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Abstract: Osteoarthritis is a multifactorial joint disease characterized by degeneration, and aging
stands as a significant risk factor. Autophagy, a crucial cellular homeostasis mechanism, is influenced
by aging and closely linked to cartilage health. This correlation between autophagy, cell death,
and OA underscores its relevance in disease progression. MicroRNAs have emerged as autophagy
regulators, with miRNA-based interventions showing promise in preclinical models. Remarkably,
the ethanolic extract of propolis exhibits positive effects on autophagy-related proteins and healthy
cartilage markers in an in vitro osteoarthritis model. The aim of this brief report was to evaluate
through in silico analysis and postulate five microRNAs that could regulate autophagy proteins
(AKT1, ATG5, and LC3) and assess whether the ethanolic extract of propolis could regulate the
expression of these microRNAs. Among the examined miRNAs (miR-19a, miR-125b, miR-181a,
miR-185, and miR-335), the ethanolic extract of propolis induced significant changes in four of
them. Specifically, miR-125b responded to EEP by counteracting IL-1β-induced effects, while miR-
181a, miR-185, and miR-335 exhibited distinct patterns of expression under EEP treatment. These
findings unveil a potential link between miRNAs, EEP, and autophagy modulation in OA, offering
promising therapeutic insights. Nevertheless, further validation and clinical translation are warranted
to substantiate these promising observations.
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1. Introduction

Osteoarthritis (OA) is the most common form of arthritis, significantly contributing to
disability and a diminished quality of life [1,2]. According to the CDC (Centers for Disease
Control and Prevention), the age-adjusted prevalence of arthritis in the USA in people
older than 18 years is 23.7%, and of these, more than 30% are obese [1,2]. Although the
common belief often attributes OA to cartilage deterioration, it actually affects the entire
joint, leading to dysfunction [2].

OA is the final common pathway for traumatic and aging damage to the synovial
joints [3]. Notably, aging is a prominent non-modifiable risk factor in OA development [2–6].
The aging process entails intricate physiological changes characterized by low-grade chronic
systemic inflammation, culminating in the gradual loss of tissue structure and function.
These changes create an environment conducive to conditions such as OA [3].

Cellular senescence, a hallmark of aging, emerges as a causal factor for various age-
related diseases, including cancer, fibrosis, obesity, type 2 diabetes, and neuro-musculoskeletal
conditions like OA [7]. In the context of cartilage, the progressive accumulation of cellular
senescence with advancing age engenders disruptions in essential tissue processes such as
autophagy [8]. This cascade of events leads to the characteristic structural and functional
alterations observed in aging cartilage.
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Autophagy, a critical mechanism responsible for maintaining cartilage homeostasis by
eliminating dysfunctional organelles and macromolecules, is regulated by a complex net-
work of proteins [9–11]. This highly dynamic process is essential for cell maintenance and
is tightly controlled by various proteins [12]. However, the aging process leads to a decline
in autophagic capacity within cells, resulting in altered cellular maintenance processes that
trigger the generation of reactive oxygen species (ROS) and oxidative stress [13]. Both hu-
man and mouse aged cartilage exhibit diminished expressions of autophagic proteins [14].

In the context of OA, there is a pronounced reduction and loss of key autophagy-
related proteins including ULK1, BECN1, and LC3, which correlates with an increase in
chondrocyte apoptosis [13,15]. Furthermore, aged cartilage experiences a reduced expres-
sion of autophagy-related proteins such as ATG5 and LC3, leading to escalated apoptosis
and structural deterioration. These alterations are believed to stem from disruptions in
the autophagy pathway that accumulate in an age-dependent manner [16]. Intriguingly,
research from our laboratory has demonstrated that chondrocytes subjected to IL1β stimu-
lation exhibit an altered expression of three autophagy-associated proteins, LC3, ATG5, and
AKT1, resulting in increased expression levels [17]. This aligns with other studies suggest-
ing that heightened autophagy serves as an adaptive response, guarding cells against stress
and regulating alterations in the expression of genes associated with OA [18]. Consequently,
strategies aimed at restoring autophagic activity may hold promise in protecting against
OA development [11].

Non-coding RNAs (ncRNAs) are RNA molecules that do not encode proteins. They are
functional RNA molecules that play vital roles in cellular processes, including transcription
and translation. The most important ncRNAs that have been identified in the regulation
of gene expression in transcriptional and post-transcriptional levels include microRNAs
(miRNAs), small interfering RNA (siRNA), piwi-interacting RNA (piRNA), long ncRNA
(lncRNA), among others [19]. Notably, miRNAs have emerged as vital regulators of
autophagy, with miRNA-based therapies showing promise in preclinical models [20].
These therapeutic strategies include reducing miRNA levels via anti-miRNAs or antagomirs
oligonucleotides, as well as enhancing miRNA expression through miRNA mimics [21].

The involvement of miRNAs in autophagy regulation within chondrocytes, and how
this regulation is perturbed in the context of OA, has been extensively elucidated. Numer-
ous miRNAs have been identified as enhancers of the autophagy pathway, with altered
expression in OA-afflicted chondrocytes. These miRNAs include miR-21 [22]; miR-27a [23];
miR-31-5p [24]; miR-140-5p [25,26]; miR-140-3p [27]; miR-146a-5p [28]; miR-149 [25]; miR-
335-5p [29]; miR-766-3p [30]; and miR-411 [31]. Conversely, certain miRNAs have been im-
plicated as inhibitors of this pathway, including miR-17-5p [32]; miR-20 [33]; miR-128a [34];
miR-155 [35]; miR-206 [36]; miR-375 [37]; and miR-378 [32]. The intricate mechanisms
through which these miRNAs exert their effects are detailed in Table 1.

Table 1. miRNAs suggested to regulate the autophagy pathway through different mechanisms in
OA chondrocytes.

miRNAs Effect on the Autophagy Process Ref.

miR-17-5p Inhibits autophagy pathway because downregulation of
its expression causes suppression of p62 expression. [32]

miR-20 Inhibits chondrocyte autophagy by targeting ATG10 via
PI3K/AKT/mTOR signaling pathway. [33]

miR-21 Promotes chondrocyte autophagy, stimulating the
expression levels of ATG3, ATG5, ATG12, and LC3B. [22]

miR-27a Promotes autophagy through
PI3K/AKT/mTOR signaling. [23]

miR-31-5p
Promotes chondrocyte autophagy and suppresses
mTORC1 activation in an ERK-dependent manner by
inhibiting SOX4.

[24]
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Table 1. Cont.

miRNAs Effect on the Autophagy Process Ref.

miR-128a Represses chondrocyte autophagy through hindered
ATG12 expression. [34]

miR-140-5p

Promotes autophagy via downregulating FUT1. [25]

Promotes autophagy in chondrocytes through an
upregulation of GBRAP, an autophagy marker. [26]

miR-140-3p Promotes autophagy. [27]

miR-146a-5p
Promotes autophagy by modulating the levels of ATG5,
p62, LC3-I, and LC3-II; by targeting NUMB; and through
SDF-1/CXCR4-induced chondrocyte autophagy.

[28,37]

miR-146a
Promotes chondrocyte autophagy via depressing Bcl-2
expression when miR-146a is induced by hypoxia
in chondrocytes.

[38]

miR-149 Promotes autophagy via downregulating FUT1. [25]

miR-155

Decreases autophagy flux in chondrocytes by modulating
expression of autophagy proteins such as Ulk1, FoxO3,
ATG14, ATG5, ATG3, Gabarapl1, and Map1lc3.

[29]

Suppresses autophagy, reducing the expression of Beclin 1
and LC3B, increasing p62 expression, and activating the
PI3K/Akt/mTOR signaling pathway.

[39]

miR-206 Inhibits autophagy via activating the IGF-1-mediated
PI3K/AKT-mTOR signaling pathway. [36]

miR-335-5p Activates autophagy by increasing autophagy-related
factors such as Beclin-1, ATG5, and ATG7. [28]

miR-766-3p Facilitates autophagy in the chondrocytes through
apoptosis-inducing factor mitochondria-associated 1. [30]

miR-375 Suppresses autophagy by regulating the expression of
Beclin-1, LC3II, and p62. [37]

miR-378 Represses chondrocyte autophagy by targeting ATG2a
and Sox6. [32]

miR-411
Promotes chondrocyte autophagy by regulating
expression of LC3, ULK-1, P62, and Beclin-1 by targeting
HIF-1alpha in chondrocytes.

[31]

p62: ubiquitin-binding protein p62; ATG10: Autophagy-Related 10; PI3K: phosphoinositide 3-kinase; AKT: AKT
serine/threonine kinase; mTOR: mammalian target of rapamycin; ATG3: Autophagy-Related 3; ATG5: Autophagy-
Related 5; ATG12: Autophagy-Related 12; LC3B: microtubule-associated proteins 1A/1B light chain 3B; FUT1: fuco-
syltransferase 1 ; GBRAP: gamma-aminobutyric acid-receptor-associated protein; NUMB: NUMB endocytic adap-
tor protein; SDF-1: C-X-C motif chemokine ligand 12; CXCR4: C-X-C motif chemokine receptor 4; Bcl-2: BCL2 apop-
tosis regulator; ULK1: Unc-51-like autophagy activating kinase 1; FoxO3: forkhead box O3; ATG14: Autophagy-
Related 14; Gabarapl1: GABA-type-A-receptor-associated-protein-like 1; Map1lc3: microtubule-associated protein
1 light chain 3 beta; Beclin 1: Beclin 1; IGF-1: insulin-like growth factor 1; ATG2: Autophagy-Related 2; Sox6: SRY-
box transcription factor 6; HIF-1alpha: hypoxia-inducible factor 1 subunit alpha.

In the context of OA, where the available drugs have limitations and many clinical trial
candidate drugs have failed to show efficacy or have adverse effects [15], researchers are
exploring alternative approaches. One such approach is targeting epigenetic defects that oc-
cur early in various diseases, including OA [40]. Dietary phytochemicals, like polyphenols
found in propolis, are being investigated for their potential to influence genetic and epige-
netic processes [41]. Polyphenols are suggested as natural senolytics with low toxicity [7].
Their beneficial effects are attributed to antioxidant and anti-inflammatory properties and
their ability to regulate the autophagy pathway [17,42–44]. Among compounds rich in
polyphenols, propolis stands out for its diverse pharmacological properties, including
hepatoprotective, antioxidant, and anti-inflammatory effects [45]. Propolis is a mixture of
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substances used by bees to defend the hive. The chemical composition of propolis is closely
related to the resins and balsams of plant sources used to produce it [46]. It possesses a
broad spectrum of pharmacological properties that make it potentially applicable to various
pathologies [17,47,48].

Propolis could potentially regulate gene expression patterns [41,44]. Importantly, it is
noted that Chilean propolis has been shown to modulate miRNAs [49], further reinforcing
its potential to influence gene expression. Given these findings, since it has been described
that propolis can regulate the autophagy pathway in chondrocytes with OA and that
Chilean propolis performs some of its effects through miRNAs, we hypothesize that the
ethanolic extract of propolis (EEP) could indeed regulate the autophagy pathway through
miRNAs in chondrocytes with OA.

This study is the second part of an initial analysis already published on the effect of
propolis on autophagy pathway proteins in chondrocytes, where changes in the expression
of three proteins ATG5, AKT1, and LC3 were mentioned [17]. In the current study, we
analyzed whether these effects could be mediated by changes in miRNAs. To elucidate this,
an in-silico analysis was performed to identify potential miRNAs regulating autophagy-
associated proteins, specifically ATG5, AKT1, and LC3, which are deregulated in the context
of OA. Subsequently, we analyzed the effect of EEP on the expression of these miRNAs in
IL1β-stimulated chondrocytes.

2. Results
2.1. Identification through In Silico Analysis of Candidate microRNAs

It had already been described that in cartilage, several proteins associated with the
autophagy pathway are deregulated by aging [50]. Specifically, among the deregulated
genes associated with aging in cartilage, three proteins—AKT1, ATG5, and LC3A—were
selected due to their common use as markers for autophagy [17]. An in silico analysis
was conducted using various bioinformatics tools to identify miRNAs that regulate these
selected proteins. The analysis identified five miRNAs that regulate these genes in New
Zealand rabbit (Oryctolagus cuniculus): miR-335, miR-19a, miR-181a, miR-125b, and miR-185
(Table 2).

Table 2. miRNAs selected through in silico tools that regulate autophagy pathway proteins (ATG5,
AKT1, and LC3).

miRNA GEN Tools

miR-125b-5p
AKT1 mirWalk 2.0

AKT1 miRTarBase

miR-185-5p
AKT1 mirWalk 2.0

AKT1 miRtarBase

miR-19a-3p
ATG5 mirWalk 2.0

ATG5 DIANA TOOLS

miR-181a-5p
ATG5 mirWalk 2.0

ATG5 miRtarBase

miR-335-5p

MAP1LC3A DIANA TOOLS

MAP1LC3A mirWalk 2.0

MAP1LC3A miRTarBase

2.2. EEP Treatment Changes the Expression of 4 of the 5 miRNAs Evaluated in Chondrocytes
with OA

Five miRNAs—miR-335 (LC3), miR-19a and miR-181a (ATG5), and miR-125b and miR-
185 (AKT1)—were analyzed in three conditions: control (untreated cells), IL1β-stimulated
chondrocytes (representing an in vitro model of OA), and IL1β-stimulated chondrocytes
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treated with EEP. The results indicate that EEP treatment led to significant changes in the
expression of four out of the five evaluated miRNAs. miR-19a did not show significant
changes in any of the three conditions (Figure 1a). On the other hand, miR-125b expression
significantly increased in IL1β-stimulated chondrocytes and was reduced to basal levels
with EEP treatment (Figure 1b). miR-181a expression did not significantly change in
IL1β-stimulated chondrocytes, but its expression significantly decreased with the addition
of EEP treatment (Figure 1c). By contrast, miR-185 expression significantly decreased
in IL1β-stimulated chondrocytes and increased to basal levels through EEP treatment
(Figure 1d). The expression of miR-335 remained significantly decreased in IL1β-stimulated
chondrocytes even with the addition of EEP treatment (Figure 1e).
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Figure 1. Gene expression analysis of selected miRNAs in chondrocytes under different treat-
ments. The gene expression of specific microRNAs (miRNAs), including miR-19a (a), miR-125b (b),
miR-181a (c), miR-185 (d), and miR-335 (e), was evaluated using real-time polymerase chain re-
action (PCR). Chondrocytes were subjected to different treatments and analyzed after 24 h. The
treatments included (1) control: no treatment; (2) IL1β-stimulated chondrocytes as an in vitro model
of osteoarthritis (OA); and (3) IL1β-stimulated chondrocytes treated with an ethanolic extract of
propolis (EEP). To determine the ratio of gene expression, the values of interest were referenced
against basal conditions. The data are presented as the mean ± standard deviation (SD) of triplicate
values. * p < 0.05; ** p < 0.005; N = 5 (independent experiments).

3. Discussion

OA is a prevalent joint disorder characterized by the progressive degradation of
articular cartilage, leading to pain, functional impairment, and reduced quality of life [30].
Recent studies have shed light on the intricate interplay between miRNAs, autophagy, and
chondrocyte homeostasis, offering insights into potential therapeutic strategies [30,33,51].

Propolis is a resinous substance produced by bees, primarily the Apis mellifera species,
through the collection and processing of various plant-derived materials [52]. The biological
activity of propolis is intricately linked to its chemical composition, a composition pro-
foundly influenced by the specific source plant or plants from which bees collect resin [53].



Int. J. Mol. Sci. 2023, 24, 14767 6 of 13

The beneficial effects of this compound have been previously reported. Clinical studies
have shown beneficial effects of propolis oral treatment in relation to different respiratory
diseases in patients [54–56] and to the alleviation of depression-related symptomatol-
ogy [57], as well as beneficial effects on various metabolic diseases [58,59]. These findings
strongly support its potential application in age-related diseases. EEP, as a complex mixture
of various polyphenols, may owe its observed effects to the synergy between multiple
compounds [17,60], those that can be recognized in other natural products such as pine
needle cone extract [61,62].

The EEP used in this study was previously characterized [17]. High concentrations
of pinocembrin, pinobanksin, and caffeic acid were reported. Some of these polyphenols
have already been described as being able to regulate different targets of the autophagy
pathway [63]; specifically, in the case of Chilean propolis, it is suggested that it is able to
regulate this pathway [17], and in a study model of angiogenesis, it is suggested that it is
able to regulate the expression of specific miRNAs [49].

This study initially focused on the search, through in silico analysis, for five miRNAs
targeting autophagy-related proteins, including LC3, ATG5, and AKT1, which are known
to be pivotal players in the autophagy pathway [51]. As a result, we identified miR-335,
miR-19a, miR-181a, miR-125b, and miR-185 (Table 2). To decipher the response of the
pre-selected miRNAs in an in vitro model of OA, the effects of IL-1β stimulation and EEP
treatment in chondrocytes were explored. We were able to observe that the treatment with
EEP changes the expression of 4 of the 5 miRNAs (Figure 1).

The miRNA-19 family has been implicated in diverse cellular processes, including
autophagy and apoptosis [64]. However, in our study, miR-19a does not show significant
changes in the conditions tested (Figure 1a). This suggests that miR-19a might not be
directly affected by IL-1β or EEP treatment in the context of autophagy modulation.

The miR-125 family, known for its involvement in various diseases [65,66], also holds
significance in the context of OA [65,67]. miR-125b, a member of this family, exhibits com-
plex expression patterns in different cellular contexts. mir-125b is included in senescence-
associated miRs (SA-miRs) and is associated with mitochondria (mitomiRs) [68]. Some
studies in cancer models suggest miR-125b modulation of the autophagy pathway. It has
been described that miR-125b could induce autophagy through its interaction with Foxp3
in thyroid cancer cells [69] and modulate autophagy in drug-resistant ovarian cancer cells
using directly targeted MAP kinase interacting serine/threonine kinase 2 (MKNK2) [70].
In hepatocellular carcinoma cells, miR-125b regulates resistance to chemotherapy through
autophagy-associated mechanisms [71]. It is proposed that miR-125 could attenuate
rheumatoid arthritis (RA) and regulate the PI3K/Akt/mTOR signaling pathway [72]. In
OA cartilage, miR-125b expression has been reported to increase [73], but in chondrocytes
with OA, it is reduced [74,75]. In this study, miR-125b expression increases with IL-1β
stimulation and decreases to basal levels with EEP treatment. This decrease aligns with
other research using curcumin as a natural anti-inflammatory compound where it is stated
that it causes an inhibition of the p53-BCL2 pathway [76].

Another miRNA of interest is miR-181a, which has been associated with aging, an-
tioxidant defense, and the regulation of autophagy-related pathways [77]. Several articles
suggest that ATG5 is a target of miR-181a [78–80]. It is postulated that miR-181a is part of
the miRNAs related to aging and regulates mitochondrial function and autophagy [68].
miR-181a is also identified as knee-OA-related key miRNAs [81]. miR-181a is involved in
antioxidant defense and its expression is increased in IL1β-stimulated chondrocytes, in OA
cartilage, and in OA peripheral blood [82]. A differential expression of miR-181a has also
been described in the different stages of maturation of chondrocytes with an upregulation
in hypertrophic chondrocytes [3]. It is postulated that miR-181a regulates the balance
of WNT and BMP pathways in cartilage [83]. miR-181a also regulates the expression of
endogenous CCN1 and ACAN genes with a repressive role in cartilage metabolism via
CCN1 as well as ECM construction via aggrecan [84]. Other studies suggest that the use of
miR-181a-5p antisense oligonucleotide (ASO) injection could reduce the cartilage damage
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via promoting SIRT1 [85], attenuating OA in different experimental models and exhibiting
cartilage-protective effects in vitro and ex vivo [86]. On the other hand, it has been de-
scribed that miR-181a is a novel regulator of autophagy: miR-181a inhibits ATG5 expression
in SGC7901/CDDP cancer cells [87], regulates ATG5-induced myocardial autophagy [88],
and blocks starvation and rapamycin-induced autophagy in MCF-7 cells [79]; the inhi-
bition of miR-181a expression could increase autophagic flow [80]; the downregulation
of miR-181a suppresses LC3 and ATG5 protein expression in A549/DDP cells through
suppression of the PTEN/PI3K/AKT/mTOR pathway [89]; and its overexpression recovers
LC3 and ATG5 protein expression by promoting PTEN/PI3K/AKT/mTOR signaling in
the adenocarcinoma cell line [89]. Inflama-miRs are a subset of inflammation-associated
miRs, including miR-181a, which can modulate inflammatory molecules such as IL-1α [68].

The result of this study suggests a tendency to increase miR-181a expression in IL-
1β-stimulated chondrocytes, but this increase is not significant. However, EEP treatment
significantly decreases miR-181a expression compared to the control condition (Figure 1c).
This aligns with other studies indicating that reducing miR-181a could improve the cartilage
condition [82–85].

MiR-185 has been linked to the AKT signaling pathway and autophagy induction in
various contexts. It has been reported that miR-185 targets IGF1 to activate the PI3K/AKT
signaling pathway in an animal model of Parkinson’s disease [90] and induces autophagy
via AKT signaling in hepatocellular carcinoma [91]. On the other hand, it is suggested that
miR-185 promotes myocardial fibrosis and that targeting miR-185-5p in mice abolished
pressure-overload-induced cardiac interstitial fibrosis [92]. On the other hand, it is sug-
gested that miR-185 is involved in oral cancer progression since its anti-miR could inhibit
tumor progression [93]. In the case of intervertebral degeneration, it has been reported
that the inhibition of miR-185 increases the expression of pro-autophagy factors (LC3 and
Beclin-1) and pro-apoptosis factors (caspase-3 and Bax) [94]. In this study, miR-185 expres-
sion significantly decreased in IL1β-stimulated chondrocytes and increased to basal levels
when EEP treatment was added (Figure 1d). This dynamic expression pattern underscores
the intricate regulation of autophagy-related processes by miRNAs.

MiR-335 is known to regulate chondrogenic differentiation and autophagy [28]. miR-
335 could regulate chondrogenic differentiation and it is suggested that it mediates the
development of OA by targeting the HBP1 gene [95]. Another study suggests that miR-335
has a protective role on cartilage because it is able to inhibit OA-associated inflammation
through activation of autophagy [28]. In this study, the expression of miR-335 is significantly
decreased in IL1β-stimulated chondrocytes and remains so even when EEP treatment is
added (Figure 1e). This reduced expression suggests that miR-335 is negatively influenced
by inflammation.

While the presented study highlights the potential roles of specific miRNAs in the au-
tophagy pathway and their modulation by EEP, it is essential to acknowledge that miRNA–
mRNA interactions can be tissue-specific [11], and to translate these results clinically, they
need to be validated and confirmed in human in vitro models, such as chondrocyte cell
lines, FFPE sections, and animal and human experiments. In this regard, changes in miRNA
expression do not necessarily translate into observable phenotypic changes. For this reason,
the results obtained suggest some kind of regulation, but further analysis is needed to
confirm this type of modulation.

On the other hand, the bioavailability of natural products and the impact they may
have on the joints is an important element in estimating or inferring the effects of these
compounds in vivo. In this sense, it has been described that as the main risk factor for OA
is ageing, treatments that reduce the chronic inflammation that ageing itself generates could
be interesting therapeutic strategies that could generate beneficial effects in a systemic way.
It is suggested that propolis could be a therapeutic candidate in diseases associated with
ageing, especially for its antioxidant and anti-inflammatory capacity [96].

Based on the results, it is suggested that the observed effects of EEP on autophagy-
pathway-associated proteins in chondrocytes with OA could potentially be mediated
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through changes in miRNA expression. These findings highlight the potential of miRNAs,
specifically those regulated by EEP treatment, to play a role in influencing the autophagy
pathway in chondrocytes affected by OA.

4. Materials and Methods
4.1. Primary Culture

Adult male New Zealand rabbits (Oryctolagus cuniculus) were provided by the Bioterio
of the University of Sao Paulo (USP). The rabbits were initially anaesthetized using propofol
and subsequently euthanized using potassium chlorate 60 mg/kg. Normal cartilage was
removed from the following joints: scapulohumeral, humeral radius ulnar, coxofemoral,
and femoro-tibio-patellar. The cartilage was washed 3 times in a PBS1x solution with 5%
antibiotic. The extracted cartilage was digested in a solution of 2 mg/mL of Protease Type
XIV. Bacteria from Streptomyces griseus (Sigma Aldrich, St Louis, MO, USA) was placed in
PBSX1 for 1.5 h, and 1.5 mg/mL of collagenase B (Roche, Meylan, France) was placed in
basic medium DMEM at 37 ◦C overnight. Chondrocytes were then centrifuged at 1200 rpm
for 8 min, removing the supernatant and washing the cells with medium. Cells were
quantified with trypan blue in a cell counter and 1 million cells were cultured per 90 mm
plate. The chondrocytes were cultured in DMEM/F12 (1:1 with 15% FBS plus 1% antibiotic
mixture of penicillin/streptomycin) at a density of 1 × 105 cells/mL and incubated in a
humidified atmosphere of 5% CO2 at 37 ◦C. Culture medium was changed every two days
and each passage was made when the confluence reached between 80 and 90%. We only
used the second passage of cells in all experiments.

4.2. OA Model

For the induction of biological changes similar to those occurring in OA in joint cells,
chondrocyte culture with IL1β was used [97]. Cells were cultured for 24 h under the
following conditions: control (no treatment), IL1β (10 ηg/mL IL1β), and IL1β and EEP
(10 ηg/mL of IL1β and 2.5 µg/mL of EEP).

4.3. Ethanolic Extract of PROPOLIS (EEP)

Raw brown propolis was obtained from a mountainous area near the town of Cunco,
La Araucanía, Chile (latitude −38◦58′40.46′′, longitude −72◦1′15.73′′). Briefly, propolis was
mixed with 80% ethanol in a 1:3 w/v ratio in an amber bottle and incubated at 60 ◦C for
30 min in constant motion. The mixture was then filtered on Whatman No. 1 filter paper to
separate the ethanolic extract (EEP) from the crude propolis residue. The extract was left
overnight at 4 ◦C and then centrifuged to promote the precipitation of waxes and a soluble
residue. The EEP was then rotaevaporated, freeze-dried, and reconstituted at a 50% w/v
ratio with alcohol. The extract was stored at −20 ◦C protected from light.

4.4. miRNA Analysis

The extraction of total RNA enriched with small RNAs was performed using the
mirVana kit (Life Technologies, Carlsbad, CA, USA), following the manufacturer’s instruc-
tions. Reverse transcription was performed using the II miRCURY LNA Universal RT
MicroRNA PCR Universal complementary kit (Exiqon, Vedbaek, Denmark) according to
the manufacturer’s instructions. qPCR was performed using the miRCURY LNA Universal
RT microRNA PCR system (Exiqon, Vedbaek, Denmark). All primers were designed by the
manufacturer (HSA-MIR-125B-5P, HSA-MIR-19A-3P, HSA-MIR-185-5P, HSA-MIR-181A-5P,
HSA-MIR-335-5P; Exiqon, Vedbaek, Denmark). The parameters set in the ABI 7500 fast
thermocycler (Applied Biosystem, Waltham, MA, USA) were selected according to the
manufacturer’s instructions.

4.5. Statistical Analysis

Outlier detection was performed using the Grubbs test. The distribution of the data
was evaluated using the Shapiro–Wilk or Kolmogorov–Smirnov normality test. If it was
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not possible to evaluate this parameter, only non-parametric tests were performed. The
hypotheses were tested using one-way ANOVA, followed by Bonferroni’s post test, when
the data followed a Gaussian distribution. Otherwise, the Kruskal-Wallis test was applied,
followed by Dunn’s post test. The significance level considered for the analyses was
α = 0.05.
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