the sum. 
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Figure S1. Gel permeation chromatogram of different demulsifiers (a: FAP, b: JXGZ, c: h-PAMAM). 

 

 

Figure S2. The structure diagram of FAP, JXGZ and h-PAMAM demulsifiers. 
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2. Synthetic demulsifier 

 

Figure S3. The photograph of different demulsifiers. 

 

3. Optimization of molecular structure model and molecular dynamics calculations 
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Figure S4. The change curve of energy with simulation steps of optimized molecular structures (a-d), and the 

variable curve of energy and temperature with simulation time in all atom molecular dynamics simulation (e 

and f) and dissipative particle dynamics simulation (g and h). 

 

4. Dissipative particle dynamics (DPD) simulation theories 
The DPD theory is described from the following three aspects: the force of DPD simulation, the algorithm of 

DPD simulation, and the calculation process of DPD simulation. 

4.1. The Force in DPD Simulation 

Hoogerbrugge and Koelman developed DPD simulation in the present form of Espanol[1, 2]. In the DPD 

simulation, the elementary atoms or molecules are defined as a bead, and the "bead" is used to replace some 

groups or substances in molecules. The motion behavior of beads conforms to Newton's equation of motion, 

as shown in formulas (1) and (2) [3].                                                               ௗ௥೔ௗ௧ = 𝑣௜               （1） 
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                           𝑚௜ ௗ௩೔ௗ௧ = 𝑓௜              （2） 

Where 𝑟௜ ,  𝑣௜ , and 𝑓௜  represent the displacement, velocity, and total acting force of the i th bead, 

respectively.  

In the DPD system, in order to calculate conveniently, the mass of each bead in the system is divided into the 

same, and the non dimensional unit mass is used to represent the mass of each bead (mi = 1). According to 

formula (2), the total force of each bead can be obtained is equal to its acceleration in numerical value. The 

total  acting force of each bead can be divided into three parts: the conservative force 𝐹௜௝஼ (the force is only 

related to the initial and final positions of the beads, indicating the repulsion between the beads), the dissipative 

force 𝐹௜௝஽ (the force is determined by the relative velocity between beads) and the random force 𝐹௜௝ோ (the 

force is used to describe the collision between beads). The total acting force of each bead in the system can be 

described by equation (3) [4].                  𝑓௜ = ∑ (𝐹௜௝஼௝ஷ௜ + 𝐹௜௝஽ + 𝐹௜௝ோ)             （3） 

 Where i and j of the subscript indicate the interaction between different beads. The physical meaning of 

the summation symbol is that the forces exerted on other beads are summed without considering the beads i 

within the specific truncation radius rc. According to the position coordinates of beads in the system, the 

magnitude and direction of three forces of beads will be obtained. The interaction between beads can be 

determined by truncation radius rc (in DPD simulation system, the truncation radius is dimensionless unit 

length, rc = 1). If the distance between beads in the system is larger than the truncation radius, there is no 

interaction between beads. 

The conservative force is calculated according to formula (4). Where 𝑎௜௝ is the repulsion force parameter 

between beads. The maximum repulsion force between beads is shown in equation (5). Groot and Warren [1, 
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5] compared the free energy of molecular structure model in DPD system with Flory Huggins theory of 

polymer system [6-9], and obtained the repulsive force parameter between different beads 𝑎௜௝, similar beads 𝑎௜௜. They found that the Flory Huggins parameter xij satisfy the relationship shown in equation (6). The density 

of the system is set to 3 so that the fluid in the system possess the compressibility similar to water. 

𝐹௜௝஼ = ቊ𝑎௜௝൫1 − |𝑟௜௝|൯𝑟௜௝̂     𝑟௜௝ < 𝑟௖0                𝑟௜௝ ≥ 𝑟௖                （4） 

𝑟௜௝ = 𝑟௝ − 𝑟௜, 𝑟௜௝̂ = 𝑟௜௝/|𝑟௜௝|            （5） 𝛼௜௝ = 𝛼௜௜ + ௫೔ೕ(்)଴.ଷ଴଺ = 𝛼௜௜ + 3.27𝑥௜௝(𝑇)              𝜌 = 3             （6） 

The dissipative force is described by equation (7). The dissipation force is proportional to the relative velocity 

between the two beads. Its role is to reduce the relative vector between the beads, where 𝜔஽(𝑟௜௝) is a short-

range weight function. The dissipative force can maintain the momentum conservation between the beads, 

ensuring the momentum of the whole system is conserved. 

𝐹௜௝஽ = ቊ−𝛾𝜔஽(𝑟௜௝)൫𝑟௜௝̂ · 𝑣௜௝൯𝑟௜௝̂     𝑟௜௝ < 𝑟௖0                       𝑟௜௝ ≥ 𝑟௖    （7） 

The random force is described by equation (8), where 𝜃௜௝（t） is a random variable of compound Gaussian 

distribution and possesses the following relationship: < 𝜃௜௝(𝑡) >= 0  and < 𝜃௜௝(𝑡)𝜃௞௟(𝑡ᇱ) >= (𝛿௜௞𝛿௝௟ +𝛿௜௟𝛿௝௞)𝛿(𝑡 − 𝑡ᇱ). In the simulation system, the random force is not added to each moving bead separately, but 

as pairs of beads. Therefore, the total linear momentum can be conserved. 

𝐹௜௝ோ = ቊ𝜎𝜔ோ൫𝑟௜௝൯𝜃௜௝𝑟௜௝̂           𝑟௜௝ < 𝑟௖0                      𝑟௜௝ ≥ 𝑟௖         （8） 

4.2. The Algorithm of DPD Simulation 

In DPD simulation, the improved Verlert velocity algorithm [10] is usually used to solve Newton's equation 

of motion, the solution process is as follows: (1) The position coordinate, velocity and direction of the bead at 
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the next moment are determined by the current position coordinate, speed and direction of the bead and the 

force applied; (2) the force of the bead at the next moment is calculated according to the current position 

coordinate, speed and direction, and then the speed is corrected to complete a cycle. The formulas used in the 

process are given as follows from equations (9) to (12) . 𝑟௜(𝑡 + 𝛿𝑡) = 𝑟௜(𝑡) + 𝛿𝑡𝑣௜(𝑡) + ଵଶ (𝛿𝑡)ଶ𝑓௜(𝑡)      （9） 𝑣ప෥(𝑡 + 𝛿𝑡) = 𝑣௜(𝑡) + 𝜆𝛿𝑡𝑓௜(𝑡)             （10）     𝑓௜(𝑡 + 𝛿𝑡) = 𝑓௜ሾ𝑟(𝑡 + 𝛿𝑡), 𝑣෤(𝑡 + 𝛿𝑡)ሿ           （11） 𝑣௜(𝑡 + 𝛿𝑡) = 𝑣௜(𝑡) + ଵଶ 𝛿𝑡ሾ𝑓௜(𝑡) + 𝑓௜(𝑡 + 𝛿𝑡)ሿ      （12） 

4.3. The Calculation Process of DPD Simulation 

The general calculation process of DPD is shown in Fig. S5. The main steps are as follows:  

(1) Setting the initial conditions, including the total number of beads in the system, system temperature, 

system density, operation steps and time. 

(2) Newton's equation of motion was solved by computer.  

(3) The average temperature, potential energy and total energy of the system were calculated. 

In the process of DPD simulation, the most important thing is to accurately obtain the repulsion force between 

beads, which plays the decisive role in the accuracy of the final dynamic calculation results. After the 

calculation and analysis of the forces all beads in the system, the Material Studio software will solve Newton's 

equation of beads to get the position coordinates, speed and direction of beads at a specific time. It will further 

calculate the temperature, energy and pressure of the system to keep the system at constant temperature and 

constant pressure, and finally through the cycle until the initial set calculation time is completed. 
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Figure S5. DPD calculation process. 

 

Table S1. The atomic clusters represented by each bead and repulsive force parameters between the beads. 
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