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Abstract: Breast cancer remains the most frequently diagnosed cancer in women worldwide. Tumors
that express hormone receptors account for 75% of all cases. Understanding alternative signaling
cascades is important for finding new therapeutic targets for hormone receptor-positive breast cancer
patients. JAK-STAT signaling is commonly activated in hormone receptor-positive breast tumors,
inducing inflammation, proliferation, migration, and treatment resistance in cancer cells. In hormone
receptor-positive breast cancer, the JAK-STAT cascade is stimulated by hormones and cytokines,
such as prolactin and IL-6. In normal cells, JAK-STAT is inhibited by the action of the adaptor
protein, LNK. However, the role of LNK in breast tumors is not fully understood. This review
compiles published reports on the expression and activation of the JAK-STAT pathway by IL-6
and prolactin and potential inhibition of the cascade by LNK in hormone receptor-positive breast
cancer. Additionally, it includes analyses of available datasets to determine the level of expression
of LNK and various members of the JAK-STAT family for the purpose of establishing associations
between expression and clinical outcomes. Together, experimental evidence and in silico studies
provide a better understanding of the potential implications of the JAK-STAT-LNK loop in hormone
receptor-positive breast cancer progression.
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1. Introduction

Breast cancer is by far the most commonly diagnosed neoplasia in women worldwide,
accounting for more than 25% of all female cancer cases reported in 2020. The number of
estimated new breast cancer cases is 2.6-times higher than that estimated for colorectal
cancer, which is the second most common cancer in women [1].

The mammary gland is a hormone-dependent organ. Mammary cell development,
differentiation, and function depend basically on the action of ovarian steroid hormones
estrogen and progesterone, along with prolactin. Estrogen-activated signal transduction has
been demonstrated to be essential for the development of the gland [2], while progesterone
and prolactin induce the differentiation of milk-producing cells during late pregnancy [3].
The activity of estrogen and progesterone is mediated by binding to their specific receptors.
Estrogen receptor (ER) and progesterone receptor (PR) are members of the nuclear receptor
superfamily [4]. They are transcription factors that induce the expression of several genes to
regulate not only the function of ER+/PR+ cells but also that of ER-/PR- cells, establishing
paracrine networks to support normal mammary gland development [3]. Unsurprisingly,
the deregulation of ER/PR activity is a driver of carcinogenesis in mammary gland cells.

ER and PR are considered prognostic markers of and predictive factors for breast tumor
hormonal therapy. As such, ER/PR expression is routinely assessed in order to establish the
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treatment that will provide the greatest benefit to the patient. Endocrine therapy has focused
on blocking ER activity or inhibiting the aromatase-mediated conversion of androgens into
estrogens [5]. Unfortunately, endocrine therapy resistance has developed in a proportion of
patients. Intrinsic resistance to some hormonal therapy has been documented in early-stage
and metastatic disease patients. Patients with metastasis may also present recurrence soon
after beginning adjuvant hormonal treatment. Moreover, resistance can also be acquired
after successful initial treatment, followed by short responses to serial hormonal therapies
until the tumor becomes refractory [6]. Even the application of combined therapeutic
approaches, using aromatase inhibitors along with CDK4/6-interfering small molecules
or inhibitors of the PI3K/AKT/mTOR pathway, has shown limited benefit because of the
intrinsic or eventual development of resistance in a proportion of patients [6]. For these
reasons, there is a need to identify new targets in resistant tumors in order to provide
patients with new therapeutic options. The study of alternative cancer-associated signaling
cascades, such as the Janus kinase (JAK) signal transducer and activator of transcription
(STAT) pathway, may provide new targets for breast cancer treatment.

The JAK-STAT cascade has been found to be constitutively active in breast cancer and
has been proposed as a modulator of chemotherapy resistance [7]. Moreover, inhibitors of
various elements of the pathway are undergoing testing, and they appear to be promising
drugs for the treatment of breast cancer [8]. In healthy cells, JAK-STAT signaling is regulated
by the lymphocyte adaptor protein (LNK). LNK belongs to the Src homology 2 (SH2)
domain-containing adaptor protein family. This controls signal transduction pathways
downstream of various growth factors, cytokine receptors, and receptor tyrosine kinases
(RTKs) by inhibiting JAK kinase activity [9]. For this reason, LNK has been investigated in
cancer cells as a potential regulator of JAK-STAT carcinogenic activities [9].

In this review, we aim to overview JAK-STAT signaling in hormone receptor-positive
breast cancer as well as the participation of LNK in the regulation of this signal transduction
pathway. In addition, we aim to integrate available datasets in order to better understand
the potential association of JAK-STAT and LNK in the course of hormone receptor-positive
breast cancer.

2. Hormone Receptor-Positive Breast Cancer

Studies estimating future breast cancer incidence predict an increasing global burden.
A clear pattern of increasing breast cancer mortality rates has been detected in many
low- and middle-income countries with fragile health systems. These health systems can
lack the comprehensive national strategies required for early diagnosis, access to proper
treatments, and palliative care [10–12]. In addition, it is expected that inequities in breast
cancer mortality will be intensified as a result of the COVID-19 pandemic. A population-
based modeling study predicted a 7.9–9.6% increase in breast cancer deaths up to year 5
after diagnosis compared with pre-pandemic figures [13]. In order improve the clinical
management of breast cancer, tumors are classified by histologic type [14,15] and by the
expression of human epidermal growth factor receptor 2 (HER2) [16,17], PR, and ER [18]
into four intrinsic subtypes: luminal A, luminal B, HER2-enriched, and basal-like breast
cancer [19–21]. The basic immunohistochemical [22] and genetic [23] characteristics along
with the frequency and treatment [24–26] of breast cancer subtypes are shown in Table 1.

Since estrogens are the leading molecules inducing the deregulation of cell activity by
binding to ERs in luminal tumors, undergoing hormone therapy is considered a risk factor
for this type of cancer [27,28]. To date, three main receptors have been identified: ERα,
ERβ, and the non-classical G-protein-coupled estrogen receptor 1 (GPER1). ERα and ERβ
are intracellular receptors that bind estrogens in the cytoplasmic compartment, forming
a complex that eventually translocates into the nucleus. The complex then recognizes
and binds to estrogen response elements (EREs) in target gene promoters, inducing gene
transcription. In contrast, GPER1 is a transmembrane protein that interacts with membrane-
anchored estrogens, prompting the activation of various cell signaling cascades, along with
the production of cyclic adenosine monophosphate (cAMP) [29].
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Table 1. Breast cancer classification.

Molecular Subtyping
Classification

Immunohistochemical-Based
Analysis

Genetic
Modifications Frequency Treatment

[22] [25] [22] [23–26] [24–26]

Luminal-A

ER+,
PR ≥ 20%,

HER2−,
Ki67 < 20%

Alterations in gene expression:
ESR1, GATA3, FOXA1, XBP1. ~75%

Hormonal
therapy

Luminal-B

ER+,
PR < 20%,

HER2+,
Ki67 ≥ 20%

Gene mutations:
PIK3CA, ESR1, ERBB2, ERBB3.

Hormonal
therapy

Chemotherapy

HER2-enriched
ER−,
PR−,

HER2+

Gene amplifications: ERBB2,
GRB7, TOPO2, MYC

Gene mutations: PIK3CA.
15–20% Targeted therapy

(anti-HER2 antibodies)

Basal-like
ER−,
PR−,

HER2−

Gene mutations:
TP53, BRCA, genetic

instability.
10–20%

Chemotherapy (specific
therapies are not

available)

The first ER identified was ERα [30]. ERα is significantly overexpressed in breast
cancer as compared with normal breast tissue [31]. ERα’s carcinogenic effect is the result of
the unique array of stimulated genes that modulate cell proliferation and differentiation, in
addition to providing protection against cell apoptosis [32–35]. Although ERβ was initially
associated with breast cancer progression [36,37], a further report studying the intracel-
lular localization of ERβ variants via immunofluorescence in tumor samples provided
evidence showing that nuclear expression of ERβ2 and ERβ5 variants correlated with
increased overall and disease-free survival [38]. ERβ2 and ERβ5 can jointly form stable
heterodimers with ERα [39], suggesting that heterodimerization may inhibit ERα-mediated
gene expression, thus resulting in favorable prognosis [40]. On the other hand, GPER1 is a
G-protein-coupled membrane receptor [41] with weak affinity for binding estrogens [42].
It is expressed in ER-positive and ER-negative breast tumors [43,44]. After binding to
GPER1, estrogens stimulate mitogen-activated protein kinase (MAPK) [45] and steroid
receptor coactivator (SRC) tyrosine kinase, establishing complex crosstalk with epidermal
growth factor receptor (EGFR) [46,47]. The clinical relevance of GPER1 expression remains
controversial, with some data showing that the downregulation of GPER1 is associated
with cancer progression [48], while others suggest that lack of GPER1 expression is a good
prognosis factor [49]. Moreover, GPER1 expression has been associated with resistance to
tamoxifen treatment [50], but some reports indicate that GPER1 is able to hamper migration
and angiogenesis [51,52]. Clearly, the importance of GPER1 in breast cancer is still to
be ascertained.

3. JAK-STAT Signaling Pathway

JAK-STAT is an essential pathway that transduces signals downstream of more than
50 growth factors, hormones, interferons, and interleukins [53]. The JAK-STAT signal is
activated after ligands are bound to classical receptors and RTKs. JAKs are noncovalently
bound to receptor intracellular domains. After ligand binding, the kinase activity of JAKs
is activated and they phosphorylate tyrosine residues of cytoplasmic receptor regions.
Phosphorylated receptor residues provide docking sites for STAT recruitment via their
SH2 domains. When STATs bind to the receptor, they are phosphorylated onto tyrosine
residues, allowing the formation of homo- and heterodimers. STAT dimers translocate into
the nucleus to undergo binding and activate the transcription of target genes [54]. The
cellular events regulated by JAK-STAT are diverse and comprise inflammation, apoptosis,
tissue repair, immune responses, hematopoiesis, and adipogenesis [55]. Thus, failure to
control the JAK/STAT cascade leads to diverse human illnesses.
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3.1. The JAK Family

The JAK family consists of four members: JAK1, JAK2, JAK3, and TYK2. JAKs are
tyrosine kinases that share a conserved carboxy terminus kinase domain, a pseudokinase
domain that regulates kinase activity, SH2, and a FERM domain that participate together in
the union of JAKs with cell receptors [56–59].

JAK1 is expressed extensively in mammalian cells, and its activation is mediated by
many receptors on immune system cells. Accordingly, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9,
IL-10, IL-11, IL-15, IFNα, IFNβ, IFNγ, and leukemia inhibitor factor (LIF) receptors initiate
JAK1-induced activation of a signaling cascade that regulates immune responses [60].

Like JAK1, JAK2 can activate signals downstream of IFNα, IFNβ, IFNγ, LIF, IL-3, IL-5,
IL-6, IL-11, and granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors.
In addition, JAK2 has been found to be associated with erythropoietin (EPO) receptor,
thrombopoietin receptor, growth hormone receptor, and prolactin (PRL) receptor [61],
indicating that JAK2 is implicated in a wide range of cell functions.

On the other hand, JAK3 participates in the activation of signals that are mediated by
cytokine receptors with the γc receptor subunit, such as IL-2, IL-4, IL-7, IL-9, IL-15, and IL-
21 receptors [62]. Finally, TYK2 is implicated in regulating Th1/Th2 balance during allergic
reactions [63] by activating signals from IL-6, IL-10, IL-12, IL-13, and IL-23 receptors [64].

3.2. The STAT Family

The family of STAT transcription factors is composed of seven different proteins:
STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6. Structurally, they share an
N-terminal domain, a coiled-coil domain, a DNA-binding domain, a conserved SH2 do-
main, and a transcription activation domain. Inactive STATs are found in the cytoplasmic
compartment as anti-parallel dimers; upon activation by JAK-mediated phosphorylation,
STAT dimers form parallel, nutcracker-like dimeric structures. Active STAT dimers translo-
cate into the nucleus, where they recognize and bind to the palindromic DNA sequence
TTCN2-4GAA in promoters and enhancers of target genes, thus inducing transcription [65].

STAT1 is activated as a response to cytokines like IFNs, IL-2, IL-6, platelet-derived
growth factor (PDGF), epidermal growth factor (EGF), hepatocyte growth factor, tumor
necrosis factor (TNF), and angiotensin II. STAT1 is able to promote the expression of genes
that inhibit the cell cycle [66], regulate cell differentiation [67], induce apoptosis [68,69], and
regulate important activities of the immune system [70]. The function landscape associated
with STAT1 activation categorizes this transcription factor as a potential tumor inhibitor.

STAT2 is basically involved in regulating immune responses induced by IFNα and
IFNβ, including anti-viral reactions [71] and the generation of memory cells [72].

STAT3 activation is induced by several immune-related factors, including members of
the IL-6 family (IL-6, IL-11, IL-31, LIF, etc.), members of the IL-10 family (IL-10, IL-19, IL-20,
IL-22, IL-24, and IL-26), granulocyte colony-stimulating factor (G-CSF), and IFNs [73]. In
conjunction with its participation as an immune and inflammatory response regulator,
STAT3 has been reported to be a pro-tumoral transcription factor. Experimental evidence
supporting the participation of STAT3 in cancer progression will be further described.

STAT4 transcription activity is stimulated by IFNα, IFNβ, IL-12, and IL-23 [74]. STAT4
is fundamental for the differentiation of Th1 cells, the maturation of B lymphocytes, and
for promoting immunoglobulin switch during humoral responses [75].

STAT5A and STAT5B share 91% of amino acid residues. They are activated by immune-
associated cytokines such as IL-2, IL-4, IL-7, IL-9, and IL-15. In addition, STAT5 responds to
the stimulation of growth factors like EGF, PDGF, GM-CSF, and erythropoietin (EPO) [76].
The variety of stimuli activating STAT5 contributes to its wide range of biological functions.
Accordingly, STAT5 has been reported to participate in the proliferation and activation of T
lymphocytes and natural killer cells (NK) [77]. STAT5 is also involved in cell proliferation
and apoptosis [78]. In addition, STAT5 is an important regulator of mammary gland
development [79]. This is the reason why it also participates in the development and
progression of breast cancer. The role of STAT5 in breast cancer will be further described.
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STAT6 transduces signals from the receptors of IL-4 and IL-13 [80]. Therefore, the
transcriptional activity of STAT6 controls Th2 lymphocyte differentiation [81]. Furthermore,
STAT6 regulates B cell proliferation, immunoglobulin isotype switching, and production of
IgE [82].

The JAK-STAT transduction pathway is crucial for the development and correct func-
tioning of a number of cells; thus, the loss of JAK/STAT regulation is expected to be
involved in various human disorders. In fact, there is reliable evidence supporting the
participation of JAK-STAT in different types of tumors, including breast cancer.

4. JAK-STAT Signaling in Hormone Receptor-Positive Breast Cancer

Hormone receptor-positive breast cancer has been traditionally associated with ERα-
mediated activation of the PI3K-AKT and Ras-MAPK cascades. However, there is increasing
evidence showing that other signaling pathways can also be activated and participate in
providing growing advantages to tumor cells. A relevant alternative signaling cascade in
hormone receptor-positive breast cancer is the JAK-STAT pathway, which is associated with
increasing cell proliferation and the acquisition of resistance to treatment. STAT3 has been
found to be constitutively activated in a high proportion of all breast cancer subtypes [83].
As detailed above, JAK-STAT signaling can be activated by a series of receptors. In the
case of luminal breast cancer, two meaningful activators have been described: IL-6 receptor
(IL-6R) and PRL receptor (PRLR).

4.1. Activation of the JAK-STAT Pathway by IL-6

IL-6 is a cytokine that mediates inflammatory responses by activating JAK2/STAT3 sig-
naling. Likewise, IL-6 has been found to be upregulated in inflammatory breast tumors [84].
Moreover, it has been suggested that the IL-6/JAK2-STAT3 axis enables chemotherapy
resistance in inflammatory breast cancer [7]. Early reports seemed to indicate the existence
of functional crosstalk between ER- and IL-6-activated STAT3 [85,86].

However, more recent research has shown that IL-6 activates STAT3 in ER-expressing
breast cancer cells and increases its invasive and metastatic activity. The authors found
that IL-6-activated STAT3 drives a different transcriptional program by hijacking shared ER
enhancers, and thus activating an oncogenic profile independent of ER. Interestingly, stan-
dard ER-targeted therapy was unable to inhibit IL-6/STAT3-induced metastasis, whereas
incubation with the JAK1 and JAK2 inhibitor ruxolitinib blocked IL-6/STAT3 activation and
in vivo cell invasion, strongly suggesting a functional decoupling of IL-6/STAT3 from ER.
The authors also proposed that the expression of ER and phosphorylated STAT3 (pSTAT3)
may be considered independent prognostic factors in breast cancer, and that targeting
IL-6/STAT3 could have clinical potential in ER-positive, endocrine therapy-refractory
patients [87].

IL-6 is a pleiotropic cytokine. Indeed, IL-6 is implicated in a number of biological
events that control tumor progression. For instance, it has been demonstrated that IL-6,
secreted by adipocytes, is able to induce epithelial–mesenchymal transition [88], enrichment
of cancer stem cells, and resistance to PI3K inhibitors [89] via STAT3 activation in ER-
expressing MCF-7 breast cancer cells. Moreover, the potential of the IL-6/STAT3 axis to
promote resistance extends to cyclin-dependent kinase 4/6 (CDK4/6) inhibitors [90] and
tamoxifen [91].

A 5-year course of treatment with tamoxifen is the most prevailing endocrine therapy
for patients with ER-positive breast tumors. A meta-analysis including 62,923 ER-positive
breast cancer patients who were disease-free after 5 years of tamoxifen-based treatment
showed that there is risk of recurrence in patients initially responsive to tamoxifen. The
cumulative risk of recurrence at 20 years post-treatment ranged from 13% in early-stage
patients to 41% in women presenting tumors of 2 to 5 cm with 4 to 9 involved nodes [92].
Thus, it is vital to define the molecules that may mediate and predict responses to tamoxifen.
In this regard, Tsoi et al. showed that tamoxifen resistance can be reversed by tocilizumab,
an IL-6R-blocking antibody. Moreover, analysis of tumor samples demonstrated that IL-6R
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expression was significantly associated with tamoxifen resistance and poor overall survival
in ER-positive breast cancer patients [93].

In addition, IL-6 has been identified as an essential component of the bone microen-
vironment. Bone IL-6 can bind to receptors on breast tumor cells, promoting chemotaxis,
migration, adhesion, and ultimately the growth of bone metastasis [94,95]. Taken together,
this evidence suggests that the IL-6/JAK-STAT3 loop plays a basic role in luminal breast
cancer progression and deserves further research.

4.2. Activation of the JAK-STAT Pathway by PRL

PRL is a hormone that stimulates breast cell proliferation and milk production in
a paracrine fashion by binding to the membrane PRLR [96]. In breast cancer, both PRL
and PRLR are extensively expressed [97]. Data from large, prospective studies showed
an association between high levels of circulating PRL and invasive breast cancer in post-
menopausal women. Interestingly, the association was particularly strong for ER-positive
tumors [98,99]. In addition, Sutherland et al. reported that ligand-induced activation of
PRLR supports bone metastasis by stimulating osteoclast activity [100].

Signal transduction downstream of PRLR is complex. A number of different receptor-
bound kinases have been reported to interact with the cytoplasmic domain of PRLR,
including JAK2, SRC, FYN, JAK1, and TEC, activating signals that control cell differentia-
tion, proliferation, survival, and even regulate the cytoskeleton [101]. It is currently known
that PRL-PRLR/JAK2-STAT5 is the principal signaling loop mediating the pathological
functions of PRL in breast cancer. In fact, an animal model of PRL-induced breast carcino-
genesis demonstrated that JAK2 is needed for cancer initiation but not for maintenance
of tumors [102]. However, the PRL/STAT5 cascade was proved to interfere with breast
cancer-1 (BRCA1)-induced activation of the cyclin-dependent kinase inhibitor, p21, hamper-
ing BRCA1 inhibition of the cell cycle and thus allowing cell proliferation as a response to
PRL [103]. In line with the observation suggesting that PRL/STAT5 is important for cancer
initiation but not for tumor progression [102], Peck et al. showed that levels of nuclear
phosphorylated STAT5 are significantly higher in ductal carcinoma in situ than in cases of
invasive and metastatic disease. The authors even suggested that the depletion of activated
STAT5 is a predictor of poor clinical outcomes and risk of endocrine therapy resistance in
patients with breast cancer [104].

On the whole, activation of JAK2-STAT3 and JAK2-STAT5 downstream of IL-6R and
PRLR, respectively, may play a coordinated role in the development and progression of
luminal breast cancer, suggesting the importance of these signaling cascades in ER-positive
breast tumors.

5. Adaptor Molecule LNK as an Inhibitor of JAK-STAT

The relevance of the JAK-STAT pathway in breast cancer was further supported by
an integrative cancer interactome analysis. This showed that STAT3 is the most central
protein governing communication with tumor-linked proteins in the breast cancer network,
whereas STAT5a is the only STAT showing a direct interaction with ER [105]. In normal
cells, the activity of the JAK-STAT cascade is regulated at different levels. Members of the
suppressor of cytokine signaling (SOCS) family of proteins are induced via the JAK-STAT
pathway itself and are able to repress the kinase activity of JAK1, JAK2, and TYK2, thus
blocking the signaling transduction process [106]. On the other hand, protein inhibitor
of activated STAT (PIAS) inhibits STAT transcriptional activity, working either via direct
interaction that hinders the union of STAT with DNA or recruiting transcriptional cofactors
to STAT target genes [107]. Finally, the JAK-STAT signaling may also be regulated by
members of the protein tyrosine phosphatases (PTPs), which maintain the delicate balance
between tyrosine phosphorylation and dephosphorylation in cells [108].

In addition, other molecules have been found to regulate the JAK-STAT cascade. One
of these negative regulators is LNK. The LNK protein, encoded by the SH2B3 gene, was first
identified in 1995 as a regulator of T-cell activity [109]. Later, structural characterization
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revealed that LNK was a member of the SH2B family of adaptor proteins and contained
three functional domains [110]. The first is a C-terminal SH2 domain of 100 amino acids,
which recognizes and binds to target proteins. The second is the N-terminal region of 60
residues, which has the potential to form dimers with other SH2B proteins. The third is a
central pleckstrin homology domain (PH) of 120 residues. This allows LNK to localize at
the inner side of the cell membrane by interacting with phosphatidylinositol lipids [111]. In
human cells, LNK regulates signal transduction downstream of cytokines, growth factors,
and hormones by binding specific phosphorylated tyrosine residues via its SH2 domain.

LNK activity is essential for the regulation of hematopoiesis. SH2B3 transcription is
induced by STAT3 and STAT5. LNK is expressed in hematopoietic progenitor cells [112],
modulating lymphopoiesis [113,114] and megakaryocytopoiesis [115]. LNK primarily
regulates hematopoiesis by binding to phosphorylated JAK2 and JAK3 kinases via its SH2
domain. As a result, it inhibits the activation of downstream transcription factors. However,
it has been reported that LNK is also able to bind directly to cytokine receptors, such as
EPO receptor, and RTKs like c-KIT and FMS-like tyrosine kinase (FLT3), the latter of which
play an essential role in the development of hematological progenitor cells [116]. LNK is
subjected to regulation via its interaction with 14-3-3 proteins. These proteins bind to LNK
phosphoserine residues 13 (pS13) and 129 (pS129), hindering the attachment of LNK to
JAK2 and therefore liberating the signaling cascade [117].

Although the activity of LNK has been mostly described in hematopoietic cells, there
is evidence demonstrating the expression and functions of LNK in non-hematological cells,
broadening the potential implications of LNK in healthy and abnormal conditions. For
instance, LNK is expressed in endothelial cells. Endothelial cell adherence and migration
depend upon the formation of focal adhesions (FAs). Interestingly, LNK localizes at
FAs, and the inhibition of LNK expression via RNA interference significantly reduces the
spread of endothelial cells. In this cell type, LNK is able to regulate β1 integrin-associated
pathways, increasing the number of FAs and cell matrix adhesions [118]. In addition, the
capacity of LNK to regulate progenitor endothelial cells was demonstrated in vivo. Using
lnk−/− mice, the authors demonstrated that LNK is a master regulator of cell growth,
endothelial commitment, migration, and recruitment for the vascular regeneration of
progenitor endothelial cells by inhibiting the activity of cKIT, a tyrosine kinase receptor
that activates the JAK-STAT cascade, among others [119].

LNK has also been detected in primary cortical neurons. Notably, it was observed
that LNK is able to directly bind to phosphorylated nerve growth factor receptor (NGFR),
blocking activation of MEK-ERK 1/2 and PI3K/AKT signaling. As a result, LNK is able to
inhibit cortical neuron differentiation and reduce neurite outgrowth [120]. Furthermore,
LNK is expressed in neural stem and progenitor cells. Additionally, it can be observed
in the subventricular zone of the human brain. After an ischemic stroke, activation of
STAT1 and STAT3 induces overexpression of LNK. This mediates a significant reduction in
neuronal stem and progenitor cell proliferation in the damaged area [121]. Although the
authors did not evaluate the capacity of LNK to inhibit the JAK-STAT cascade in these cells,
they indeed suggested that SH2B3 transcription is regulated by STAT molecules [121].

Finally, there is evidence showing that the expression of LNK is significantly higher
in heart samples of dilated cardiomyopathy patients than in normal hearts, and that LNK
mediates cardiomyocyte hypertrophy during cardiac remodeling [122]. Again, the authors
did not investigate the potential implications of the JAK-STAT pathway in these patients.
However, they did find that LNK regulates the FAK-PI3K-AKT-mTOR/GSK3 β cascade
and postulated that LNK may also participate in integrin-mediated signal transduction to
control cardiomyocyte hypertrophy [122].

Taken together, this experimental evidence suggests that LNK may play a role as a
regulator of several cell functions by controlling not only the canonical JAK-STAT cascade
but also alternative signaling pathways in a variety of non-hematological cell types, and
that further research is needed to fully understand the functions of LNK.
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6. LNK in Hormone Receptor-Positive Breast Cancer

Since LNK is a major regulator of normal hematopoiesis, it is not surprising that the
loss of LNK control is associated with several hematological disorders, myeloproliferative
neoplasms [123], and various types of leukemias [124–126]. However, the potential role of
LNK in solid tumors remains controversial.

Thus far, investigation of LNK has been limited to a small number of solid tumor types.
By studying human melanoma tissue arrays and mRNA expression data from available
databases, Ding et al. found that LNK is overexpressed in patients with melanoma, and
that higher expression of LNK is associated with shorter overall survival [127]. Likewise,
elevated expression of LNK was detected in patients with thyroid carcinoma [128]. In
glioblastoma patients, elevated expression of LNK predicted worse survival [129]. Sim-
ilarly, in silico analysis and immunohistochemical study of tissue arrays demonstrated
increased LNK expression in patients with high-grade ovarian cancer [130]. Unlike the
abovementioned tumors, studies of colorectal and lung cancer showed a negative correla-
tion with LNK expression. In a small study, including tumor samples from 32 colorectal
carcinoma patients, it was observed that the expression of LNK was significantly lower
than that in adjacent normal tissue [131]. In the case of lung cancer patients, low expression
of LNK was found to be correlated with poor prognosis [132].

Overall, analyses of LNK expression in solid tumor biopsies suggest that the level of
expression of LNK might be tissue-specific. Interestingly, functional analysis in cell lines
has also shown that LNK-associated activities seem to depend upon cell type. For instance,
the induction of LNK overexpression in thyroid carcinoma-derived [128] and glioblastoma-
derived [129] cell lines resulted in increased cell proliferation and migration, as well as
protection against apoptosis. These observations agree with clinical data showing an
association between LNK overexpression and poor survival in glioblastoma patients [129].
Likewise, overexpression of LNK in ovarian cancer-derived cell lines restrained apoptosis,
while inhibiting LNK expression significantly reduced cell proliferation. These observations
support the idea of a potential oncogenic role of LNK in ovarian cancer and might be
associated with the fact that patients with advanced ovarian cancer show elevated levels
of LNK expression [130]. In sharp contrast, a low level of LNK expression has been
found in colorectal and lung tumors. Notably, inducing the overexpression of LNK in
colorectal-derived [131] and lung cancer-derived [132] cell lines reduced the proliferation
and invasive potential of both cell types. In the case of lung cancer, it was demonstrated that
LNK modulated cell activities by suppressing the JAK2-STAT3 and SHP2/Grb2/PI3K/AKT
signaling loops [132]. Taken together, these data seem to suggest that the role of LNK during
cancer development is tissue type-specific. Nevertheless, data remain scarce. Thus, more
research is needed to probe this idea.

To date, very little has been reported regarding the expression and potential function of
LNK in breast cancer. Current evidence supporting the potential activity of LNK in luminal
breast cancer is outlined in Figure 1. The first report establishing an association between
LNK and breast cancer was published in 2015. The authors conducted a cross-cancer
analysis of genomic variants in the inflammation pathway using public gene expression
datasets. They found that the SH2B3 missense variant (rs3184504) was associated with
breast cancer [133]. In line with former reports, a large in silico analysis of genomic data
contained in the UK Biobank showed that the SH2B3 missense variant was associated
with breast cancer [134]. Unfortunately, none of the studies stratified cases by subtype,
and they did not establish correlations with clinical outcome. Since the abovementioned
missense single-nucleotide polymorphism results in the substitution of tryptophan (Trp) for
arginine (Arg) in the PH domain, it has been postulated that it might modify the capacity
of LNK to localize at the inner side of the cell membrane, thus hampering interaction with
JAK2. Failing to control JAK2 signaling may produce an overactivation of cytokine-induced
cascades. In fact, Alexander et al. used CRISPR-Cas9 to create mice that were homozygous
for either the Trp or Arg allele. They observed that Trp/Trp LNK was significantly less
repressive of IL-12-induced STAT4 phosphorylation compared to Arg/Arg LNK [135]. As
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previously mentioned, IL-6 and PRL are important inducers of JAK2 activation in ER-
positive breast tumors. Thus, evaluating the prevalence of LNK variants in ER-positive
tumors would improve our understanding of the participation of LNK in the control of
IL-6 and PRL pro-tumoral activities.
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Figure 1. Regulation of the JAK-STAT signaling pathway by LNK in hormone receptor-positive
breast cancer and non-tumor cells. Expression of IL-6R/gp130 and PRLR in non-tumor breast
cells is closely associated with mammary gland development, whereas it is associated with cancer
maintenance and initiation in hormone receptor-positive tumor cells. (1) Binding of IL-6 and PRL to
their receptors induces activation of receptor-attached JAK2 kinases. (2) Active JAK2 phosphorylates
STAT3 and STAT5 transcription factors. (3) STAT3 and STAT5 homodimers translocate into the
nucleus and induce transcription of a number of genes that stimulate proliferation, differentiation,
and survival of mammary cells. (4) STAT3 and STAT5 also stimulate the expression of LNK. (5) LNK
localizes to the inner side of the cell membrane via interaction of the PH domain with membrane
phosphatidylinositol lipids. This allows binding of the SH2 domain to JAK2, inhibiting the cascade. In
tumor cells, constitutive activation of the IL6-IL-6R/JAK2-STAT3 and PRL-PRLR/JAK2-STAT5 loops
may be associated with dysfunction of LNK. Three potential mechanisms have been proposed: (6) a
reduction in LNK expression; (7) a blockage of LNK activity by binding with the inhibitor molecule
14-3-3; and (8) the presence of the SH2B3 missense variant rs3184504 (yellow star), which may be
unable to interact with the cell membrane. As a result, increased proliferation, survival, migration,
invasion capacity, and resistance to endocrine treatment have been reported. IL-6: interleukin-6; IL-
6R/gp130: interleukin-6 receptor/glycoprotein 130; PRL: prolactin; PRLR: prolactin receptor; JAK2:
Janus kinase 2; STAT3: signal transducer and activator of transcription 3; STAT5 signal transducer and
activator of transcription 5; LNK: lymphocyte adaptor protein; PH: pleckstrin homology domain; SH2:
Src homology 2 domain; DD: dimerization domain; pS13: phosphoserine 13; pS129: phosphoserine
129. Figure created with BioRender.com.

Later, an interesting study originally focused on examining LNK expression in triple-
negative breast cancer showed that the expression of LNK is significantly higher in triple-
negative breast cancer biopsies than in non-triple-negative tumors. Further analysis of
breast cancer-derived cell lines demonstrated that the expression of LNK was indeed lower
in cells expressing hormone receptors, suggesting that LNK might play different roles in
breast cancer subtypes [136]. The impact of increasing the level of LNK expression in tumor
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cells has been evaluated in vitro in colorectal [131] and lung cancer [132], which has been
associated with low expression in corresponding patients. However, up until now, the
effect of overexpressing LNK in luminal cancer-derived cell lines has not been explored.

It is important to consider that regulation of the JAK-STAT-LNK axis does not only
rely on the level of LNK. Mutations on JAK2, STAT3, and LNK, along with expression of
the LNK inhibitor 14-3-3, have also been reported to induce alterations of the signaling cas-
cade. JAK2 gain-of-function mutations, leading to constitutive phosphorylation of STAT3,
STAT5, and JAK2 itself, have been recognized in a high proportion of myeloproliferative
neoplasms [123]. Nevertheless, the scenario in breast cancer appears to be more compli-
cated. On the one hand, JAK2 amplifications have been mainly identified in triple-negative
tumors [137]. In contrast, whole-genome sequencing analysis of 170 breast cancer patients
demonstrated that distant metastasis from ER-positive patients causes JAK2 and STAT3
mutations, producing late inactivation of the formerly active cascade [138]. This suggests
that LNK regulation might only be relevant at early stages of luminal cancer development.

LNK adaptor activity is negatively regulated by 14-3-3 proteins. It is generally accepted
that expression of the majority of 14-3-3 isoforms is elevated in cancer. However, an
evaluation of the expression of 14-3-3 isoforms in breast cancer revealed that expression
of the 14-3-3 β isoform was significantly increased in luminal tumors. Additionally, it
was significantly associated with poor overall survival and shorter relapse-free survival
of patients [139]. Interestingly, is has been reported that 14-3-3 β directly binds to ERα,
activating the transcriptional activity of the receptor [140]. This suggests that, in ER-positive
breast cancer, a complex interaction between 14-3-3 β, ERα, and LNK might contribute to
preserving the oncogenic phenotype by activating ERα and repressing LNK. This potential
interaction deserves to be investigated more deeply.

Due to the scarcity of published research in the field of LNK and luminal cancer, we
conducted an analysis of the available datasets containing genetic data with the intention
of shedding some light on the potential associations among LNK, JAK2, STAT3, STAT5,
14-3-3, and clinical outcomes. Considering that several LNK mutations are associated
with myeloproliferative neoplasms [123], we first scrutinized publicly available data in
the cBioPortal for Cancer Genomics [141,142], searching for mutations in breast cancer
samples. An analysis of sequencing data, including 13 independent studies and nearly
4000 patients (Table S1), showed that only 18 out of 3607 patients (0.5%) had one or more
mutations in the SH2B3 gene (Figure 2a), suggesting that LNK mutations are not associated
with breast cancer. Most LNK mutations have been found in myeloproliferative disorders.
Although experimental evidence supports the participation of LNK as a regulator of
signaling cascades in cancer cells, there are no reports of LNK mutations with biological
significance in solid tumors. Our analysis showed that the frequency of mutations in
luminal tumors is very low. However, as we previously proposed, deregulation of LNK
function might be produced by a number of factors involving other components of the
JAK-STAT-LKN axis.

We then investigated the level of expression of LNK-encoding gene SH2B3 by inter-
rogating the TCGA PanCancer transcriptomic dataset through the cBioPortal platform.
Samples were stratified by cancer subtype and specific mRNA expression in 499 luminal
A and 197 luminal B samples was compared with expression in normal adjacent tissues.
Gene overexpression was considered for samples with a z-score relative to normal adjacent
tissue > 2, whereas underexpression was considered for samples with a z-score relative to
normal adjacent tissue < 2 (Figure 2b). In order to establish potential associations with the
clinical outcome of luminal cancer patients, we downloaded standardized survival data
from cBioPortal to determine whether over- and underexpression of SH2B3 are associated
with overall survival of hormone receptor-positive breast cancer patients. The results
presented in Figure 2c indicate that luminal A patients with overexpression of SH2B3
showed a trend of having reduced 5-year overall survival, whereas patients with SH2B3
underexpression showed a trend of having increased 5-year overall survival. However, the
values did not reach statistical significance. These data seem to indicate that, although the
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overexpression of SH2B3 was only observed in a small number of luminal A patients, it
seems to predispose them to diminished survival, whereas patients with SH2B3 underex-
pression appear to have better prognosis. However, the relatively small number of patients
in each group prevented us from reaching a categorical conclusion. Unlike those with
luminal A breast cancer, patients with luminal B breast cancer did not show any difference
between unaltered and altered expression levels of SH2B3 (Figure 2d). These observations
suggest that the expression of LNK may be downregulated in a proportion of luminal
A breast cancer cases, and that reduction of protein levels may be associated with poor
prognosis.
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Figure 2. Analysis of expression and mutations of LNK. Publicly available data were downloaded
through the cBioPortal for Cancer Genomics. (a) Analysis of sequencing data, including nearly
4000 breast cancer patients. Localization of 18 mutations detected. (b) Oncoprint of the expression
of LNK-encoding gene SH2B3, investigated in luminal A and luminal B tumor samples from the
TCGA transcriptomic dataset including 499 cases of luminal A and 197 cases of luminal B. Gene
overexpression (mRNA High) was considered for samples with z-scores relative to normal adjacent
tissue > 2, whereas gene underexpression (mRNA Low) was considered for samples showing z-scores
relative to normal adjacent tissue < 2. Association of SH2B3 under- and overexpression with 5-year
overall survival of patients with luminal A (c) and luminal B (d) breast cancer. Standardized survival
data from cBioPortal were downloaded; a statistical comparison of samples showing overexpression
(EXP > 2) with samples presenting unaltered expression is presented.

LNK activity is regulated by 14-3-3 proteins [117]. There are seven 14-3-3 isoforms
in humans. Thus, we first investigated the expression of all seven isoforms in a cohort
of luminal A and luminal B samples from the TCGA transcriptomic dataset. As seen in
Figure 3a, 14-3-3 isoforms ζ and βwere overexpressed in 30% and 20% patients, respectively.
Thus, to establish potential associations of 14-3-3 ζ and β isoform expression with the
clinical outcomes of luminal cancer patients, we downloaded standardized survival data
from cBioPortal. Patients showing elevated 14-3-3 ζ expression had significantly reduced
5-year overall survival compared to patients with unaltered expression (Figure 3b). This
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observation agrees with previous reports showing that 14-3-3 ζ is overexpressed in breast
cancer and is associated with a poor prognosis [143]. Data showed that the second most
frequently overexpressed isoform was 14-3-3 β. Of note, survival analysis demonstrated
that patients presenting 14-3-3 β overexpression had a significantly lower probability of
5-year overall survival than patients with unaltered expression. The difference was even
more significant than that observed for the 14-3-3 ζ isoform. This is relevant because 14-3-3
β is the only isoform that has been directly associated with luminal breast cancer since
it interacts with and activates the transcriptional potential of ERα [140]. These findings
suggest that overexpression of LNK regulators plays a detrimental role in luminal breast
cancer. The 14-3-3 β isoform is of particular interest because it may play a dual role in
luminal cancer by activating the oncogenic action of ERα and by blocking the inhibitory
activity of LNK, favoring cell proliferation and resistance to treatment [140,143]. It is
necessary to probe this hypothesis via experimental work using ERα-expressing cell lines.
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Figure 3. Effect of 14-3-3 isoform expression on clinical outcomes. Publicly available data were
downloaded through the cBioPortal for Cancer Genomics. (a) Oncoprint of the expression of seven
human 14-3-3 isoforms in luminal A and luminal B tumor samples from the TCGA transcriptomic
dataset, including 499 cases of luminal A and 197 cases of luminal B breast cancer cases. Individual
genes are represented as rows, and individual cases are represented as columns. Gene overexpression
(mRNA High) was considered for samples with a z-score relative to that of normal adjacent tissue > 2,
whereas gene underexpression (mRNA Low) was considered for samples showing a z-score relative
to normal adjacent tissue < 2. Association of 14-3-3 ζ (b) and 14-3-3 β (c) isoform overexpression
with 5-year overall survival. Standardized survival data from cBioPortal were downloaded, and
a statistical comparison of samples showing overexpression (EXP > 2) with samples presenting
unaltered expression is presented. SFN: gene encoding 14-3-3σ; YWHAB: gene encoding 14-3-3β;
YWHAG: gene encoding 14-3-3γ; YWHAE: gene encoding 14-3-3ε; YWHAH: gene encoding 14-3-3η;
YWHAQ: gene encoding 14-3-3θ; YWHAZ: gene encoding 14-3-3ζ.
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7. Conclusions

Hormone receptor-positive breast cancer is still a serious global health problem [1].
Treatments have been designed to inhibit the activity of ER or the production of estrogens.
However, a proportion of patients develop resistance during treatment. Thus, exploring
different signaling cascades that play roles during breast cancer development may pro-
vide new therapeutic targets. The JAK2-STAT3 and JAK2-STAT5 pathways have been
demonstrated to be constitutively active in luminal breast cancer via the stimulation of
IL-6 [87–94] and PRL [101–103], respectively. The activity of the JAK-STAT signaling cas-
cade promotes proliferation, migration, invasion, and the acquisition of resistance. In some
cell types, the JAK-STAT pathway is inhibited by the adaptor protein LNK. However, in
hormone receptor-positive breast cancer, the potential activity of LNK seems to be part of
an intricate landscape of interactions that deserves to be further explored. In this sense,
underexpression of the LNK-encoding gene SH2B3 is more frequently observed in luminal
A cases than in luminal B cases. As the genetic profile of luminal A and luminal B tumors
is different, it will be important to perform functional studies using cell lines derived from
luminal A tumors to demonstrate whether downregulation of LNK expression is related
to luminal A-associated proteins, and if this has an impact on the activity of JAK-STAT
transduction signaling.

On the other hand, LNK activity is regulated by 14-3-3 proteins. Isoforms of 14-3-3
can bind to and regulate many target proteins, thus playing important roles in the course
of pathological disorders. Here, we detected that two 14-3-3 isoforms are overexpressed in
hormone receptor-positive breast tumors. In particular, 14-3-3 ζ and 14-3-3β overexpression
was significantly associated with diminished 5-year overall survival. The overexpression
of 14-3-3 ζ has been detected in many tumor types, but it is particularly challenging to
address 14-3-3 β in the context of luminal breast cancer because it is able to interact and
activate ERα. However, it is not presently known whether this isoform can also block LNK
activity. Research focused on the mechanisms of 14-3-3 isoforms as negative and positive
regulators of relevant signaling cascades in luminal breast cancer may soon provide new
therapeutic targets.

Finally, the presence of an SH2B3 missense variant, with a potentially diminished
capacity to interact with the cell membrane, might also contribute to regulating LNK
activity in breast cancer. The present review covers a rather novel subject. However, due to
the relevance of the JAK-STAT signaling pathway in luminal breast cancer, we consider
it important to assemble current information on the involvement of LNK in the control
of this cascade in order to start building innovative models of regulation for this type
of cancer. It is clear that research is still needed to fully understand the participation of
LNK in the development and progression of hormone receptor-positive breast cancer. The
information presented herein will also help to visualize future directions for investigation
that may provide data to elucidate the possibility of designing novel therapeutic strategies
for hormone receptor-positive breast cancer based on the regulatory mechanism of LNK.
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