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Abstract: Using the colloidal method, attempts were made to deposit Au NPs on seven different
material supports (TiO2, α and γ-Al2O3, HFeO2, CeO2, C, and SiO2). The deposition between
0.8 and 1 wt% of Au NPs can be generally achieved, apart for SiO2 (no deposition) and α-alumina
(0.3 wt%). The resultant sizes of the Au NPs were dependent on the nature as well as the surface
area of the support. The catalytic activity and selectivity of the supported Au catalysts were then
compared in the alkylation of aniline by benzyl alcohol. Correlations were made between the nature
of the support, the size of the Au NP, and the H-binding energy. A minimum H-binding energy of
1100 µV K−1 was found to be necessary for high selectivity for the secondary amine. Compar-
isons of the TEM images of the pre- and post-reaction catalysts also revealed the extent of Au NP
agglomeration under the reaction conditions.

Keywords: Au-supported catalyst; structure–activity relationship; H-borrowing catalysis; alkylation
of amine

1. Introduction

Secondary amines are an industrially important feedstock used in the synthesis of
fine chemicals, surfactants, dyes, agrochemicals, functionalized materials, and biologically
active compounds. Secondary amines are mostly derived from primary amines, either by
reaction with a reactive alkyl halide or reductive amination with a carbonyl compound
(Scheme 1, routes 1 and 2, respectively). These reactions utilize stoichiometric amounts of
toxic alkyl halides or hazardous hydridic reductants, which also generate stoichiometric
amounts of by-products that require complex workup procedures for product purification.
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Scheme 1. Common (retro)synthetic routes for transforming primary amines to secondary amines.

In comparison, catalytic alkylation of amines using a primary alcohol (Scheme 1, route
3), also known as ‘H-auto transfer’ or ‘hydrogen-borrowing’ reactions, is considered to
be a ‘greener’ method for the synthesis of secondary amines. This methodology does not
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require extraneous reagents, and only water is produced as the by-product, resulting in
a more sustainable and scalable process [1,2]. The reaction broadly follows the following
elementary steps (Scheme 2): (i) dehydrogenation/oxidation of alcohol to the correspond-
ing aldehyde or ketone; (ii) condensation of the carbonyl group with amine to form an
imine intermediate, which is (iii) reduced by the metal-hydride formed in step (i) to the
amine product.
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To date, a plethora of homogeneous and heterogenous metal catalysts have been
reported for the H-auto transfer reaction, and the subject has been covered by a number
of comprehensive reviews [3–5]. Often, the imine, R2CH=NR1, and the tertiary amine
(R2CH2)2NR1 were observed as side products, necessitating the addition of a base to
suppress these impurities. However, the inclusion of a base in such reactions can be
problematic, as it is known that these types of reactions can indeed proceed under basic
conditions without metal catalysts [6,7].

In our earlier work, we demonstrated that the reaction can be performed with very
high selectivity in the absence of additives or bases by using a commercially available
Au/TiO2 catalyst (AUROliteTM) in a packed-bed reactor [8]. Subsequently, we initiated a
study to examine how metal support interactions (MSIs) may affect the catalyst performance
in these reactions. At a very basic level, MSIs reduce the mobility of metal nanoparticles on
the catalyst support and their tendency to agglomerate, enhancing catalytic activity and
stability through the maintenance of particle sizes during catalytic turnover [9]. However,
MSIs may also be attributed to the presence of special sites at the perimeter of metal
particles, where the chemical and electronic properties of both the metal and support
atoms can influence the adsorbed species, thus bestowing added catalytic activity [10]. In
an earlier study by Ishida et al. [11], Au catalysts supported on nine metal oxides were
prepared by different methods (milling, co-precipitation, and deposition-precipitation) and
utilized in the reaction of aniline with benzyl alcohol. It was found that while basic and
neutral supports promote catalytic activity (measured by alcohol conversion), the selectivity
to secondary amine is attributed to the adsorption of aniline by hydrogen bonding with
Lewis acidic sites on the surface of the metal oxides. However, the study did not include
any analysis of Au nanoparticles (size and distribution), which can result from the different
methods of operation.

In this work, we aim to prepare a series of Au NPs supported on different supports us-
ing the colloidal method in an attempt to study how the nature of the support may influence
the size of the Au nanoparticles and their catalytic activity in H-auto transfer reactions.

2. Results and Discussion
2.1. Catalyst Preparation

The sol immobilization method (colloidal synthesis) was chosen for the preparation
of the Au catalysts. The procedure deposits pre-formed Au NPs onto a solid support.
As the metal nanoparticles are formed independently of the support, it can offer more
consistent results in terms of control of the particle sizes [12]. The colloidal method was
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deployed successfully by Hutchings and co-workers to produce 1 wt% Au/TiO2 cata-
lysts using polyvinyl alcohol (PVA) as a stabilizer [13]. In this procedure, the resultant
catalyst particles were heated in water at 90 ◦C for 2 h to remove the water-soluble sta-
bilizer (Figure 1). As the catalyst was not exposed to very high temperatures, the size
of the Au nanoparticles was preserved (2.9 nm). However, calcination of the catalyst at
temperatures ≥ 300◦ can also lead to significant sintering of the metallic NP.
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Figure 1. Colloidal synthesis and hydrothermal treatment of Au/TiO2.

In the present work, we deployed the colloidal method to deposit Au NPs onto seven
different supports: titania (TiO2, P25), carbon (C), ferric oxyhydroxide (HFeO2), ceria
(CeO2), γ-alumina (γ-Al2O3), and silica (SiO2). Following the treatment with water, the ‘as-
prepared’ catalysts were air-dried in an oven at 100 ◦C for 24 h. The samples were subjected
to analyses by ICP-OES (wt% Au), TEM (average particle size and distribution are shown
in Figure 2—left column), and BET (surface area, Appendix A). To assess the removal
of the PVA stabilizer, the amounts of residual C on the catalysts were also quantified by
combustion analysis. The results are summarised in Table 1.

Table 1. Physical properties of Au catalysts (‘as-prepared’).

Entry Catalyst Au Loading [a]/wt% Av. Part. Size [b]/nm Surface Area [c]/m2g−1 Carbon/wt%

1 Au/TiO2 0.9 2.9 55 (±0.20) <0.1
2 Au/γ-Al2O3 0.6 2.6 141 (±0.20) <0.1
3 Au/α-Al2O3 0.3 6.5 13 (±0.01) <0.1
4 Au/C 0.9 3.4 689 (±7.00) n.d.
5 Au/HFeO2 1.0 3.7 16 (±0.03) 0.4
6 Au/CeO2 0.8 n.d.[d] 242 (±1.25) 0.5
7 Au/SiO2 0.0 - - n.d.

[a] Determined by ICP-OES. [b] Determined by TEM (average of 200 particles); particle distribution graphs are
provided in Figure 2 (left column). [c] Determined by BET. [d] Not determined due to poor contrast.

With the exception of SiO2 (entry 7), the deposition of AuNP was achieved with
varying degrees of success on the supports. The method successfully reproduced Au/TiO2
with very similar properties as that reported before, with close to 1 wt% loading of Au
and average particle sizes of 2.9 nm (entry 1) with a narrow distribution (Figure 2). The
method also provided an even distribution of very small Au NPs on γ-Al2O3 (2.6 nm),
with a lower 0.6 wt% catalyst loading (entry 2). In contrast, the deposition of Au NPs on
α-Al2O3 was poor, with very low loading (0.3 wt%) and a very broad distribution of large
particle sizes (entry 3 and Figure 2). We attribute this to the small surface area afforded
by this material, with limited availability of sites for the pre-formed Au NPs to adhere
to. The supported Au NPs on the surface are also likely to be in close proximity, which
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can agglomerate, even under mild thermal treatment conditions, to form large NPs with
very wide size distributions (Figure 2). The removal of PVA stabilizer from these three
catalysts using the hydrothermal treatment was found to be successful, with <0.1 wt% of
carbon remaining.
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The surface of active carbon comprises polycyclic aromatic groups to which metal-
lic nanoparticles can anchor. However, it was known that the preparation of Au/C by
deposition–precipitation methods can be difficult due to the hydrophobic nature of carbon
and the low density of surface OH groups [9]. Using the colloidal method, 0.9 wt% Au
loading can be achieved (entry 5). The average particle size (3.4 nm) of the Au NPs is
slightly bigger than that deposited on TiO2 and γ-Al2O3, but the particle size distribution
is reasonably narrow (Figure 2). This shows that fairly good size control can be achieved
by the method onto relatively unfunctionalized supports as long as there is a large surface
area for the NP to deposit onto. In comparison, the availability of surface hydroxyl groups
in HFeO2 allowed the target 1 wt% of Au to be achieved (entry 5). Although the average
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particle size of 3.7 nm was obtained, a wide particle size distribution between 2 and 10 nm
was found (Figure 2), suggesting that substantial agglomeration has occurred during the
drying process, likely to also be due to the poor distribution of NP on the small surface area.
Last but not least, the preparation of Au/CeO2 using the colloidal method was previously
described to produce Au NPs of around 3 nm [14]. In this work, we were able to obtain
0.8 wt% of Au on CeO2, but we were not able to establish the particle sizes due to the
poor contrast between Au and the dense support on the TEM grid. For the two catalysts
supported on HFeO2 and CeO2, 0.4 and 0.5 wt% of residual carbon can be found, signifying
that the hot water treatment was not effective for the removal of PVA from these catalysts.
Subsequently, these catalysts were calcinated at 200 ◦C under 5% H2-N2 to remove the resid-
ual stabilizer. The other Au catalyst supported on a reducible metal oxide—Au/TiO2—was
also subjected to the same thermal treatment to provide a comparison.

2.2. Catalyst Activity

The catalytic activities of the Au catalysts for the H-auto transfer reactions were
subsequently assessed. Using benzyl alcohol (1) and aniline (2) as model substrates, the
evaluation was conducted in parallel under the same conditions (Scheme 3). Apart from the
expected product 3, the reaction mixture may also contain reaction intermediates imine 4
and benzaldehyde 5. Competitive formation of toluene (6) as a side-product is also possible,
but this can escape detection as it is often employed as a reaction solvent; in this case, the
quantification of 6 can be achieved by using 2-methyl-2-butanol as a solvent.
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Scheme 3. The reaction of benzyl alcohol with aniline under catalytic conditions.

The catalytic results are presented in Table 2. Turnover frequencies (TOFs) were used to
compare the catalyst activities to account for the different amount of Au deposited on each
support. The performance of Au/TiO2 prepared by the colloidal method mirrors earlier
results obtained with commercially available Au/TiO2 [8], with very good selectivity for
the expected product 3 (entry 1). Au/γ-Al2O3 also performed very well, with very similar
outcomes (entry 2). In contrast, the corresponding catalyst supported on the α-allotrope
was practically inactive (entry 3), which is perhaps unsurprising, given the much larger
particle sizes.

On the other hand, while Au supported on activated carbon and HFeO2 both af-
forded similar average NPs of 3.4 and 3.7 nm (Table 1, entries 4 and 5), the former is
inactive compared to the moderate turnover obtained with Au/HFeO2, even in the pres-
ence of residual PVA (Table 2, entries 4 and 5). It is also interesting to see that the for-
mation of the imine intermediate 4 was observed as the major product for the catalyst
supported on activated carbon compared to the other metal oxides, which also suggests
that the availability of surface hydroxyl groups is important for the H-transfer necessary
to convert 4 to 3. To test this further, H2 temperature-programmed desorption (H-TPD)
studies were performed with the different Au catalysts. The approximate binding ener-
gies can be calculated by multiplying the peak integration values from H-TPD analysis
by the peak desorption temperatures (µmol H2 per gram cat × peak integration). The
values were subsequently plotted against the observed amine selectivity (Table 3 and
Figure 3). Broadly speaking, there appears to be a direct correlation between the cat-
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alyst’s ability to bind to H2 and their catalytic activity, in the increasing order: Au/C,
Au/α-Al2O3 (TOF < 15 h−1) < Au/HFeO2, Au/CeO2 (ca. 90 h−1) < Au/TiO2, Au/γ-Al2O3
(TOF between 170 and 180 h−1). This result reveals that a binding energy above 10 mV K−1

is required to maintain a high selectivity (>95%) for the secondary amine 3.

Table 2. Catalytic performance of Au catalysts in the alkylation of aniline by benzyl alcohol.

Entry Catalyst Thermal Treatment %Conversion 1 TOF 2/h−1 Selectivity 3:4:5:6 (%)

1 0.9% Au/TiO2 ‘as-prepared’ 80 172 96:3:0:1
2 0.6% Au/γ-Al2O3 ‘as-prepared’ 84 181 95:4:1:1
3 0.3% Au/α-Al2O3 ‘as-prepared’ 6 13 24:0:1:1 4

4 0.9% Au/C ‘as-prepared’ 1 2 8:64:1:1 4

5 1% Au/HFeO2 ‘as-prepared’ 41 3 88 79:16:2:3
6 0.8% Au/CeO2 ‘as-prepared’ 42 3 90 96:2:2:0
7 0.9% Au/TiO2 5% H2-N2, 200 ◦C 66 142 95:3:0:1
8 1% Au/HFeO2 5% H2-N2, 200 ◦C 54 116 81:12:0:6
9 0.8% Au/CeO2 5% H2-N2, 200 ◦C 28 60 82:13:1:4

1 Determined by GC using 4-tert-butylphenol as an external standard, based on benzyl alcohol. Results are
an average of 2 runs (error ± 3%). 2 TOF (h−1) (moles of benzyl alcohol converted/moles of Au). 3 Residual
organic material remaining on material (see Table 1). 4 Poor mass balance (of products) observed due to the
low conversion.

Table 3. Comparison of binding energy versus selectivity for amine for the Au-supported catalysts.

Catalyst Binding Energy [a] (µV K−1) Selectivity of Amine/%

Au/C (COL) 0 8
Au/α-Al2O3 (COL) 928 74
Au/HFeO2 (COL) 4108 79
Au/CeO2 (COL) 11,231 96

Au/γ-Al2O3 (COL) 29,610 95
Au/TiO2 (COL) 36,136 96

[a] Binding energy = µmol H2 per gram cat × peak integration.

Thermal treatment of Au catalysts supported on reducible metal oxides (including
TiO2, HFeO2, and CeO2) a reducing atmosphere is known to induce strong metal–support
interactions, which can affect the catalyst activity, either in a positive or negative way [10].
Conversely, thermal treatment of Au catalysts prepared by the colloidal method is also
found to be very susceptible to agglomeration under thermal conditions, leading to reduced
catalyst activity in CO oxidation reactions [13]. In the present study, calcination resulted
in three different observations: The calcination of Au/TiO2 led to a decrease in catalyst
activity but did not affect the selectivity for amine 3 (Table 2, entries 1 vs. 7), while the
calcination of Au/FeO2 increased the catalytic activity but did not affect the selectivity
(Table 2, entries 5 vs. 8). Last but not least, the calcination of CeO2 led to the deterioration
of both reactivity and selectivity (entries 6 and 9). These results show that calcinating these
catalysts (with corresponding changes in particle size) does not lead to any improvements
in the selectivity of the process.

Indeed, agglomeration of the Au NPs may also occur during the catalytic turnover
conditions. Following reactions at 180 ◦C for 30 min, the catalysts were recovered and
subject to TEM analyses (Table 4 and Figure 2, right column). In all cases, Au particle
sizes increased by between 16 and 29% for the metal oxide supports (Entries 1, 2, 3 and
5). In contrast, the recovered Au/C catalyst was found to be 1.5 times bigger than the
‘as-prepared’ catalyst (entry 4), with very dramatic changes in the particle distribution
(Figure 2, right column). From this, we can surmise that one of the main roles of the (metal
oxide) support is to maintain the particle size of the Au NP during the catalytic reaction.
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Table 4. Average particle sizes before and after the reaction.

Entry Catalyst ‘as-prepared’/nm Recovered/nm Change/%

1 0.9% Au/TiO2 2.9 3.4 +17
2 0.6% Au/γ-Al2O3 2.6 3.2 +23
3 0.3% Au/α-Al2O3 6.5 8.4 +29
4 0.9% Au/C 3.4 8.7 +155
5 1% Au/HFeO2 3.7 4.3 +16
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3. Materials and Methods
3.1. General

Unless otherwise stated, all chemical precursors, solvents, and standards employed in
this work were procured commercially and used without further purification. TiO2 support
(P25-Degussa) was employed in this work, containing 25% anatase and 75% rutile phases,
and all other catalyst supports were provided by Johnson Matthey plc. The conversion of
substrates to products was monitored using an HP6890 Gas Chromatograph, equipped
with a H2 flame ionisation detector and an HP5 Agilent column (30 m × 320 µm × 0.25 µm).
The percentage of conversion and selectivity was determined by comparison with known
standards, using calibration plots and 4-tert-butylphenol (50 mM in methanol) as an external
standard. TEM images were captured at the Harvey Flowers Electron Microscopy Suite at
Imperial College London, using a JEOL 2010 TEM instrument operated at 200 kV, with a
probe current of 108 µA, and a Gatan Orios camera. XRD analysis was conducted at Johnson
Matthey plc using a Bruker AXS D8 diffractometer. ICP-OES analysis was conducted at
Johnson Matthey plc using a Perkin Elmer Optima instrument. Chemisorption studies
(H-TPD) were performed at Johnson Matthey plc using Altamira AMI-200 apparatus.

3.2. Preparation of Catalysts

Preparation of Au/support [13]: A colloidal solution of Au was prepared by addition
of poly(vinyl)alcohol (PVA, Mw 9000–10,000, 80% hydrolysed, 0.1 wt%) to HAuCl4·3H2O
(0.50 mmol of Au) solution in 500 mL of H2O. A freshly prepared solution of aq. NaBH4
(13 mM) was then added to the mixture to form a dark-brown sol. After 30 min, the colloidal
solution was added to the requisite support (e.g., TiO2) with vigorous stirring (500 rpm).
The resulting material was collected by filtration and exhaustively washed with deionised
H2O. The catalyst was dried in an oven at 100 ◦C for 24 h before it was transferred into a
round bottom flask and heated in deionised H2O at 90 ◦C with vigorous stirring (500 rpm)
for 2 h to remove the PVA [13]. The resulting solid was collected, washed thoroughly with
deionised H2O, and dried in an oven at 100 ◦C for 24 h.
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Thermal treatments (calcination): The ‘as-prepared’ catalysts (above) were reduced
under a flow of N2/H2 (200 mL/min), using a Carbolite STF tube furnace, respectively. A
temperature ramp of 10 ◦C/min−1 up to 200 ◦C was applied and held for 2 h before cooling
to room temperature.

3.3. Catalyst Screening

An Endeavor® catalyst screening system (Biotage) was employed in this part of the
work. The reactor consists of 8 parallel reaction vessels with glass inserts (working volume
5 mL). Each reaction vessel was charged with a catalyst (0.9 mol% Au, average particle
size 190 µm), and 2 mL stock solutions of aniline (0.5 M) and benzyl alcohol (0.5 M) in
2-methyl-2-butanol. The reaction vessels were sealed and purged with 3 cycles of N2
before being pressurised to 15 bar. The biphasic mixtures were stirred using paddles
(250 rpm) and heated to 180 ◦C. After 30 min, the reaction mixtures were cooled to room
temperature. The reaction aliquots were extracted, diluted, and analysed using a HP
6890 Gas Chromatograph equipped with an FID detector and an Agilent HP5 column
(30 m × 320 µm × 0.25 µm). 1 µL of analyte solution was injected into the inlet, which
was heated to 250 ◦C with a split ratio of 5:1. The system was operated under a constant
pressure of 20 psi with an initial column temperature of 50 ◦C, held for 0.5 min, heated to
65 ◦C @2.5 ◦C/min, and finally to 200 ◦C @25 ◦C/min. The conversion of benzyl alcohol
and selectivity of imines, amines, and other intermediates were calculated using known
standards and 4-tert-butylphenol (50 mM in methanol) as an external standard. The benzyl
alcohol conversion and product selectivity were calculated as follows:

% conversion of benzyl alcohol

= Initial moles of BA − moles of BA in reaction mixture
Initial moles of BA × 100

% Selectivity =
moles of products in reaction mixture

moles of benzyl alcohol converted
× 100

4. Conclusions

In this work, attempts were made to deposit pre-formed Au NPs onto six different
supports using the colloidal method, followed by a mild hydrothermal treatment to remove
the PVA stabilizer and drying (temperatures of < 100 ◦C). The resultant material was
found to contain varying amounts of Au (from 0–1 wt%), and the size and distribution
of Au NPs are largely dependent on the available surface area, which has a pronounced
effect on the agglomeration of deposited NPs, even under mild conditions. In this regard,
γ-Al2O3 and TiO2 offered the smallest average particle sizes (2.6 and 2.9 nm) with a narrow
distribution. Subsequently, the catalytic activity was found to be predominantly dominated
by particle size—calcination of the reducible metal oxides did not lead to any significant
enhancement in catalytic turnover. Agglomeration of Au during the catalytic turnover is
highly dependent on the nature of the support, and this will also account for the different
catalyst activities. Last but not least, a direct correlation between H2 binding efficiency and
catalyst activity and selectivity can be observed. Overall, this preliminary study has helped
us identify some important selection criteria for future catalyst design and development.
These include a better method of catalyst preparation that can improve the thermal stability
of the supported nanoparticles to minimize agglomeration under reaction conditions and
the selection of materials with strong H-absorptivity, as established by H-TPD studies, to
improve the catalyst activity and selectivity.
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Appendix A

The surface area of Au/TiO2 was in good agreement with the reported value of
47 m2 g−1 of commercial Au/TiO2 (Strem Au AUROliteTM). The values for Au/Al2O3
(γ and α), Au/CeO2 and Au/HFeO2 were in agreement with the values reported in the
literature [15–18]. The surface area for Au/C is lower than expected for activated char-
coal [19], which may be due to the residual PVA on the surface.
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