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Abstract: Pathological mechanisms contributing to Alzheimer’s disease (AD) are still elusive. Here,
we identified the metabolic signatures of AD in human post-mortem brains. Using 1H NMR spec-
troscopy and an untargeted metabolomics approach, we identified (1) metabolomic profiles of AD and
age-matched healthy subjects in post-mortem brain tissue, and (2) region-common and region-unique
metabolome alterations and biochemical pathways across eight brain regions revealed that BA9 was
the most affected. Phenylalanine and phosphorylcholine were mainly downregulated, suggesting
altered neurotransmitter synthesis. N-acetylaspartate and GABA were upregulated in most regions,
suggesting higher inhibitory activity in neural circuits. Other region-common metabolic pathways
indicated impaired mitochondrial function and energy metabolism, while region-unique pathways
indicated oxidative stress and altered immune responses. Importantly, AD caused metabolic changes
in brain regions with less well-documented pathological alterations that suggest degenerative pro-
gression. The findings provide a new understanding of the biochemical mechanisms of AD and guide
biomarker discovery for personalized risk prediction and diagnosis.

Keywords: proton nuclear magnetic resonance (1H NMR) spectroscopy; aging; neuropathology;
neurodegenerative disease; cognitive function; phenylalanine; GABA; energy metabolism; neuro-
transmission; mitochondrial dysfunction; oxidative stress; glucose metabolism

1. Introduction

The elderly population is growing worldwide and so are the concerns over the rise in
aging-associated neurodegenerative diseases, such as Alzheimer’s disease (AD) [1,2]. AD is
the most common neurodegenerative disease and affects approximately 55 million people
worldwide, a number that is estimated to nearly triple by 2050 [1,2]. Common symptoms
of AD include learning and memory deficits; emotional dysregulation; impaired abstract
reasoning, language, and speech ability; and motor impairments [3–5]. These clinical
symptoms are consequences of long-term complex brain changes, including inflammation,
oxidative stress, and the accumulation of amyloid-beta and tau proteins, ultimately leading
to neuropathological changes [6–11].

The formation of neurofibrillary tangles (NFTs) and amyloid-beta plaques (Aβ) in
the brain is considered a key pathological hallmark of AD [11,12] associated with the
atrophy of multiple brain regions [13]. The NFTs are initially observed in the hippocampus
(HPC), then reach the entire brain via fugal movement, ultimately contributing to neuronal
atrophy [2,5,14]. Aβ plaques are initially observed in the HPC and the cortex, such as
frontal cortex (BA9), and later spread to other brain regions [15]. These pathological
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markers move across the brain, along with inflammation, oxidative stress, and impaired
energy metabolism, leading to neuronal cell death [5,16].

Genetic risk factors, such as inheritance of apolipoprotein E (APOE), presenilin-1
(PSEN1), presenilin-2 (PSEN2), and amyloid precursor protein (APP) genes, can increase the
risk of neuropathological changes linked to AD [4,6,12]. APOE is essential for the movement
of fats in the bloodstream [4,5]. The alterations in PSEN 1 and 2 and APP can lead to the
abnormal production of proteins and amyloid and lead to the formation of plaques [12],
the hallmarks of AD. These genetic risk factors are associated with metabolic changes in
the brain, including altered levels of lipids and low Aβ concentrations [12,14]. Although
much is known about AD-related neuropathology and genetic risk factors, the underlying
biochemical processes contributing to its onset and progression are still incompletely
understood [5,17]. Thus, robust biomarkers of AD with early diagnostic and prognostic
potential are still not available. Investigating AD-related metabolic changes across multiple
brain tissues can critically advance the understanding of biochemical changes at the cellular
level and potentially provide targets for novel predictive biomarkers of this disease.

Metabolomics is a powerful approach used to capture the complex dynamic metabolic
changes associated with AD [14,18–21]. Metabolic fingerprints indicate the disrupted inter-
cellular communication underlying the progressive pathological mechanisms of AD [22].
As metabolites are downstream from genomic, epigenomic, and physiological regulation,
they provide robust indicators of neurodegenerative cellular processes [23,24]. AD-related
metabolomics of post-mortem brain tissues has revealed metabolic changes in the HPC,
frontal cortex [including Brodmann area (BA) 9], and temporal cortex [3,14,23,25,26]. The
profiling of post-mortem AD tissues via proton nuclear magnetic resonance (1H NMR)
spectroscopy demonstrated N-acetylaspartate (NAA) reduction in the grey matter of BA17
and superior temporal gyrus (BA22), among other regions [27,28]. However, most stud-
ies used targeted metabolomics and focused on specific brain areas, hindering effective
biomarker discovery due to a lack of gross metabolic exploration across multiple brain
regions [16,18–23].

In this study, we used an untargeted metabolomics approach to determine compre-
hensive metabolomic fingerprints linked to AD across eight brain regions [BA9, BA17,
BA22, BA24, BA40, dentate nucleus (DN), HPC, and pons base (PB)] in post-mortem
human tissues (Figure 1). The identification of region-specific versus common metabo-
lites and biochemical pathways highlighted the functional connectivity between regions
and revealed profiles of pathological progression in AD. The results provide targets for
new potential predictive, diagnostic, and prognostic biomarkers of AD for personalized
medicine approaches.
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Figure 1. Post-mortem brain tissues (Brodmann areas BA9, BA17, BA22, BA24, BA40, DN, HPC, and 
PB) were retrieved from the Calgary Brain Bank from categorized control (non-AD) and AD pa-
tients. Tissues were processed (metabolic extraction and NMR sample preparation) and analyzed 
using 1H NMR spectroscopy. Both univariate analysis and a multivariate machine learning ap-
proach involving permutation testing were used to determine metabolite signatures across the eight 
brain regions. The results focus on the differences observed in AD tissues compared to non-AD 
controls. The complete list of metabolites altered in AD tissues compared to controls was used for 
the pathway topology analysis. 

2. Results 
2.1. Metabolomic Signatures of AD Occur across Brain Regions 

This study involved post-mortem brain tissues from 11 AD patients and 11 healthy 
subjects (HS), including 5 females and 6 males in each group. The average age was 80 
years old for AD participants and 65 years old for HS. The average neuropathology ABC 
score was 7.63 out of possible 9 in AD and 1.63/9 in HS subjects (Table 1). 

Table 1. Demographics table with experimental groups and brief descriptions. This study in-
volved brain tissues from 11 AD and 11 healthy subject (HS) participants. There was a nearly even 
split between males and females. The average age of AD participants was 80 years old compared 
to 65 years for HS. The average neuropathology ABC score was 7.63 out of possible 9 in AD and 
1.63/9 in HS subjects. 

Experimental 
Group Sex Average Age 

(yrs.) 
PMD 

(h) 
Average Total 

ABC Score 
AD (n = 11) 5 Female; 6 Male 80 ± 9 30 ± 12 7.63/9 
HS (n = 11) 5 Female; 6 Male 65 ± 12 41 ± 15 1.63/9 

Key: AD, Alzheimer’s disease; HS, healthy subject; PMD, post-mortem delay; ABC Total Score, Am-
yloid, Braak tau distribution, and CEDAR score, ± upper/lower ranges. 

AD significantly altered the metabolic profiles of all eight brain regions (BA9, BA17, 
BA22, BA24, BA40, DN, HPC, and PB; Figure 2; Table 2). Mann-Whitney (MW) and vari-
able importance analysis based on random variable combination (VIAVC) best subset bins 
revealed the most (118) significantly altered metabolites in BA9 and the least (24) altered 
metabolites in BA24. HPC, BA22, BA40, and BA17 had 48, 41, 38, and 34 significantly al-
tered metabolites, respectively (Table 2). Fewer metabolites were significantly altered in 
DN, with 27 metabolites changed, compared to 26 in PB (Figure 2A,B). These results 

Figure 1. Post-mortem brain tissues (Brodmann areas BA9, BA17, BA22, BA24, BA40, DN, HPC, and
PB) were retrieved from the Calgary Brain Bank from categorized control (non-AD) and AD patients.
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Tissues were processed (metabolic extraction and NMR sample preparation) and analyzed using 1H
NMR spectroscopy. Both univariate analysis and a multivariate machine learning approach involving
permutation testing were used to determine metabolite signatures across the eight brain regions. The
results focus on the differences observed in AD tissues compared to non-AD controls. The complete
list of metabolites altered in AD tissues compared to controls was used for the pathway topology
analysis.

2. Results
2.1. Metabolomic Signatures of AD Occur across Brain Regions

This study involved post-mortem brain tissues from 11 AD patients and 11 healthy
subjects (HS), including 5 females and 6 males in each group. The average age was 80 years
old for AD participants and 65 years old for HS. The average neuropathology ABC score
was 7.63 out of possible 9 in AD and 1.63/9 in HS subjects (Table 1).

Table 1. Demographics table with experimental groups and brief descriptions. This study involved
brain tissues from 11 AD and 11 healthy subject (HS) participants. There was a nearly even split
between males and females. The average age of AD participants was 80 years old compared to
65 years for HS. The average neuropathology ABC score was 7.63 out of possible 9 in AD and 1.63/9
in HS subjects.

Experimental
Group Sex Average Age

(yrs.)
PMD

(h)
Average Total

ABC Score

AD (n = 11) 5 Female; 6 Male 80 ± 9 30 ± 12 7.63/9
HS (n = 11) 5 Female; 6 Male 65 ± 12 41 ± 15 1.63/9

Key: AD, Alzheimer’s disease; HS, healthy subject; PMD, post-mortem delay; ABC Total Score, Amyloid, Braak
tau distribution, and CEDAR score, ± upper/lower ranges.

AD significantly altered the metabolic profiles of all eight brain regions (BA9, BA17,
BA22, BA24, BA40, DN, HPC, and PB; Figure 2; Table 2). Mann-Whitney (MW) and variable
importance analysis based on random variable combination (VIAVC) best subset bins
revealed the most (118) significantly altered metabolites in BA9 and the least (24) altered
metabolites in BA24. HPC, BA22, BA40, and BA17 had 48, 41, 38, and 34 significantly altered
metabolites, respectively (Table 2). Fewer metabolites were significantly altered in DN, with
27 metabolites changed, compared to 26 in PB (Figure 2A,B). These results demonstrate
the most significant metabolic changes in brain regions where AD initially begins, such as
BA9, HPC, BA22, and BA40. This finding is consistent with the neuropathological disease
progression of AD and clinical observations of cognitive impairment [4,8,29]. Moreover,
the present study demonstrates that AD leads to metabolic changes in brain regions with
less well-documented pathological alterations (PB, DN and BA24).

Table 2. Summary of statistically significant bins for BA9, BA17, BA22, BA24, BA40, DN, HPC, and
PD determined using MW + VIAVC, with corresponding number of metabolites. Q2 and R2Y (and
p values) from the OPLSDA built from the significant MW + VIAVC bins are also reported.

Brain Region Number of Significant
Bins Out of Total Bins

Corresponding Number
of Identified Metabolites Q2 Value R2Y Value

BA9 353/382 118 0.737 (p < 5 × 104) 0.835 (p < 5 × 104)
BA17 110/364 34 0.736 (p < 5 × 104) 0.967 (p = 0.003)
BA22 157/380 41 0.738 (p < 5 × 104) 0.867 (p < 5 × 104)
BA24 61/365 24 0.00601 (p = 0.238) 0.727 (p = 0.0375)
BA40 84/378 38 0.173 (p = 0.1065) 0.798 (p = 0.0015)
DN 63/355 27 0.512 (p < 5 × 104) 0.749 (p = 0.004)

HPC 100/316 48 0.586 (p < 5 × 104) 0.77 (p = 0.001)
PB 53/299 26 0.624 (p < 5 × 104) 0.789 (p < 5 × 104)

Note: Q2 and R2Y (and respective p-values) from the OPLS-DA built from the significant bins are also reported.
For PB, these values are derived from the OPLS-DA constructed from the MW and VIAVC F-ranked bins.
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Figure 2. Brain heat maps illustrating the total number of metabolites and regulation changes across 
brain regions in AD tissues compared to non-AD controls. (A) The darkest blue indicates the brain 
region (BA9) with the most metabolic changes in AD (BA9), while the lighter blue indicates the least 
number of changes (PB). (B) Bar graph showing the actual number of metabolites altered in each 
region. (C) The heat map shows the predominant metabolic regulation changes for each brain re-
gion, with red indicating downregulation and green showing upregulation. (D) Bar graph indicat-
ing % of metabolites upregulated and downregulated in each brain region. 
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affected regions (DN and PB) (Figure 3A). One common metabolite altered in the most 
and the least AD-affected regions was glycyl-glycine (Supplementary Table S1). Across 
regions involved in functional communication between the cortex and cerebellum (BA9, 
BA40, and DN), four common metabolites were identified (ethanol, serine, acetylcholine, 
and glycolic acid) (Figure 3B; Supplementary Table S1). For clinically relevant regions 
(BA9, BA17, and HPC) eleven common metabolites were identified (NAA, 2-amino-3-
phosphonopronic acid, gamma-aminobutyric acid (GABA), leucine, phenylalanine, ser-
ine, tyrosine, valine, phosphorylcholine, creatine, and glycerol and malonic acid) (Figure 
3C; Supplementary Table S1). Interestingly, NAA, GABA, leucine, glycerol, and malonic 
acid were all upregulated in BA9, BA17, and HPC. The least altered brain regions (BA24, 
DN, and PB) showed three common metabolites (isoleucine, gylcyl-glycine, and citric 
acid; Figure 3D; Supplementary Table S1). In all three brain regions, isoleucine and glycyl-
glycine were downregulated, while citric acid was upregulated. When parietal and frontal 
regions (most affected by AD) were compared, nine common metabolites were identified 
(NAA, 2-amino-3-phosphonopronic acid, GABA, glucose, leucine, phenylalanine, serine, 
tyrosine, and valine and phosphorylcholine; Figure 3E; Supplementary Table S1). In all 

Figure 2. Brain heat maps illustrating the total number of metabolites and regulation changes across
brain regions in AD tissues compared to non-AD controls. (A) The darkest blue indicates the brain
region (BA9) with the most metabolic changes in AD (BA9), while the lighter blue indicates the least
number of changes (PB). (B) Bar graph showing the actual number of metabolites altered in each
region. (C) The heat map shows the predominant metabolic regulation changes for each brain region,
with red indicating downregulation and green showing upregulation. (D) Bar graph indicating % of
metabolites upregulated and downregulated in each brain region.

Although AD altered the metabolomic profiles of each investigated brain region, the
direction of the regulation varied between regions. Predominantly upregulated metabolites
were observed in BA9, DN, and HPC. Approximately 90% of metabolites were upregulated
in BA9, 63% in DN, and 60% in HPC. In contrast, mostly downregulated metabolites were
found in BA40 (87%), BA24 (70%), PD (65%), BA17, and BA22, with 60% of metabolites
being changed in AD tissues (Figure 2C,D). BA9 and HPC showed the most upregulated
metabolites and are known to be the first and most affected by AD.

2.2. Biomarkers of AD: Brain Region Common and Unique Metabolites

When AD-associated metabolite alterations were compared across all investigated
brain regions, some common and unique metabolites were identified. Common metabolites
were identified in the hallmark regions most affected by AD (BA9, HPC) and the least
affected regions (DN and PB) (Figure 3A). One common metabolite altered in the most
and the least AD-affected regions was glycyl-glycine (Supplementary Table S1). Across
regions involved in functional communication between the cortex and cerebellum (BA9,
BA40, and DN), four common metabolites were identified (ethanol, serine, acetylcholine,
and glycolic acid) (Figure 3B; Supplementary Table S1). For clinically relevant regions
(BA9, BA17, and HPC) eleven common metabolites were identified (NAA, 2-amino-3-
phosphonopronic acid, gamma-aminobutyric acid (GABA), leucine, phenylalanine, serine,
tyrosine, valine, phosphorylcholine, creatine, and glycerol and malonic acid) (Figure 3C;
Supplementary Table S1). Interestingly, NAA, GABA, leucine, glycerol, and malonic acid
were all upregulated in BA9, BA17, and HPC. The least altered brain regions (BA24, DN,
and PB) showed three common metabolites (isoleucine, gylcyl-glycine, and citric acid;
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Figure 3D; Supplementary Table S1). In all three brain regions, isoleucine and glycyl-
glycine were downregulated, while citric acid was upregulated. When parietal and frontal
regions (most affected by AD) were compared, nine common metabolites were identified
(NAA, 2-amino-3-phosphonopronic acid, GABA, glucose, leucine, phenylalanine, serine,
tyrosine, and valine and phosphorylcholine; Figure 3E; Supplementary Table S1). In all
four regions, NAA and GABA were upregulated, while leucine was downregulated. The
direction of the regulation for other metabolites varied.

VIAVC analysis identified common and unique metabolites that may serve as biomark-
ers of AD (Table 3). Corresponding metabolites with altered regulation in most brain
regions included phenylalanine, NAA, GABA, phosphorylcholine, serine, and citric acid
(Figure 3). Specifically, phenylalanine and phosphorylcholine were downregulated in all
regions, except for their upregulation in BA9, while no changes were observed in DN and
PB for phosphorylcholine (Figure 3F,L). Moreover, NAA and GABA were upregulated in
all regions, except for DN and PB, where they were unchanged (Figure 3K,G). Arginine
and serine were downregulated in BA17 and BA40, while serine was upregulated in BA9
and BA22 (Figure 3N,I). Citric acid and succinic acid were upregulated in BA9 and DN,
while citric acid was upregulated in all other regions, except BA17 and BA40 (Figure 3J,M).
Uniquely, lactic acid was downregulated in BA9 and HPC, while myoinositol was upregu-
lated in BA17, HPC, and PB (Figure 3O,H). The metabolomic profiles, therefore, identified
common metabolites altered across multiple brain regions as potential biomarkers of AD.
These specific markers may be used for early disease diagnosis or prognosis from periph-
eral tissues such as blood. Possible biomarkers of metabolomics in AD are summarized in
Table 3.

Table 3. Summary of number of VIAVC Best Subset bins use to build the ROC for BA9, BA17, BA22,
BA24, BA40, DN, HPC, and PD and the predicative accuracy, 95% confidence interval, and AUC for
each ROC. Also, the specific metabolites that the VIAVC Best subset bins correspond to is shown.

Brain
Region

Number of
Bins

Predictive
Accuracy

95%
Confidence Interval AUC Corresponding Metabolites

BA9 24 85.5% 0.827–1 0.976

Niacinamide, Formic acid,
FAPy-adenine, Adenosine

monophosphate, Oxypurinol
Imidazole, Thiamine

pyrophosphate, Benzaldehyde,
Terephthalic acid, 4-pyrudoxate,

Deoxyuridine, L-tryptophan,
Nicotinurate, L-tryptophan,

Phthalic acid, and
L-phenylalanine

BA17 3 98.9% 1–1 1 Glycerol and L-serine

BA22 4 95% 1–1 1 L-phenylalanine and
N-acetyl-L-aspartate

BA24 3 94.9% 0.957–1 0.997
2-hydroxy-3-methylvalerate and

gamma-aminobutyric acid
(GABA)

BA40 6 98% 0.903–1 0.995

Dimethylsulfone, GABA, and
Glycerophospho-

choline/Sarcosine,
Phosphorylcholine,

2-amino-3-phosphonopropionic
acid/Arginine/2-

Hydroxyvalerate/Leucine

DN 7 81% 0.75–1 0.915

Serine/Glycyl-glycine,
Trimethylamine N-oxide,

Methylguanidine, Succinic acid,
and (R)-3-hydroxybutyric acid
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Table 3. Cont.

Brain
Region

Number of
Bins

Predictive
Accuracy

95%
Confidence Interval AUC Corresponding Metabolites

HPC 14 93.8% 0.903–1 0.995

Myo-inositol, Dimethylsulfide,
Taurine, L-cystathionine,

Selenomethionine, D-lactic acid,
and L-lactic acid

PB 2 92.7% 0.901–1 0.993 Citrate and L-isoleucineInt. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 17 
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metabolites identified via VIAVC analysis as biomarkers of AD. (A–E) Illustrate common metabo-
lites found across various regions that may serve as potential biomarkers of AD. For example, four 
common metabolites were identified in BA9, BA40, and DN that play roles in signaling between 
cortex and cerebellum. (F–O) Illustrate potential biomarkers of AD, as determined via VIAVC best 
subset analysis. NAA (K) and GABA (H) were predominately upregulated in all brain regions of 
AD tissues, while phenylalanine and phosphorylcholine were downregulated. 

Figure 3. Venn diagrams showing common and unique metabolites across brain regions and specific
metabolites identified via VIAVC analysis as biomarkers of AD. (A–E) Illustrate common metabolites
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found across various regions that may serve as potential biomarkers of AD. For example, four
common metabolites were identified in BA9, BA40, and DN that play roles in signaling between
cortex and cerebellum. (F–O) Illustrate potential biomarkers of AD, as determined via VIAVC best
subset analysis. NAA (K) and GABA (H) were predominately upregulated in all brain regions of AD
tissues, while phenylalanine and phosphorylcholine were downregulated.

2.3. Pathological Pathway Discovery: AD Impacts Neurotransmission, Energy Metabolism, and
Mitochondrial Regulation

Pathway topology analysis was carried out for each of the eight brain regions (Figure 4A),
and only pathways with a p-value < 0.05 and impact factor higher than 0.1 were considered.
Notable pathways affected by AD included alanine aspartate and glutamate (changed in all
regions except BA17 and PB), phenylalanine metabolism and phenylalanine tyrosine, and
tryptophan biosynthesis (all altered, except DN and BA24). Pyruvate metabolism and tri-
carboxylic acid (TCA) cycle was changed in BA9 and HPC and BA9, BA22, and DN, respec-
tively. Glycerophospholipid metabolism was significantly altered in BA17, BA24, and BA40.
Pathways uniquely altered in specific brain regions included D-glutamine D-glutamate in
HPC, cysteine and methionine metabolism in BA22, glycolysis/gluconeogenesis, and the
synthesis and degradation of ketone bodies in BA9 (Figure 4A).
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Figure 4. Sub- and super-biochemical pathways involved in neurotransmission and energy regulation
throughout brain regions in AD compared to non-AD controls. (A) Specific biochemical pathways
affected multiple brain regions, with alanine, aspirate, and glutamate metabolism being altered in 6/8
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regions. (B) Illustration of sub-pathways within super-pathways, showing that most altered metabo-
lites belonged to the amino acid category. (C,D) Pie diagrams indicating AD-altered pathways
involved in neurotransmission and energy regulation.

Identified sub-biochemical pathways belonged to four super pathways, namely amino
acids, energy, carbohydrates, and lipids. Interestingly, most of the pathways belonged to
the amino acid sub-pathway, while lipids and carbohydrates were second most affected
and energy was the least affected by TCA cycle changes (Figure 4B–D).

3. Discussion

AD is a devastating neurodegenerative disease with no cure and limited clinical di-
agnostic tools. Diagnosis usually occurs years after the neuropathological changes were
initiated. Slow disease progression and multiple biochemical mechanisms involved in AD
make the discovery of robust predictive biomarkers and treatments difficult. Metabolomics
is a promising technique that can enhance the understanding of the biochemical mecha-
nisms involved in the disease and potentially provide new biomarkers of AD. In the present
study, an untargeted 1H NMR metabolomics and machine learning were used to profile hu-
man post-mortem brain tissues from eight regions to identify region-common and -unique
metabolites and metabolic pathways involved in AD. The results demonstrate that AD has
widespread consequences and impacts all of the investigated brain regions. Commonly
altered metabolites are involved in metabolic energy regulation, neurotransmission, and
mitochondrial function.

Previous experimental [14,30,31] and clinical studies in urine [24,32], blood [33], cere-
brospinal fluid (CSF) [14,16], and brain tissues [18,22,26,34] indicate that AD is associated
with altered metabolomic regulation. The present data support these observations and,
for the first time, provide evidence of AD-related metabolomic changes across eight brain
regions. The most affected brain region was BA9, a cortical region involved in higher
cognitive functions and among the most severely affected by AD neuropathology [4,35].
Although neuropathological changes in BA17, BA24, DN, and PB are less commonly ob-
served, the present data demonstrate profound AD-associated changes in these regions.
For example, of the 27 altered metabolites in DN, 63% were upregulated, even though
previous research showed little or no AD-related pathology in DN [36]. These changes may
be functionally meaningful, considering the DN functions as the main projection between
the cerebellum and the cortex [36]. Moreover, major altered metabolites were upregulated
in BA9 and HPC, two regions also connected to the DN [37,38]. Importantly, citric acid and
serine, which are metabolites necessary for energy metabolism, were part of the VIAVC
Best Subset bins in the DN. This finding suggests that the DN may serve a compensatory
role in the cerebellar regions to ensure functional connectivity to cortical regions and adjust
for dysfunctional energy metabolism in cortical regions in AD [36,38].

AD is recognized as a disease of synaptic dysfunction and impaired neurotransmis-
sion with altered neuronal communication, which is central to the characteristic cognitive
and emotional loss [3,35,39,40]. In the present study, AD significantly upregulated GABA
and NAA levels in all regions, except for DN and PB. This finding confirms previous
observations of a major alteration in the inhibitory neurotransmitter GABA in the frontal,
temporal, and parietal cortexes and hippocampi of AD subjects [40–43]. For the first time,
we report GABA alterations in primary visual cortex (BA17), BA22, and BA24. Moreover,
this study reports increases in NAA, which is an amino acid that is essential for neuronal
functioning [23,44–46], contradicting previous observations of NAA reduction in BA17,
BA22, and HPC [47]. Nevertheless, NAA upregulation points to a potential compensatory
increase in synthesis to offset the consequences of neuronal loss [27,47]. Here, GABA and
NAA were corresponding metabolites to the VIAVC best subset bins (Table 2), which high-
lights the potential of these metabolites as biomarkers of AD. In addition, our data support
previous evidence of glutamate upregulation in BA22 and HPC [28,48,49] and provide new
evidence of altered glutamate levels in the DN and PB of AD subjects. Increased synaptic
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glutamate in AD pathology may lead to excitotoxicity by activating N-methyl-D-aspartic
acid receptors (NMDAR), resulting in calcium overload [15,50]. Furthermore, NMDAR
function may be further affected by the observed changes in AD-induced serine levels in
all brain regions, except for BA24 and PB.

Phenylalanine and tyrosine are important precursors of catecholamine neurotrans-
mitter synthesis, which is essential for normal cognitive function [33,51–53]. In this study,
we report altered phenylalanine and tyrosine levels in all brain regions, except in BA24
and DN of AD patients, compared to healthy controls. Moreover, altered phenylalanine
and tyrosine levels significantly impacted phenylalanine metabolism and phenylalanine,
tyrosine, and tryptophan biosynthesis pathways. These data support previous studies
that reported altered levels of phenylalanine and tyrosine in various AD tissues [24,54,55]
and provide evidence of AD-affected brains having reduced levels of both phenylalanine
and tyrosine [56]. Here, both phenylalanine and tyrosine were downregulated in most
brain regions, except for BA9. Phenylalanine and tyrosine must be ingested from food
and serve as precursors of catecholamine [33]; therefore, their depletion may contribute
to impaired catecholamine synthesis, low catecholamine levels, and behavioural deficits,
including cognitive and emotional impairments [21,53,57,58]. Then, it may be suggested
that elevated levels of phenylalanine and tyrosine measured in prefrontal cortex (BA9)
may serve as a compensatory mechanism, as this is where most cognitive processing takes
place [58]. Moreover, previously increased phenylalanine and tyrosine levels were observed
in chronic inflammatory conditions in association with neuropsychiatric symptoms [33,59],
and such immune activation may represent critical factors involved in the pathogenesis
of AD [60]. In this study, phenylalanine was identified as a corresponding metabolite
to the VIAVC Best Subset bins and represents an excellent biomarker of AD, as altered
phenylalanine concentrations are related to altered AD-associated catecholamine synthesis
and immune activation.

Links between AD pathology, oxidative stress, and inflammation are well docu-
mented [61,62] and suggest that AD is characterized by changes in the arginine–proline and
glycerophospholipid metabolisms [19,22,26,63]. Oxidative stress and neuroinflammation
contribute to mitochondrial dysfunction reported in AD [64]. In this study, we report AD-
associated changes in arginine–proline metabolism and glycerophospholipid metabolism
in three brain regions (BA17, BA22, and BA40). The main metabolites involved in these
pathways, namely arginine and phosphorylcholine, were corresponding metabolites to the
VIAVC Best Subset bins (Table 3), which highlights their potential as effective biomarkers
of AD.

Previously, mitochondrial dysfunction in AD was observed in association with alanine,
aspartate, and glutamate metabolism. Paglia et al. (2016) showed that AD altered this
pathway in the frontal cortex (BA9), with upregulation in glutamate, GABA, NAA, and
citrate metabolites. In this study, alanine, aspartate, and glutamate metabolisms were
altered in all brain regions, except BA17 and PB. Therefore, these findings, for the first
time, show changes in alanine, aspartate, and glutamate metabolisms throughout the brain,
indicating that these metabolites may represent early biomarkers of AD. Alterations in these
metabolites contribute not only to mitochondrial dysfunction, but also form compounds
involved in the TCA cycle; glycolysis; and glycine, serine, and threonine metabolisms.
Ultimately, their alteration may indicate an impaired energy metabolism, along with
reduced mitochondrial efficacy, a hallmark neuropathological feature of AD [19,28,41].

Similar to energy metabolism alterations in AD [5,19,65], the present pathway en-
richment analyses revealed that AD potentially altered energy metabolism by commonly
affecting multiple pathways in multiple brain regions. Notably, glycine, serine, and thre-
onine metabolism pathways were altered in all regions, except BA24, BA40, and PB. The
TCA cycle was altered in BA9, BA22, and DN, while pyruvate metabolism was altered in
BA9 and HPC. The TCA cycle is essential to adenosine triphosphate (ATP) production, and
its alteration may be reflective of reduced energy production in AD [63]. Metabolites that
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play essential roles in the TCA and pyruvate cycles, including citric acid, lactic acid and
succinic acid, were identified as part of the VIAVC best subset (Table 3) in this study.

This study provides evidence that AD is associated with brain-wide metabolic changes.
Some of the same metabolites, including GABA, arginine, serine, phosphorylcholine, and
phenylalanine, were previously identified in the CSF of AD patients [14,16,17,57]. CSF con-
tains the richest amounts of metabolites found in the brain, and it has been established that
CSF and blood show a significant overlap in terms of metabolites among AD patients [14].
Therefore, it may be suggested that the metabolic changes observed in this study represent
potential biomarkers of AD in peripheral tissues such as blood. However, it is important
to mention limitations of this study, including the (1) effects of the post-mortem interval
(larger interval in AD patients), (2) effects of the often “slow dying” of dementia patients
compared to the “fast dying” of the controls (most controls rapidly died from cardiac
disease, while AD patients often slowly died from pneumonia or a urinary track infection;
slow death might be associated with increased hypoxia and, hence, increased lactic acid;
increased gluconeogenesis; and decreased TCA function), and (3) effects on aging alone,
since the AD group in general is older than the control group (Table 1). Nonetheless, the
identification of common and unique metabolites in multiple brain regions highlights their
potential as biomarkers of AD.

4. Materials and Methods
4.1. Participants and Demographic Information

The participants were Alberta, Canada, residents who lived either at home or in a
nursing home or were admitted to hospital. The basic demographics, including age, gender,
post-mortem delay (PMD), and the pathological characterization of samples, are shown in
Table 1. Ante mortem written informed consent forms received from the donor or next of
kin indicated that all donations were voluntary. The ethically approved use of tissues in
scientific research was permitted. All protocols were approved by the University of Calgary
Hotchkiss Brain Institute (AB, Canada, approval # REB14-0452_REN5) and the University
of Lethbridge (AB, Canada, approval # 2021-038).

4.2. Tissue Samples, Collection and Classification

Post-mortem brain tissues were obtained between 2015 and 2018. A total of 22 post-
mortem human brain samples were obtained from the Calgary Brain Bank (AD, n = 11,
5 females, 6 males, ages 80 ± 9 yrs.; healthy subjects (HS), n = 11, 5 females, 6 males, ages
65 ± 12 yrs.; Table 1). The brain tissues were collected from eight brain regions, including
superior prefrontal gyrus (superior prefrontal gyrus or Brodmann Area 9 (BA9), primary
visual cortex (BA17), superior temporal gyrus (BA22), anterior cingulate gyrus (BA24),
inferior parietal lobule (BA40), dentate nucleus (DN), hippocampus (HPC), and pons base
(PB; see Figure 1).

AD brain tissues were collected from patients in the late stages of the disease. Brains
were collected and processed according to the standardized operational protocol of human
brain banking in Canada. In brief, within 18–55 h post-mortem, brains were collected,
and hemispheres were dissected sagittal [4]. At random, one of the brain hemispheres
was freshly collected, and specific regions were dissected and stored in −80 ◦C. The other
hemisphere was fixed in 10% formalin for a week, then the tissues were dissected and
paraffin-embedded for neuropathological examination or ABC score (Amyloid and Braak
and Braak tau distribution and CEDAR score) assessment [4].

ABC score assessments were completed by a registered neuropathologist. In brief,
the tissues were characterized as AD or control based on assessment for neuritic plaques
and neurofibrillary tangles, as established by the Consortium to Establish a Registry for
Alzheimer’s Disease (CEDAR) [29], amyloid plague distribution and Braak tau stage [4,7].
Categories were ranked on a scale from zero to three, with three being most deviated from
typical non-diseased tissue characteristics. If the summation of each of these rankings was
greater than five, the tissue was classified as AD (Table 1).
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4.3. Tissue Preparation

Ultrafiltration was used to extract water-soluble metabolites from each tissue sample.
In brief, tissue samples were removed from −80 ◦C storage and kept on ice to thaw at room
temperature. Approximately 150 mg of each sample, 375 µL of metabolomics buffer (4:1
K2HPO4 to KH2PO4 in dH2O at a 0.625 M concentration with a final pH of 7.41 contained
an antimicrobial agent of 3.75 mM NaN3), and 150 mg of zirconium oxide beads were added
to a centrifuge tube. Then, samples were homogenized in a Bullet Blender (Next Advance,
NY, USA) for 1 min at intensity setting eight, and homogenate was then centrifuged for
5 min at 14,000 g. Next, 365 µL of homogenate and 135 µL of metabolomic buffer were
placed in Amicon Ultra 0.5 mL 3 K centrifuge filters and centrifuged for 30 min at 14,000 g.
After filtration, 360 µL of the filtrate, 120 µL of metabolomics buffer, and 120 µL of D2O
with w/v 0.03% trimethylsilyl propanoic acid (TSP) were moved to a new centrifuge tube.
The final dH2O:D2O ratio was 4:1, and the final concentration was 0.5 M for the buffer salts.
Finally, samples were centrifuged for 5 min at 12,000 rpm, and 550 µL of supernatant was
pipetted to 5 mm NMR tubes for NMR processing.

4.4. 1H NMR Data Acquisition and Processing

NMR data acquisition used a 700 MHz Bruker Avance III HD spectrometer (Bruker,
Milton, ON, Canada) equipped with a TBO-Z probe [66–68]. In brief, data were collected
using the noesygpprld pulse sequence with these acquisition parameters: number of scans
(NS) = 1024, mixing time = 10 ms, spectra window = 20.5 ppm, total number of points
(td) = 128 k, total acquisition time = 4.56 s, transmitted offset (olp) = 4.7 ppm, and recycle
delay (dl) = 1 s. NMR spectra was automatically phase- and baseline-corrected via TopSpin
(v 4.0.6), with the TSP peak used as a 0 ppm reference for chemical shift. The spectra
were exported to MATLAB (The MathWorks, Natick, MA, USA) for further processing and
statistical analysis. Spectra binning was performed using the dynamic adaptive binning
algorithm [69] with manual inspection for any errors. Finally, the binned spectra were
Pareto-scaled, normalized to the total unit area of all bins (except for the water peak), and
log-transformed.

4.5. Statistical Analysis

Univariate and multivariate testing was performed using MATLAB (The MathWorks,
Natick, MA, USA) and MetaboanalystR (v 2.0) [70]. A Shapiro–Wilk test was used to
determine the normality of the data and the appropriate univariate test. Consistently, a
Mann–Whitney U Test (MW) was used, and bins with a p-value < 0.05 were considered
significant. Bonferroni–Holm correction was applied to correct for multiple comparisons.
Supervised multivariant data analysis consisted of variable importance analysis based on
random variable combination (VIAVC) [71,72], orthogonal projections to latent structures
discriminant analysis (OPLS-DA), receiver operator characteristic (ROC) curves, and pre-
dictive accuracy. Multivariate modelling was initially performed on all bins, and then it
was only performed for the bins determined to be significant via MW or VIAVC statistical
testing. The ROC curve and predictive accuracy were determined only using the bins
determined to be significant via VIAVC.

4.6. Metabolite Identification and Pathway Analysis

Metabolite identification was performed for the bins that were determined to be
significant via either the MW or VIAVC test using Chenomx 8.2 NMR Suite (Chenomx Inc.,
Edmonton, AB, Canada). Then, identified metabolites were confirmed using the Human
Metabolite Database (HMDB) [73], and only metabolites formerly observed in brain tissue,
cerebrospinal fluid, and blood were used. Finally, pathway topology analysis [74] was
performed in Metaboanalyst via the Homo sapiens KEGG pathway library (v Oct.2019).
Relative-betweenness centrality was selected for pathway topology analysis, and the
hypergeometric test was used for over-representation analysis.
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5. Conclusions

The exact biological mechanisms and early predictive markers of AD are still incom-
pletely understood. New biomarker discovery tools such as metabolomics enables the
identification of biochemical processes and biomarkers associated with AD for better risk
prediction and diagnosis. For the first time, this study uncovered the biochemical path-
ways associated with AD across eight brain regions. Common metabolites involved in
AD pathology across brain regions include amino acids phenylalanine, phosphorylcholine,
GABA, NAA, and citric acid, while unique metabolites included pyruvate, lactic acid,
succinic acid, myoinositol, and arginine (Table 4). The affected metabolites are part of the
biological pathways important for metabolic energy regulation, neurotransmission, and
mitochondrial function.

Table 4. List of possible metabolomic biomarkers in AD identified in post-mortem brain tissues.

Metabolomics Biomarkers of AD

Arginine
Citric Acid

Gamma-Aminobutyric Acid (GABA)
Lactic Acid

Myo-Inositol
N-Acetylaspartate (NAA)

Phenylalanine
Phosphorylcholine

Serine
Succinic Acid

It remains to be confirmed if these changes in cell metabolism reflect pathological or
compensatory responses. The extent of metabolic changes is consistent with the neuropatho-
logical disease progression of AD and clinical observations of cognitive impairment [4,29].
Moreover, the present study demonstrates that AD leads to metabolic changes in brain
regions with less well-documented pathological alterations (PB, DN, and BA24). Therefore,
these data provide new directions to better understand the biochemical underpinnings
involved in AD. It remains to be determined if these metabolic signatures of AD pathol-
ogy can be identified in peripheral tissues, such as blood, cerebral spinal fluid, or urine.
Nevertheless, the identified metabolic signatures linked to AD may provide potential new
avenues for personalized risk prediction or diagnosis.
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