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Abstract: Ophiocordyceps gracilis (O. gracilis) is a parasitic fungus used in traditional Chinese medicine
and functional foods. In this study, a neutral heteropolysaccharide (GSP-1a) was isolated from spores
of O. gracilis, and its structure and antioxidant capacities were investigated. GSP-1a was found to have
a molecular weight of 72.8 kDa and primarily consisted of mannose (42.28%), galactose (35.7%), and
glucose (22.02%). The backbone of GSP-1a was composed of various sugar residues, including→6)-
α-D-Manp-(1→,→2,6)-α-D-Manp-(1→,→2,4,6)-α-D-Manp-(1→,→6)-α-D-Glcp-(1→, and→3,6)-
α-D-Glcp-(1→, with some branches consisting of→6)-α-D-Manp-(1→ and α-D-Gal-(1→. In vitro,
antioxidant activity assays demonstrated that GSP-1a exhibited scavenging effects on hydroxyl
radical (•OH), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS•+), and
2,2-diphenyl-1-picrylhydrazyl radical (DPPH•). Moreover, GSP-1a was found to alleviate H2O2-
induced oxidative stress in HepG2 cells by reducing the levels of reactive oxygen species (ROS) and
malondialdehyde (MDA), while enhancing the activities of superoxide dismutase (SOD). Furthermore,
GSP-1a upregulated the mRNA expression of antioxidant enzymes such as Ho-1, Gclm, and Nqo1, and
regulated the NRF2/KEAP1 and FNIP1/FEM1B pathways. The findings elucidated the structural
types of GSP-1a and provided a reliable theoretical basis for its usage as a natural antioxidant in
functional foods or medicine.

Keywords: Ophiocordyceps gracilis; spores; polysaccharide; structural characterization; antioxidant
activity

1. Introduction

Cordyceps belong to Ascomycotina and is a parasitic fungus that grows on the larva or
pupae of insects [1]. Cordyceps have a broad range of various pharmacological properties,
where Ophiocordyceps sinensis (O. sinensis) is the most well-known and has been extensively
used in Asian countries as a tonic and medicinal food [2]. In addition, Ophiocordyceps gracilis
(O. gracilis) parasitizes the larvae of Hepialus, which belongs to the same genus and has a
similar chemical composition and medicinal properties with O. sinensis and has been listed
in the drug standards of Xinjiang China [3,4]. These might indicate that O. gracilis could
have interesting medicinal properties, some of which also have been recently described [5,6].
Furthermore, Cordyceps has significant therapeutic effects on a variety of diseases, including
renal, hepatic, respiratory, neurological, and cardiovascular diseases, cancer, aging, and
hyperlipidemia [7–10]. The pharmacological components of Cordyceps include cordycepin,
polysaccharides, bioactive peptides, mannitol, and ergosterol [2]. Among these constituents,
polysaccharides are the major active compounds in Cordyceps and exhibit a broad range
of biological activities [11–14]. Notably, the antioxidant property is one of the significant
activities of Cordyceps polysaccharides, which would be also one of the mechanisms for its
physiological function. Oxidative stress is associated with various diseases, such as cancer,
cardiovascular disease, type-II diabetes, immunity diseases, and aging [15,16]. Reactive
oxygen species (ROS) scavenging improves oxidative homeostasis and delays the onset
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and progression of aging and other diseases [12]. At present, many synthetic antioxidants
are widely used, but they are unable to consistently prevent ROS-induced damage in vivo
and can even increase the incidence of diseases [17]. Therefore, there is an urgent need to
develop safe and effective natural antioxidants as alternatives to synthetic ones. Cordyceps
polysaccharides possess excellent biocompatibility and non-toxic characteristics, making
them easily tolerated by the human body. Consequently, the application of Cordyceps
polysaccharides is a rising concern in the defense against a variety of oxidative stresses.

Previously, studies have tended to focus on natural Cordyceps polysaccharides as well
as intracellular and extracellular polysaccharides of cultured Cordyceps rather than those
originating from spores of Cordyceps [18,19]. Fungal spores contain all the genetic sub-
stances, possess similar bioactive components to the fruiting body, and even have greater
pharmaceutical values than the fruiting body, such as Ganoderma lucidum spores. Ganoderma
lucidum spore polysaccharides have been reported to contain various physiological and
health effects, such as strong antioxidant activities, immunomodulating activities, and anti-
tumor activities [20,21]. It is worth noting that the State Drugs Administration of China has
approved the use of Ganoderma lucidum spore polysaccharides injection (GuoYaoZhunZi
H20003510 and H20003123) for the treatment of neurosis, progressive muscular dystro-
phy, and various diseases caused by a compromised immune system [22]. These suggest
that polysaccharides from spores of medicinal mushrooms are important resources for
functional food development and new drug discovery. Studies have shown that polysac-
charides from spores of Cordyceps cicadae exhibited a higher ability to promote glucose
absorption, reduce insulin resistance, and improve type II diabetes compared to mycelia
and sclerotia polysaccharides [23]. In addition, polysaccharides from spores of Cordy-
ceps cicadae exhibited ameliorative effects in immunosuppressed mice through enhancing
macrophage phagocytic activity, improving natural killer cytotoxicity, and modulating
antioxidant enzyme system [22]. However, polysaccharides from Cordyceps spores are less
studied. In our previous studies, large quantities of O. gracilis were obtained in submerged
culture via the microcycle conidiation technique [24]. Numerous studies have shown that
the functions of polysaccharides are closely linked to their structural characteristics, such
as monosaccharide composition, molecular weight (Mw), and chemical linkages [25,26].
Therefore, it is crucial to understand the structure of polysaccharides originating from the
spores of O. gracilis.

In this study, a neutral polysaccharide (GSP-1a) was isolated and purified from
O. gracilis spores. Its structural characteristics, including molecular weight, monosac-
charide composition, and glycosyl linkages, were elucidated, and the plausible structure
was predicted. In addition, the extracellular antioxidant activity of GSP-1a was evaluated
by free radical scavenging assays (•OH, ABTS•+, DPPH•). Furthermore, the protective
effects of GSP-1a on H2O2-induced oxidative stress in HepG2 cells were investigated via
cellular antioxidant activity assays and its possible mechanism was revealed. This work
aims to help understand the structural characteristics of O. gracilis spore polysaccharides
and provide a theoretical reference for the development of new antioxidants and functional
foods or medicine.

2. Results and Discussion
2.1. Molecular Weight and Chemical Composition of GSP-1a

The flow diagram for the isolation and purification of polysaccharides from O. gracilis
spores is shown in Figure 1A. The extraction of crude polysaccharides (GSP) yielded 7.9%.
Then GSP was dissolved in ultrapure water and loaded onto a DEAE Sepharose fast flow
column (2.6 cm × 40 cm) with gradient elution of 0–0.3 M NaCl solutions. Figure 1B
illustrates that two fractions GSP-1 and GSP-2 were eluted under 0 and 0.1 mol/L NaCl
solution with a yield of 55% and 10%, respectively. The first peak, GSP-1, represented
the major fraction of GSP, which was further purified using the Superdex G-200 column.
Figure 1C shows the composition of GSP-1, primarily consisting of GSP-1a (61%), GSP-
1b (3%), and GSP-1c (16%). This indicated that GSP-1a was the dominant fraction, thus
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warranting further analysis of its structure. UV–Vis spectra (Figure 1D) revealed the absence
of absorption peaks at 260 nm and 280 nm, indicating the absence of protein and nucleic
acids in GSP-1a. Furthermore, gel permeation chromatography (Figure 1E) demonstrated a
single and symmetrical peak for GSP-1a, indicating its homogeneity. The molecular weight
(Mw) of GSP-1a was determined to be 72.8 kDa, with an Mw/Mn of 1.1 (Table 1), indicating
that GSP-1a was a homogeneous polysaccharide.
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Figure 1. The procedure of GSP-1a extraction and purification. (A) Elution profile of GSP on DEAE
Sepharose fast flow column. (B) Elution profile of GSP-1 on Superdex G-200 column. (C) UV–Vis
spectrum of GSP-1a. (D) HPGPC profile of GSP-1a (E).

Table 1. Molecular weights and chemical compositions of GSP-1a.

Samples GSP-1a

Yield/% 33.5 ± 0.64
Total carbohydrate (%) 82 ± 1.5
Protein (%) ND
Nucleic acid (%) ND
Mw (kDa) 72.8
Mw/Mn 1.1
Monosaccharide composition (molar ratio)
Man 42.28%
Gal 35.7%
Glc 22.02%

“ND” refers to “not detected”.

The HPAEC quantitative analysis of the monosaccharide composition of GSP-1a is
shown in Table 1 and Figure S1. Comparing the chromatogram of the mixed standard
monosaccharides with that of monosaccharide components in GSP-1a, it could be seen that
GSP-1a mainly consisted of mannose (man, 42.28%), galactose (gal, 35.7%), and glucose
(glc, 22.02%). The monosaccharide components of GSP-1a were different from those of Gan-
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oderma lucidum spore polysaccharides (glucose:galactose:arabinose = 90.82:7.95:1.23, molar
percentage), Paecilomyces cicadae spore polysaccharides (glucose:galactose:mannose:arabinose
= 8:5:4:1, molar ratio), and Cordyceps cicadae spores polysaccharides (CCSP-2 glucose:mannose
= 94.27:5.73, CCSP-3 xylose:mannose:glucose:galactose = 22.08:2.05:63.4:12.27, molar per-
centage) [21,22,27]. This suggests that there are significant differences in the structure of
polysaccharides from the spores of different mushroom species.

2.2. FT–IR Analysis of GSP-1a

Fourier transform infrared spectroscopy (FT–IR) spectrum of GSP-1a, presented in
Figure 2, exhibited several characteristic peaks. The strong and broad peak at approx-
imately 3421 cm−1 was assigned to the O-H stretching vibration, a typical feature of
carbohydrates [28]. The signal at 2928 cm−1 corresponded to the stretching vibration of the
C-H bonds in the sugar ring [29]. Additionally, the absorption between 1400 and 1200 cm−1

was indicative of carbohydrate-specific features [30]. The absence of a peak around
1730 cm−1 indicated the absence of uronic acid [13], which was consistent with the monosac-
charide composition analysis. The peak at 1642 cm−1 may correspond to the hydroxyl
group in the bound water [31]. The strong peak detected at approximately 1037 cm−1 rep-
resented the bending vibration of C-OH [32]. The signals in the range of 1000–1200 cm−1

were attributed to the stretching vibrations of C-O-C and C-O-H linkages [33]. Further-
more, the peak at 820 cm−1 indicated the presence of α-glycosidic bonds [34], which was
consistent with the results of nuclear magnetic resonance (NMR) spectroscopy.
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2.3. Methylation Analysis of GSP-1a

To ensure the linkage patterns of monosaccharides, GSP-1a was completely methylated;
thereafter, the retention time, peak values, and ion fragment characteristics of partially
methylated alditol acetates (PMAAs) products were detected using GC-MS and compared
with a database [26]. The linkage analysis of GSP-1a is summarized in Table 2. For the
polysaccharide, the non-reducing terminals consisted of Galp (34.36%). The branching
points were at 3, 6-Glcp (9.6%), 2, 6-Manp (15.46%), and 2, 4, 6-Manp (5.09%), indicating
that GSP-1a had a certain branching structure. Other residues were disubstituted, including
6-Manp (19.99%), 6-Glcp (9.87%), a small amount of 2-Manp (1.95%), and 4-Glcp (3.68%).
Overall, the results of methylation were consistent with the findings of monosaccharide
composition analysis.
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Table 2. Methylation analysis data for GSP-1a.

Retention
Time (min) Type of Linkages PMAAs Relative Molar

Ratio (%) Mass Fragments (m/z)

8.477 t-Gal(p)
1,5-di-O-acetyl-2,3,4,6-
tetra-O-methyl
galactitol

34.36 60, 71, 87, 102, 118, 145, 162, 205

11.847 2-Man(p)
1,2,5-tri-O-acetyl-3,4,6-
tri-O-methyl
mannitol

1.95 60, 71, 88, 118, 129, 145, 161, 190

13.074 6-Man(p)
1,5,6-tri-O-acetyl-2,3,4-
tri-O-methyl
mannitol

19.99 71, 87, 99, 102, 118, 129, 162,
173.1, 189

13.153 6-Glc(p)
1,5,6-tri-O-acetyl-2,3,4-
tri-O-methyl
glucitol

9.87 60, 87, 102, 118, 129, 137, 162,
173, 189

13.508 4-Glc(p)
1,4,5-tri-O-acetyl-2,3,6-
tri-O-methyl
glucitol

3.68 60, 87, 102, 118, 129, 137, 162, 191

17.316 3,6-Glc(p)
1,3,5,6-tetra-O-acetyl-2,4-
di-O-methyl
glucitol

9.60 71, 87, 101, 118, 129, 137, 49, 174,
189, 202, 234, 245, 299

17.610 2,6-Man(p)
1,2,5,6-tetra-O-acetyl-3,4-
di-O-methyl
mannitol

15.46 71, 87, 99, 118, 129, 149, 167, 189,
202, 218, 261, 299, 338

18.292 2,4,6-Man(p)
1,2,4,5,6-penta-O-acetyl-
3-O-methyl
mannitol

5.09 60, 74, 88, 117, 130, 159, 190, 202,
218, 233.1, 260, 299, 338

2.4. NMR Spectroscopy Analysis of GSP-1a

To further interpret the structure of GSP-1a, the polysaccharide was analyzed via
1D-NMR (1H NMR and 13C NMR) and 2D-NMR (1H−1H COSY, 1H−13C HSQC, 1H−1H
NOESY, and 1H−13C HMBC). NMR spectroscopy is a powerful tool for obtaining detailed
structural information for carbohydrates. It can aid identifying the monosaccharide compo-
sition, determining the α- or β-anomeric configurations, and establishing linkage patterns
and sequences of sugar units in polysaccharides [35]. H/C chemical shifts in all sugar
residues were fully assigned based on the NMR spectra data and literature.

The signals for GSP-1a in 1H and 13C NMR spectra were presented in Figure 3A,B. The
proton signals were observed in the region ranging from δ 3.0 to 5.5 ppm, while the carbon
signals appeared in the range of δ 90 to 110 ppm, which were the typical chemical shifts of
polysaccharides [36]. In the 1H NMR spectrum, a strong signal at δ 4.71 ppm was assigned
to the solvent proton peak, serving as a reference for other peaks. Six anomeric proton
signals were observed at δ 4.92 ppm, δ 5.08 ppm, δ 5.27 ppm, δ 4.84 ppm, δ 4.98 ppm, and δ

5.27 ppm, corresponding to the H-1 positions of residues A–F, respectively. Furthermore,
the corresponding anomeric carbon signals were observed at δ 97.29 ppm, δ 106.28 ppm,
δ 98.97 ppm, δ 99.56 ppm, δ 97.24 ppm, and δ 99.08 ppm, as determined from the 13C
NMR spectrum. According to the methylation analysis results, two sugar residues were
not shown in NMR, which may be due to their low content. Additionally, the absence of
signals in the range of δ 160–180 ppm in the 13C NMR spectrum indicates that GSP-1a does
not contain uronic acid, confirming its classification as a neutral polysaccharide [37]. The
1H−1H COSY spectrum was employed to analyze the interconnectivity between adjacent
hydrogen atoms within the same carbon atom [38]. On the other hand, the 1H−13C HSQC
spectrum was utilized to study the distribution of 1H and 13C coupling within the same
glycosidic bond [39]. By utilizing these spectra, the chemical shifts of glycosidic bonds A, B,
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C, D, E, and F were fully assigned based on the correlation peaks observed in the 1H−1H
COSY and 1H−13C HSQC spectra.
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H2−H6 signals of residue A were at δ 3.50 ppm, δ 3.74 ppm, δ 3.66 ppm, δ 4.01 ppm, and
δ 3.71/3.80 ppm. Similarly, the cross-peaks were at δ 3.50/71.24, δ 3.74/72.09, δ 3.66/72.68,
δ 4.01/74.37, and δ 3.71/3.80, 60.39 in 1H−13C HSQC (Figure 3E), showing that C2−C6
resonances were at δ 71.24 ppm, δ 72.09 ppm, δ 72.68 ppm, δ 74.37 ppm, and δ 60.39 ppm.
Combined with methylation results and references, it was speculated that the glycosidic
bond A might be α-D-Galp-(1→[40]. Furthermore, the H2−H6 signals and C2−C6 signals
of six anomeric residues of GSP-1a were obtained according to the 1H−1H COSY and
1H−13C HSQC spectra. All the hydrogen and carbon signals are listed in Table 3. The
H-2/C-2 to H-6/C-6 of residue B were δ 3.95/74.37, 4.05/74.72, 3.75/72.34, 3.78/80.94, and
3.77/70.65 ppm, respectively. The H-2/C-2 to H-6/C-6 of residue C were δ 4.19/79.72,
4.11/76.88, 3.79/70.65, 3.78/80.94, and 3.75/72.36 ppm, respectively. The H-2/C-2 to H-
5/C-5 of residue D were δ 3.50/73.06, 3.71/72.81, 3.94/76.75, 4.17/75.31, and 3.39/69.46 ppm,
respectively. The H-2/C-2 to H-5/C-5 of residue E were δ 3.51/71.03, 4.16/86.89, 3.94/76.75,
4.17/75.31, and 3.91/69.59 ppm, respectively. The H-2/C-2 to H-4/C-4 of residue F were δ

4.19/79.72, 4.05/74.72, and 3.96/82.23, respectively.

Table 3. The detailed 1H and 13C NMR spectral assignments of GSP-1a.

Code Glycosyl Residues
Chemical Shifts (ppm)

1 2 3 4 5 6

A α-D-Galp-(1→ H 4.92 3.50 3.74 3.66 4.01 3.71, 3.8
C 97.29 71.24 72.09 72.68 74.37 60.39

B →6)-α-D-Manp-(1→ H 5.08 3.95 4.05 3.75 3.78 3.77
C 106.28 74.37 74.72 72.34 80.94 70.65

C →2,6)-α-D-Manp-(1→ H 5.27 4.19 4.11 3.79 3.78 3.75, 4.28
C 98.97 79.72 76.88 70.65 80.94 72.36

D →6)-α-D-Glcp-(1→ H 4.84 3.50 3.71 3.94 4.17 3.39, 3.83
C 99.56 73.06 72.81 76.75 75.31 69.46

E →3,6)-α-D-Glcp-(1→ H 4.98 3.51 4.16 3.94 4.17 3.91, 3.56
C 97.24 71.03 86.89 76.75 75.31 69.59

F →2,4,6)-α-D-Manp-(1→ H 5.27 4.19 4.05 3.96 ND 3.76, 4.28
C 99.09 79.72 74.72 82.23 ND 72.09

“ND” refers to “no signals were detected”.

Residue B exhibited a strong signal of anomeric proton and an anomeric carbon
signal in the 1H NMR, 13C NMR, and 1H−13C HSQC spectra, suggesting its high content
and proportion within GSP-1a. Based on the methylation analysis and monosaccharide
component results, residue B was inferred to be an α-linked mannose (Man) residue.
Further, according to the corresponding references, we speculated that the glycosidic bond
B might be→6)-α-D-Manp-(1→[26,41–43]. In addition, combined with the methylation
results and the relevant literature, it was inferred that the glycosidic bonds C, D, E, and F
were→2,6)-α-D-Manp-(1→,→6)-α-D-Glcp-(1→,→3,6)-α-D-Glcp-(1→ and→2,4,6)-α-D-
Manp-(1→[37,41,44–47].

The glycosidic linkage sequence among the sugar residues of GSP-1a was determined
through correlation peaks obtained in the 1H−13C HMBC and 1H−1H NOESY spectrum.
The 1H-13C HMBC spectrum shows carbon–hydrogen coupling between different sugar
residues [38]. As shown in Figure 3F, a series of inter-residual correlations were found
among residues. The cross peaks between H-1 of residue A and C-6 of residue B, H-1 of
residue A and C-2 of residue C/F, and C-1 of residue A and H-2 of residue C/F indicated the
presence of sequence of α-D-Galp-(1→6)-α-D-Manp-(1→, α-D-Galp-(1→2,6)-α-D-Manp-
(1→ and α-D-Galp-(1→2,4,6)-α-D-Manp-(1→. The cross peaks between H-1 of residue B
and C-6 of residue D/E, H-1 of residue B and C-3 of residue E, H-1 of residue B and C-4 of
residue F, and C-1 of residue B and H-3 of residue E indicated the presence of sequence of
→6)-α-D-Manp-(1→6)-α-D-Glcp-(1→,→6)-α-D-Manp-(1→3,6)-α-D-Glcp-(1→ and→6)-
α-D-Manp-(1→6,3)-α-D-Glcp-(1→. The cross peak of C-1 of residue C and H-6 of residue
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B indicated the presence of sequence of→2,6)-α-D-Manp-(1→6)-α-D-Manp-(1. The cross
peak of C-1 of residue D and H-6 of residue F indicated the presence of sequence of→6)-α-
D-Glcp-(1→6,2,4)-α-D-Manp-(1→. The cross peak of H-1 of residue E and C-6 of residue C
indicated the presence of sequence of→3,6)-α-D-Glcp-(1→6,2)-α-D-Manp-(1→. All the
above inter-residual correlations were also found via NOSEY. Moreover, the cross-peaks
between H-1 of residue A and H-6 of residue C, as well as H-1 of residue F and H-2
of residue C, were identified (Figure 3D), indicating the presence of two sequence α-D-
Galp-(1→6,2)-α-D-Manp-(1→ and→2,4,6)-α-D-Manp-(1→2,6)-α-D-Manp-(1→. Therefore,
the backbone of GSP-1a appeared to be mainly composed of→6)-α-D-Manp-(1→,→2,6)-
α-D-Manp-(1→,→2,4,6)-α-D-Manp-(1→,→6)-α-D-Glcp-(1→, and→3,6)-α-D-Glcp-(1→
residues with some branches consisting of→6)-α-D-Manp-(1→ and α-D-Gal-(1→ residues.
A hypothetical model structure of GSP-1a was inferred according to the comprehensive
analysis of FT–IR, monosaccharide composition, methylation, and NMR, as shown in
Figure 4.
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2.5. Antioxidant Activities In Vitro of GSP-1a

Excessive accumulation of free radicals in organisms can lead to a variety of dis-
eases, particularly aging and age-related illnesses. Natural polysaccharides have gained
widespread attention due to their excellent antioxidant activity, nontoxic, stable, and bio-
compatibility, especially fungal and plant polysaccharides [48]. Therefore, evaluating the
antioxidant capacities of compounds of GSP-1a is crucial. In this study, we conducted
•OH, ABTS•+, and DPPH• radical scavenging assays to evaluate the antioxidant capacities
of GSP-1a, comparing them with the antioxidant activity of vitamin C (Vc). The •OH is
considered a strong reactive oxygen radical that can react with most biological molecules,
causing tissue damage and cell death; so, removing hydroxyl radicals is vital to protect liv-
ing systems [49]. As shown in Figure 5A, both GSP-1a and GSP exhibited a dose-dependent
scavenging effect on •OH radical. Within the concentration range of 0.25–2.0 mg/mL,
the scavenging activity of GSP increased linearly from 27.9% to 63.6%. The half maximal
inhibitory concentration (IC50) value of GSP was 1.25 mg/mL. While GSP-1a was less
effective in scavenging •OH radicals compared with GSP, the scavenging activity was
34.2% in 2 mg/mL. The ABTS•+ radical scavenging method is widely used to evaluate
the total antioxidant ability of natural products [50]. As presented in Figure 5B, the trends
for ABTS•+ radical scavenging activities of GSP-1a and GSP were similar. The scavenging
activity of GSP-1a was enhanced from 13.7% to 41.4% with increasing concentration in the
range of 0.25–2.0 mg/mL, while that of GSP was enhanced dramatically from 25.2 ± 1.2%
to 76.4 ± 1.1%. The DPPH• radical scavenging assay relies on the ability of antioxidants to
donate hydrogen, and it is widely used as a means of estimating the free-radical scavenging
activities of antioxidants [51]. Polysaccharides possess the unique capability to function as
electron donors, allowing them to interact with free radicals and convert them into more
stable forms [52]. This antioxidant activity enables polysaccharides to play a vital role
in neutralizing and scavenging free radicals. As depicted in Figure 5C, the scavenging
activity of both GSP-1a and GSP increased in a concentration-dependent manner. At a
concentration of 2 mg/mL, GSP-1a exhibited a scavenging activity of 22.4%, while GSP
demonstrated a scavenging activity of 32%.
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Overall, the antioxidant activity of GSP-1a and GSP was lower than that of Vc at
concentrations ranging from 0.25 to 2 mg/mL. However, the analysis of •OH, ABTS•+, and
DPPH• radical scavenging activities still revealed that GSP-1a and GSP exhibit significant
antioxidant activity in vitro. The antioxidant capacity of GSP-1a is comparable to that of
certain Cordyceps polysaccharides with similar molecular weights and monosaccharide
compositions. For example, when treated with a 2 mg/mL concentration, O. sinensis
polysaccharides with a molecular weight of 28 kDa (backbone composed by α-1,4-Glc)
and 43 kDa (man:gal:glc = 1.97:1:15.63, molar ratio) displayed •OH scavenging capacities
of 30% and 20%, respectively [53,54]. At a concentration of 1 mg/mL, the Cordyceps
cicadae polysaccharides with a molecular weight of 60.7 kDa (gal:glu:man = 0.89:1:0.39,
molar ratio) exhibited similar •OH and ABTS•+ scavenging capacities of 20% and 30%,
respectively [55]. Furthermore, the scavenging capacity for DPPH• and •OH of GSP-1a is
superior to that of neutral polysaccharides with a molecular weight of 20 kDa from four
types of mushrooms (Pleurotus eryngii, Flammulina velutipes, Pleurotus ostreatus, and white
Hypsizygus marmoreus) [56]. It is worth noting that the crude polysaccharide fraction (GSP)
tended to exhibit stronger antioxidant activity as compared to purified fractions (GSP-1a),
which was consistent with previous research that the free radical scavenging ability of
pure polysaccharide from Ziziphus jujuba was lower than that of crude polysaccharide [33].
The difference in antioxidant activity could potentially be attributed to impurities present
in the crude polysaccharide fraction, such as proteins, amino acids, organic acids, and
other compounds that possess inherent antioxidant properties [57]. These impurities may
contribute to the overall antioxidant capacity of the crude polysaccharide fraction.

2.6. Effect of GSP-1a on H2O2-Induced Oxidative Stress
2.6.1. Effect of GSP-1a on the Change of ROS, MDA Content, and SOD Activities in
H2O2-Treated HepG2 Cells

The hepatocellular carcinoma HepG2 cell has been widely used to evaluate antioxidant
defense systems [33,58]. Thus, an oxidative stress model was established in HepG2 cells
to assess the protective effect of GSP-1a. Initially, the optimal concentration of H2O2
required to induce oxidative stress in HepG2 cells was determined. As shown in Figure 6A,
600 µM or higher H2O2 concentrations decreased the percentage of living cells significantly
compared with the control group. Considering that high H2O2 concentrations may cause
cell death by non-apoptotic mechanisms [59], 800 µM H2O2 was selected to explore the
protective effect of GSP-1a. According to Figure 6B, there was no significant difference in
the viability of HepG2 cells when treated with a concentration range of 0 to 2 mg/mL of
GSP-1a and GSP compared to the control group. This indicates that both GSP-1a and GSP
concentrations were non-toxic to HepG2 cells. Consequently, different concentrations of
GSP-1a (0.25, 0.5, 1, and 2 mg/mL) were selected to investigate their antioxidant activity in
H2O2-induced oxidative stressed HepG2 cells. Based on the results shown in Figure 6C,
the viability of HepG2 cells exhibited a significant increase when they were pretreated
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with GSP-1a and GSP, as compared to cells treated with H2O2 without any pretreatments.
Notably, the viability of cells pretreated with 1 mg/mL GSP-1a reached 91.9% of the control
value, and its protective effect was as good as the positive group. In addition, the cell
viability under GSP-1a and GSP pretreatment were similar, and all were dose dependent.
The results indicate that GSP-1a could be effective against H2O2-induced oxidative stress.
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Figure 6. The effects of different concentrations of H2O2 on the viability of HepG2 cells (A), the effects
of GSP-1a on HepG2 cells viability (B), and the protective effects of GSP-1a and GSP on HepG2 cells
under H2O2-induced oxidative stress (C). The control group was normal cells without any treatment.
The H2O2 without pretreatments group was only treated with 800 µM H2O2 for 4 h. The positive and
sample groups were pretreated with Vc and polysaccharides for 24 h, respectively, and then treated
with 800 µM H2O2 for 4 h. The data were expressed as the percentage of viable cells compared to the
blank control and were presented as the mean ± SD (n ≥ 3). n.s. p > 0.05. ## p < 0.01, in contrast to
control group. * p < 0.05 and ** p < 0.01, in contrast to H2O2 without pretreatments group.

The addition of H2O2 can induce the production of excessive ROS in cells and excessive
ROS further induces cell apoptosis [60]. ROS production serves as the most direct indicator
for evaluating the antioxidative capacity. The lipid peroxide generated from the reaction
between ROS and the double bond of polyunsaturated fatty acids forms a series of aldehyde
compounds of which MDA is one of the main products, and excessive MDA can ultimately
lead to disruption of cellular metabolism [61]. Therefore, the content of MDA can indirectly
reflect the ROS-mediated cell oxidative stress degree. In addition, SOD converts superoxide
anion free radicals into oxygen and hydrogen peroxide. The level of SOD reflects the
intracellular antioxidant enzyme system load which serves as an indirect indicator for
estimating the antioxidant effect; when oxidative stress is suffered, the activity of the SOD
enzyme will decrease [62]. To elucidate the protective mechanism of GSP-1a on H2O2-
mediated oxidative stress injury to HepG2 cells, ROS level and MDA content in HepG2
cells were investigated.

Intracellular ROS levels were determined using DCFH-DA, as shown in Figure 7A. The
green fluorescence indicates that intracellular ROS formation was detected. In Figure 7B, the
DCF fluorescence intensities of HepG2 cells treated with H2O2 without any pretreatments
were significantly higher than those in the control group (p < 0.01), which indicated that
H2O2 induced intracellular ROS generation. Compared to the H2O2 without pretreatments
group, pretreatment with GSP-1a and GSP reduced DCF fluorescence intensity significantly.
Notably, at a concentration of 0.5 mg/mL, GSP-1a exhibited a remarkable reduction in
DCF fluorescence intensity, comparable to that of the positive group. In Figure 8A, a
significant increase in MDA content was observed for cells treated with H2O2 without
any pretreatment (0.42 µmol/mg) when compared to the control group, indicating the
occurrence of oxidative stress and lipid peroxidation induced by H2O2. GSP-1a treatment
led to significant alleviation of MDA levels in a dose-dependent manner. At a concentration
of 2 mg/mL, the MDA content decreased to 0.19 µmol/mg, highlighting the effectiveness
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of GSP-1a in mitigating lipid peroxidation. Additionally, as depicted in Figure 8B, the SOD
activity for cells treated with H2O2 without any pretreatment (32.5 U/mg) was significantly
lower than that in the control group (104.8 U/mg) (p < 0.01), suggesting that H2O2 caused
damage to SOD. However, treatment with GSP-1a and GSP led to a significant increase
in SOD activity compared to cells treated with H2O2 without pretreatments, showing a
dose-dependent relationship. Notably, the SOD activity increased to 89.4 U/mg following
pretreatment with 0.5 mg/mL GSP-1a. These results indicated that GSP-1a could protect
against H2O2-induced oxidative stress in HepG2 cells by inhibiting intracellular ROS and
MDA generation, as well as by improving SOD activity.
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treated with 800 µM H2O2 for 4 h. The positive and sample groups were pretreated with Vc and
polysaccharides for 24 h, respectively, and then treated with 800 µM H2O2 for 4 h. The data were
expressed as the means ± SD (n ≥ 3). ## p < 0.01, in contrast to control group. * p < 0.05 and
** p < 0.01, in contrast to H2O2 without pretreatments group.

2.6.2. Effect of GSP-1a on mRNA Expression of NRF2 and FNIP1 Pathway

Nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor pro-
tecting against oxidative stress by regulating the transcription of several antioxidant genes,
such as heme oxygenase-1 (Ho-1), quinone oxidoreductase 1 (Nqo1), and glutamate-cysteine
ligase modifier subunit (Gclm) [63–65]. Kelch-like ECH-associated protein-1 (KEAP1) is
an inhibitor of NRF2 [66]. During oxidative stress, the NRF2 moiety from KEAP1 enters
the nucleus to induce the expression of antioxidant genes [66]. In the current study, we
found that the mRNA level of Ho-1, Gclm, and KEAP1 was enhanced during treatment with
H2O2 (Figure 9A–C). This is consistent with previous reports that antioxidant genes are
expressed at low levels in cells under non-stimulated conditions but are rapidly induced
by oxidants, and this enhanced expression plays a vital role in cellular protection under
oxidative stress [67,68]. GSP-1a significantly increased the mRNA expression of Ho-1, Gclm,
Nqo1, and NRF2 in a concentration-dependent manner compared with cells treated with
H2O2 without any pretreatment (Figure 9A–E). In addition, the pretreatment with GSP-1a
reduced the mRNA expression of KEAP1, which contributes to alleviating the inhibitory
effect of KEAP1 on NRF2. These results demonstrate that GSP-1a may activate the NRF2
pathway, upregulating downstream genes such as Ho-1, Gclm, and Nqo1, thereby protecting
HepG2 cells from H2O2-induced oxidative stress. Additionally, Follicle-interacting protein
1 (FNIP1) and fem-1 homolog B (FEM1B) maintain mitochondrial redox homeostasis and
are central components of the reductive stress response [69]. Recent studies have shown
that the binding of FEM1B and FNIP1 proteins leads to the degradation of FNIP1, which
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activates ROS production in mitochondria in response to a reduction in ROS [70]. In this
study, exposure to H2O2 led to a significant upregulation of mRNA levels for FNIP1 and
FEM1B, aligning with the non-physiological production of ROS. However, GSP-1a down-
regulated the expression levels of FNIP1 and FEM1B in a concentration-dependent manner
(Figure 9F,G), which may be due to the reduction in ROS production. Based on the above
analysis, we propose that GSP-1a is likely to mitigate oxidative stress through the NRF2
and FNIP1 pathways.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 8. Effect of GSP-1a on ROS generation in HepG2 cells. DCF fluorescence intensity (A). Images 
of HepG2 cells captured by fluorescence microscopy (B). The control group was normal cells with-
out any treatment. The H2O2 without pretreatments group was only treated with 800 µM H2O2 for 
4 h. The positive and sample groups were pretreated with Vc and polysaccharides for 24 h, respec-
tively, and then treated with 800 µM H2O2 for 4 h. The data were expressed as the means ± SD (n ≥ 
3). ## p < 0.01, in contrast to control group. * p < 0.05 and ** p < 0.01, in contrast to H2O2 without 
pretreatments group. 

2.6.2. Effect of GSP-1a on mRNA Expression of NRF2 and FNIP1 Pathway 
Nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor pro-

tecting against oxidative stress by regulating the transcription of several antioxidant 
genes, such as heme oxygenase-1 (Ho-1), quinone oxidoreductase 1 (Nqo1), and glutamate-
cysteine ligase modifier subunit (Gclm) [63–65]. Kelch-like ECH-associated protein-1 
(KEAP1) is an inhibitor of NRF2 [66]. During oxidative stress, the NRF2 moiety from 
KEAP1 enters the nucleus to induce the expression of antioxidant genes [66]. In the current 
study, we found that the mRNA level of Ho-1, Gclm, and KEAP1 was enhanced during 
treatment with H2O2 (Figure 9A–C). This is consistent with previous reports that antioxi-
dant genes are expressed at low levels in cells under non-stimulated conditions but are 
rapidly induced by oxidants, and this enhanced expression plays a vital role in cellular 
protection under oxidative stress [67,68]. GSP-1a significantly increased the mRNA ex-
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and Nqo1, thereby protecting HepG2 cells from H2O2-induced oxidative stress. Addition-
ally, Follicle-interacting protein 1 (FNIP1) and fem-1 homolog B (FEM1B) maintain mito-
chondrial redox homeostasis and are central components of the reductive stress response 
[69]. Recent studies have shown that the binding of FEM1B and FNIP1 proteins leads to 
the degradation of FNIP1, which activates ROS production in mitochondria in response 
to a reduction in ROS [70]. In this study, exposure to H2O2 led to a significant upregulation 
of mRNA levels for FNIP1 and FEM1B, aligning with the non-physiological production of 
ROS. However, GSP-1a downregulated the expression levels of FNIP1 and FEM1B in a 

Figure 8. Effect of GSP-1a on ROS generation in HepG2 cells. DCF fluorescence intensity (A).
Images of HepG2 cells captured by fluorescence microscopy (B). The control group was normal
cells without any treatment. The H2O2 without pretreatments group was only treated with 800 µM
H2O2 for 4 h. The positive and sample groups were pretreated with Vc and polysaccharides for 24 h,
respectively, and then treated with 800 µM H2O2 for 4 h. The data were expressed as the means ± SD
(n ≥ 3). ## p < 0.01, in contrast to control group. * p < 0.05 and ** p < 0.01, in contrast to H2O2 without
pretreatments group.
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3. Materials and Methods
3.1. Materials

O. gracilis fermentation spore powder was obtained from cultured Paraisaria dubia
(anamorph of O. gracilis, CGMCC No. 20731, stored in China General Microbiological
Culture Collection Center) according to the following methods. The strain was inoculated
in the sporulation medium (glucose 20 g, yeast extract 30 g, KH2PO4 2 g, MgSO4·7H2O
1 g, ZnSO4·7H2O 6 g, H2O 1 L, pH 8) and cultured for 12 days at 20 ◦C and 120 rpm. After
fermentation, a small number of mycelia pellets were separated from the fermentation broth
containing spores via filtration through a 200 mesh press cloth. Then, the fermentation broth
was centrifuged at 8000 rpm for 10 min and the pellet was collected to obtain spore powder.
The collected spore powder was lyophilized. The preparation of O. gracilis fermentation
spore is shown in Figure S2.

DEAE Sepharose fast flow and Superdex G-200 were purchased from GE Health-
care Life Science (Piscataway, NJ, USA). Monosaccharide standards, 3-methyl-1-phenyl-2-
pyrazolin-5-one (PMP), 1,1-diphenyl-2-picrylhydrazyl (DPPH•), 2,2′-azino-bis (3-
ethylbenzothiazoline-6-sulphonic acid) (ABTS•+), and 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) were purchased from Sigma-Aldrich (Shanghai,
China). Minimum essential medium (MEM), fetal bovine serum (FBS), and penicillin–
streptomycin solution were obtained from KeyGEN Bio Tech (Nanjing, China). Alcohol,
hydrogen peroxide (H2O2) solution, and dimethyl sulfoxide (DMSO) were obtained from
Aladdin Industrial Corporation (Shanghai, China). ROS, MDA, SOD, and BCA protein
concentration assay kits and cell lysis buffer for Western and IP were purchased from the
Beyotime Institute of Biotechnology, Ltd. (Shanghai, China). HepG2 cells were purchased
from Shanghai Cell Bank, Chinese Academy of Sciences (Shanghai, China).

3.2. Polysaccharides Extraction of O. gracilis Spores
3.2.1. Preparation of Crude Polysaccharides

The spores were defatted with hexane and thereafter extracted with 0.25 M NaOH
solution (1:15, w/v) at 90 ◦C for 3 h. The above alkaline extracts were neutralized with acetic
acid and then centrifuged at 8000× g for 10 min to obtain the supernatant. Polysaccharides
in the supernatant were precipitated using 4 times the volume of 95% ethanol at 4 ◦C for
12 h, followed by centrifugation at 8000× g for 10 min to separate the precipitated polysac-
charides, and then washed using ethanol. In addition, the precipitate was deproteinized
three times with ethanol to obtain crude polysaccharides (GSP). The deproteinization
method was conducted as described before [71,72], with minor modifications, as follows.
The precipitated polysaccharides were redissolved in distilled water then centrifuged at
8000× g for 10 min to remove precipitated denatured proteins. The supernatant was re-
tained and precipitated polysaccharides using 4 times the volume of 95% ethanol at 4 ◦C;
then, it was centrifuged to obtain polysaccharides precipitate (8000× g, 10 min). The above
deproteinization process was repeated three times, and the last time, the polysaccharides
precipitate was dissolved in water and then freeze-dried to obtain GSPs in the form of a
powder. The yield of crude polysaccharides was calculated via the following:

Yield(%, w/w) =
crude polysaccharides weight

Raw material weight
× 100. (1)

3.2.2. Isolation and Purification of Polysaccharides

The deproteinized polysaccharides were dissolved in distilled water and centrifuged
(8000 rpm, 10 min); subsequently, they were elutied in DEAE Sepharose fast flow column
(26 mm × 300 mm). GSP was gradient-eluted with 0, 0.1, and 0.3 mol/L NaCl at a flow
rate of 1 mL/min. After 5 min, each tube was collected via an automatic fraction collector
(BSZ-100, Huxi, China). Among the fractions collected, two peaks were detected by the
phenol sulfuric acid method (GSP-1, GSP-2). The eluent of the two fractions was collected
separately and was dialyzed to remove sodium chloride, free protein, and small-molecular-
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weight polysaccharides. Thereafter, the eluent of the two fractions was lyophilized using
a vacuum dryer (Biosafer-10A, Biosafer, Nanjing, China) to obtain the polysaccharides
in the form of a powder. GSP-1 was further purified with a Superdex G-200 gel column
(16 mm × 600 mm) at a flow rate of 0.2 mL/min. One tube was collected every 20 min. The
main fraction (GSP-1a) was collected and eluted samples were freeze-dried. The yield of
pure polysaccharide was calculated via the following:

Yield(%, w/w) =
Fractions weight

Crude polysaccharides weight
× 100. (2)

3.3. Chemical Composition, UV Spectroscopy, and Molecular Weight Analysis

The phenol–sulfuric acid method was used to determine total sugar content with
glucose as the standard. The protein content of GSP-1a was determined using a BCA
protein concentration assay kit. Additionally, GSP-1a was dissolved in distilled water
and subjected to UV–Visible spectroscopy in the range of 190–300 nm using a UV–Visible
spectrometer (UV-T9, Persee, Beijing, China).

GSP-1a was dissolved in 0.1 M NaNO3 aqueous solution (0.02% NaN3, w/w) at a
concentration of 1 mg/mL, and the solution was thereafter filtered through a 0.45 µm
membrane. The molecular weight of GSP-1a was determined using high-performance
gel permeation chromatography (HPGPC) with a binary HPLC pump (U3000, Thermo,
Waltham, MA, USA) and a refractive index detector (Optilab T-rEX, Wyatt Technology, Co.,
St Milford, MA, USA). The polysaccharides solution was separated using three tandem
columns (300 × 8 mm, Shodex OH-pak SB-805, 804, and 803; Showa Denko K.K., Tokyo,
Japan) maintained at a temperature of 45 ◦C. The eluent employed for the separation was
0.1M NaNO3 containing 0.02% NaN3 (w/w). Each run involved injecting 100 µL of the
sample at a flow rate of 0.5 mL/min.

3.4. Structural Characterization of GSP-1a
3.4.1. FT–IR Analysis

The polysaccharide sample was prepared by grinding KBr to determine using FT–IR
(Nicolet iS20, Thermo Fisher Scientific, Waltham, MA, USA) with a spectral range of 4000
to 400 cm−1.

3.4.2. Monosaccharide Composition Analysis

The monosaccharide composition of GSP-1a was determined via high-performance
anion-exchange chromatography (HPAEC). Briefly, 5 mg of the polysaccharide sample
was hydrolyzed with 2 M trifluoroacetic acid (TFA) at 121 ◦C for 2 h in a sealed tube.
The polysaccharide sample was dried with nitrogen then supplemented with methanol
and blown dry to remove TFA. This process was repeated three times. The residue was
re-dissolved in deionized water and filtered through 0.22 µm microporous filtering film for
measurement. The processed sample was analyzed via high-performance anion-exchange
chromatography (HPAEC) on a CarboPac PA-20 anion-exchange column (3 × 150 mm;
Dionex, Sunnyvale, CA, USA) using a pulsed amperometric detector (Dionex ICS 5000 sys-
tem, Thermo Fisher Scientific, Waltham, MA, USA) by Sanshu Biotech. Co., Ltd. (Shanghai,
China). Flow rate, 0.5 mL/min; injection volume, 5 µL; solvent system A: (ddH2O), solvent
system B: (0.1 M NaOH); solvent system C: (0.1 M NaOH, 0.2 M NaAc). The gradient
program volume ratio of solution A, B, and C was 95:5:0 at 0 min, 85:5:10 at 26 min, 85:5:10
at 42 min, 60:0:40 at 42.1 min, 60:40:0 at 52 min, 95:5:0 at 52.1 min, and 95:5:0 at 60 min.
Data were acquired on the ICS5000 (Thermo Fisher Scientific, Waltham, MA, USA) and
processed using Chromeleon 7.2 CDS (Thermo Scientific, Waltham, MA, USA).

3.4.3. Methylation Analysis

The GSP-1a was methylated according to the Ciucanu method with minor modifica-
tions [73]. GSP-1a was dissolved in anhydrous dimethyl sulfoxide (DMSO) and methylated
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in DMSO/NaOH with CH3I several times. After complete methylation, the permethylated
products were hydrolyzed with 2 mol/L TFA at 121 ◦C for 1.5 h, reduced by sodium
borodeuteride (NaBH4), and acetylated with acetic anhydride for 2.5 h (100 ◦C). After
evaporating with toluene, the resulting methylated derivatives were analyzed with GC-
MS on an Agilent 6890A-5975C equipped with Agilent BPX70 chromatographic column
(30 m × 0.25 mm × 0.25 µm, SGE Analytical Science, Melbourne, Australia), and high
purity helium (split ratio 10:1) was used as the carrier gas with an injection volume of 1 µL.
Mass spectrometry analysis was performed at the initial temperature of 140 ◦C for 2 min,
and the temperature was increased to 230 ◦C by 3 ◦C/min for 3 min. The scan mode was
SCAN with a range (m/z) from 30 to 600.

3.4.4. Nuclear Magnetic Resonance (NMR) Spectroscopy

The GSP-1a was dissolved in 0.5 mL D2O to a final concentration of 40 mg/mL.
Recordings of 1D and 2D NMR (1H−NMR, 13C−NMR, 1H−1H COSY, 1H−1H NOESY,
1H−13C HMBC, and 1H−13C HSQC) were performed at 25 ◦C with a Bruker AVANCE
NEO 500 M spectrometer system (Bruker, Rheinstetten, Germany), operating at 500 MHz,
from Sanshu Biotech. Co., Ltd. (Shanghai, China).

3.5. Assay of Antioxidant Activity In Vitro

Hydroxyl radical (•OH), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical
cation (ABTS•+) and 2-diphenyl-1-picrylhydrazyl radical (DPPH•) scavenging ability of
GSP-1a and GSP were measured to evaluate in vitro antioxidant activity. The •OH, ABTS•+

and DPPH radical scavenging activity of polysaccharides were determined as described
before [74–76]. Vc was used as the positive control.

3.6. Cellular Antioxidant Activity
3.6.1. Cell Culture

Human hepatocellular carcinoma cell line HepG2 was cultured in Dulbecco’s Modi-
fied Eagle’s Medium (DMEM, Gibco, Waltham, MA, USA), supplemented with 10% FBS,
100 units/mL penicillin, and 100 units/mL streptomycin at 37 ◦C in a humidified atmo-
sphere with 5% CO2.

3.6.2. Oxidative Stress Model Induced by H2O2

In order to obtain stable experimental results, different concentrations (100, 200, 400,
600, 800, and 1000 µM) of H2O2 were treated in the HepG2 cells for 4 h to verify an
appropriate concentration in the cell injury model. Cells without treatment were regarded
as the control group. The cell viability was determined based on the MTT assay. We found
that 800 µM H2O2 was sufficient to reduce the cell viability in HepG2 cells significantly.

3.6.3. Treatment of Cells and Cell Viability Assay

HepG2 cells (1 × 104 cells/mL, 100 µL) were cultured in 96-well plates for 24 h and
then treated with GSP-1a (0, 0.1, 0.2, 0.4, 0.8, 1, and 2 mg/mL) for 24 h to evaluate its
toxicity. The cell viability was determined based on the MTT assay.

After HepG2 cells were cultured for 24 h, the cells treated with different methods were
divided into four groups: (1) the sample group consisted of cells pretreated with different
doses of GSP-1a (0.25, 0.5, 1, 2 mg/mL) for 24 h, followed by treatment with 800 µmol/L
H2O2 for 4 h; (2) the positive group included cells pretreated with 0.1 mg/mL Vc for 24 h,
followed by treatment with 800 µmol/L H2O2 for 4 h; (3) the control group included the
normal cells; (4) the H2O2 without pretreatments group consisted of cells which were only
treated with 800 µM H2O2 for 4 h. After the different treatments above, the cell viability
was evaluated via MTT assays, as described by Li et al. [77]. Each wall was supplemented
with 10 µL MTT (0.5 mg/mL) for 4 h in an incubator with 5% CO2 at 37 ◦C. Then, the
supernatant was removed, and the formazan was dissolved in DMSO. The absorbance
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at 570 nm was measured via a microplate reader. Cell viability was calculated using the
following formula:

The cell viability(%) =
Ai
Aj
× 100

where Ai is the absorbance of the treatment group, and Aj is the absorbance of the blank
control group (without treatment).

3.6.4. Determination of ROS, MDA Content and SOD Activity

HepG2 cells were cultured in 6-well plates (1 × 106 cells/mL, 2.5 mL) for 24 h then
incubated with GSP-1a for 24 h followed by H2O2 (800 µM) for 6 h to determine ROS and
MDA levels as well as the SOD activity.

The ROS level of the cells was determined using the hydrophilic probe 2′,7′-
dichlorofluorescin diacetate (DCFH-DA). DCFH-DA permeates across the cell membrane
and is de-esterified by cytosolic esterases to 2′,7′-dichlorodihydrofluorescein (DCFH),
which is oxidized to 2′,7′-dichlorofluorescein (DCF) by ROS [36]. Oxidation is associated
with an increase in green fluorescence. After completing the cell culture for the above four
groups (control group, H2O2 without pretreatments group, sample group, positive group),
they were washed in PBS buffer three times and then incubated with 1 mL of DCFH-DA
probe (diluted by serum-free MEM culture medium with the final concentration of 10 µM)
for 30 min (37 ◦C, 5%CO2). Subsequently, we removed the DCFH-DA solution, washed
the cells three times with PBS buffer, and added 1 mL of PBS buffer to each well to keep
the cells moist in preparation for measuring cell fluorescence intensity. Finally, the DCF
fluorescence intensity was tested via a multi-detection microplate reader (Synergy, Biotek
Instruments, Inc., Winooski, VT, USA) with an excitation wavelength of 488 nm and an
emission wavelength of 525 nm. All these experiments were also performed in triplicate.
The final statistical results were expressed as a percentage of the control group. In addi-
tion, HepG2 cells in the four groups were observed via inverted fluorescence microscope
(Olympus-IX73P2F, Tokyo, Japan).

The MDA content was measured using a kit according to the manufacturer’s protocol.
Cells were washed three times with PBS buffer and lysed with Western and IP cell lysis
buffer. The supernatant was then collected via centrifuging at 4 ◦C, 12,000× g for 5 min.
MDA was determined using the thiobarbituric acid-reactive substances (MDA-TBA adduct).
Samples (0.1mL) were treated with TBA reagent (6.32 mM TBA, 0.2mL) and then heated at
100 ◦C for 15 min. Subsequently, we centrifuged the reaction mixture, took 200 µL of the
supernatant into a 96-well plate, and measured the absorbance at 532nm. The results are
expressed in terms of protein content per unit weight (µmol/mg protein).

The intracellular SOD activity was determined using a total SOD assay kit with
WST-8, according to the manufacturer’s instructions. Cells were washed three times with
PBS buffer and lysed with Western and IP cell lysis buffer. The supernatant was then
collected via centrifuging at 4 ◦C, 12,000× g, for 5 min. We mixed the SOD detection
buffer, WST-8 solution, and enzyme solution in proportion to prepare the WST-8/enzyme
working solution and added 160 µL to each well of a 96-well plate. The sample group was
supplemented with 20 µL sample solution and 20 µL reaction initiation solution, blank
control hole 1 was supplemented with 20 µL SOD detection buffer and 20 µL reaction
initiation solution, the blank control hole 2 was supplemented with 40 µL SOD detection
buffer, while the blank control hole 3 was supplemented with 20 µL SOD detection buffer
and 20 µL samples. Next, the solution was incubated at 37 ◦C for 30 min, and absorbance at
450 nm was measured. We calculated enzyme activity (U/mg protein) based on the protein
content of the sample.

The concentration of protein was also measured via a BCA protein assay kit accord-
ing to the manufacturer’s protocols. The absorbance was determined by the microplate
reader (Biotek Synergy, Winooski, VT, USA). All these experiments were also performed
in triplicate.



Int. J. Mol. Sci. 2023, 24, 14721 18 of 21

3.6.5. Total RNA Extraction and qRT-PCR

The total RNA of the control, H2O2 model, and sample group cells were extracted via
Trizol Kit according to the manufacturer’s instructions. Total RNA was reverse transcribed
into cDNA with HiScript II Q RT SuperMix. Real-time quantitative polymerase chain
reaction (qPCR) was performed on QuantStudio 3 (Thermo Fisher Scientific, Waltham, MA,
USA) by using SYBR Green master mix, with each sample prepared in triplicate. The above
kits and reagents were purchased from Vazyme Biotech Co., Ltd., Nanjing, China. The
primer sequences were shown in Table S1, and GAPDH was used as a reference gene. The
relative expression level of the mRNAs was calculated using the 2−∆∆CT method.

3.7. Statistical Analysis

The data from three independent experiments are presented as means ± SD. The
GraphPad Prism 8.0 (GraphPad Software, Inc., San Diego, CA, USA) was used to conduct
one-way ANOVA tests for inter-group comparison. p < 0.05 and p < 0.01 were considered
statistically significant.

4. Conclusions

In this study, we isolated a neutral heteropolysaccharide, GSP-1a (72.8 kDa), from
O. gracilis spores, which mainly consisted of mannose, galactose, and glucose. GSP-1a
was composed of α-D-Galp-(1→, →6)-α-D-Manp-(1→, →2,6)-α-D-Manp-(1→, →6)-α-
D-Glcp-(1→,→3,6)-α-D-Glcp-(1→ and→2,4,6)-α-D-Manp-(1→ residues, and its partial
hypothetical model structure was inferred. Furthermore, GSP-1a exhibits protective effects
against H2O2-induced oxidative stress in HepG2 cells. This protective mechanism involved
the regulation of the NRF2 and FNIP1 pathways. These findings highlight the antioxidant
activity of polysaccharides derived from O. gracilis fermentation spores.
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