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Abstract: In the past few decades, many researchers believed that a high-fat and high-calorie diet
is the most critical factor leading to metabolic diseases. However, increasing evidence shows a
high-carbohydrate and low-fat diet may also be a significant risk factor. It needs a comprehensive
evaluation to prove which viewpoint is more persuasive. We systematically compared the effects of
high-fat and high-calorie diets and high-carbohydrate and low-fat ones on glycolipid metabolism
in mice to evaluate and compare the effects of different dietary patterns on metabolic changes in
mice. Sixty 8-week-old male C57BL/6 mice were divided into four groups after acclimatization and
15% (F-15), 25% (F-25), 35% (F-35), and 45% (F-45) of their dietary energy was derived from fat for
24 weeks. The body weight, body-fat percentage, fasting blood glucose, lipid content in the serum,
and triglyceride content in the livers of mice showed a significantly positive correlation with dietary
oil supplementation. Interestingly, the total cholesterol content in the livers of mice in the F-15 group
was significantly higher than that in other groups (p < 0.05). Compared with the F-45 group, the
mRNA expression of sterol synthesis and absorption-related genes (e.g., Asgr1, mTorc1, Ucp20, Srebp2,
Hmgcr, and Ldlr), liver fibrosis-related genes (e.g., Col4a1 and Adamts1) and inflammation-related
genes (e.g., Il-1β and Il-6) were significantly higher in the F-15 group. Compared with the F-45
group, the relative abundance of unclassified_f_Lachnospiraceae and Akkermansia was decreased in the
F-15 group. While unclassified_f_Lachnospiraceae and Akkermansia are potentially beneficial bacteria,
they have the ability to produce short-chain fatty acids and modulate cholesterol metabolism. In
addition, the relative abundance of unclassified_f_Lachnospiraceae and Akkermansia was significantly
positively correlated with fatty acid transporters expression and negatively correlated with that
of cholesteryl acyltransferase 1 and cholesterol synthesis-related genes. In conclusion, our study
delineated how a high-fat and high-calorie diet (fat supplied higher than or equal to 35%) induced
obesity and hepatic lipid deposition in mice. Although the high-carbohydrate and low-fat diet
did not cause weight gain in mice, it induced cholesterol deposition in the liver. The mechanism
is mainly through the induction of endogenous synthesis of cholesterol in mice liver through the
ASGR1-mTORC1-USP20-HMGCR signaling pathway. The appropriate oil and carbon water ratio
(dietary energy supply from fat of 25%) showed the best gluco-lipid metabolic homeostasis in mice.

Keywords: high-fat diet; high carbohydrate diet; high caloric diet; intestinal microbiota; non-alcoholic
fatty liver disease
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1. Introduction

The consumption of a high-fat and high-calorie diet shifts the energy balance towards
ectopic lipid accumulation, especially in the liver, resulting in inflammation, oxidative
stress, and fibrosis, causing organ damage and loss of function [1]. Since the 20th century, a
high-fat and high-calorie diet has been established as one of the key causes of obesity and
glucose and lipid metabolism disorders [2]. The high-fat and high-calorie diet is a model
to investigate lipid-induced insulin resistance, and evidence shows that such short-term
diets reduce insulin sensitivity in healthy young men [3]. In addition, these diets minimize
the rate of synthesis and turnover of primary bile salts in humans, affecting cholesterol
clearance from the body [4]. High-fat and high-calorie diets have been used in animal
experiments to construct disease models, such as atherosclerosis, type 2 diabetes mellitus
(T2DM), and non-alcoholic fatty liver disease (NAFLD) models [5–9].

Despite previous confirmation of high fat being a significant factor in metabolic
diseases, in recent years, more and more studies have suggested that excessive high
carbohydrate intake equally contributes to metabolic syndrome. A high-carbohydrate and
low-fat (HCLF) diet is as harmful as a high-fat and high-calorie diet in the development and
progression of liver injury in mice [10,11], and long-term consumption of such a diet induces
NAFLD in mice [12]. More importantly, feeding a high-fat, high-carbohydrate diet causes
liver fibrosis and nonalcoholic steatohepatitis (NASH) in mice [13]. Tomasello et al. [14]
showed that the ‘Western diet’, particularly a low-fiber high-fat/high-carbohydrate diet,
could lead to severe dysbiosis. Moreover, Sartorius et al. [15] suggested that the assumption
that no carbohydrates are associated with obesity is potentially erroneous. In addition, the
HCLF diet increased triglyceride (TG) content and insulin levels in the serum [16,17]. More
interestingly, T2DM patients receiving a long-term high-fat and low-carbohydrate diet
showed more clinically meaningful improvements in glycemic control and body weight
compared to the HCLF diet [18]. However, hardly any study directly compared high-fat,
high-calorie, and HCLF diets to elucidate the differential effects of the two diets on glucose
and lipid metabolism disorders.

It is well known that dietary components substantially alter intestinal physiology and
specifically modulate the diversity of gut microbiota [19]. The intestinal tract is the largest
barrier between a person and the environment. The intestinal microbiota is responsible
for recovering energy from food, providing hosts with vitamins, and providing a barrier
function against exogenous pathogens [20]. There is considerable evidence of a relationship
between dietary fats and colonic microbiota composition. The obesity-related ecological
imbalance is directly associated with the high-fat diet (HFD) and manifests in a reduced
overall microbiota count, a shift in bacteria species abundance, and an overall increase
in gut permeability [20,21]. Also, studies have shown that a high-calorie diet in rats
induced decreased bowel sounds and fecal microbial imbalance [22]. The increase in
unfavorable bacteria (such as Lachnoclostridium and Desulfovibrio) was strongly associated
with a disturbance of glucose and lipid metabolism [23].

In this study, we used mice to set up four common dietary patterns (15–45% of energy
from fat) to explore the differences and molecular mechanisms underlying a high-fat and
high-calorie diet and an HCLF diet on glucose, gut microbiota, and lipid metabolism in
the body.

2. Results
2.1. Changes in Growth and Serum Glucose Levels in Mice

After 24 weeks, the body weight of mice increased significantly with the increase of the
supply of fat, and the weight of mice was highest in the F-45 group (p < 0.05) (Figure 1A,D);
however, the trend of changes in the feed conversion ratio was contradictory (Figure 1C).
Accumulation of visceral fat was significantly higher in the F-35 and F-45 groups than in the
F-15 and F-25 groups (p < 0.01) (Figure 1B,D). No significant differences were observed in
the levels of serum HDL-C, LDL-C, TG, and TC among the four groups (p > 0.05); however,
the ratio of HDL-C/LDL-C in the serum was significantly lower in the F-25 group than in
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the F-35 and F-45 groups (p < 0.01) (Figure 1E–I). In addition, blood glucose levels were
significantly higher in the F-35 and F-45 groups than in the F-15 and F-25 groups (p < 0.01),
and fasting insulin levels were significantly higher in the F-45 group than in the F-15 and
F-25 groups (p < 0.05) (Figure 1J,K). There was a significant increase in the oral glucose
tolerance test (OGTT) in the F-35 group than in the F-15 group (p < 0.05). Moreover, OGTT
and ITT were significantly higher in the F-45 group than in the other groups (p < 0.05)
(Figure 1L,M). These results suggest that dietary energy supplied from fat above 35%
increases blood glucose levels and impairs glucose tolerance.
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± SEM. For all groups, n = 15. Different superscript le ers (a–c) indicate significant differences. 

  

Figure 1. Effects of energy supply from fat on growth performance and glucose levels in mice.
(A) Body weight curve. (B) Visceral fat percentage. (C) Food efficiency ratio. (D) Representative
images of male mice from different experimental groups (upper row) and their subcutaneous fat,
perirenal fat, and epididymal fat pads (bottom row) after 24 weeks of respective diets. (E) Serum TG
content. (F) Serum TC content. (G) Serum LDL-C content. (H) Serum HDL-C content. (I) Ratio of
HDL-C/LDL-C. (J) Final fasting blood glucose levels. (K) Serum insulin content. (L) Blood glucose
levels in the oral glucose tolerance test (OGTT) and the area under the curve (AUC) values. (M) Blood
glucose levels in the insulin tolerance test (ITT) and the AUC values. Data are expressed as the mean
± SEM. For all groups, n = 15. Different superscript letters (a–c) indicate significant differences.

2.2. High-Fat and High-Carbohydrate Diet-Induced Hepatic Steatosis and Impaired Glucose
Regulation in Mice

H&E and oil red O staining revealed a higher accumulation of lipid droplets in the
liver in the F-35 and F-45 groups than in the F-25 groups (Figure 2A). The results of Sirius
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red staining showed that the level of fibrotic tissue in the livers of mice in group F-25 was
significantly lower than that in groups F-15 and F-45, and the level of fibrotic tissue in
the livers of mice in group F-35 was significantly lower than that in group F-15 (p < 0.05),
but there was no difference between groups F-15 and F-45. (p > 0.05) (Figure 2A,B). The
liver weight, liver index, and liver TG content were significantly higher in the F-45 group
than in the F-15 and the F-25 groups (p < 0.05) (Figure 3A,B,F). These results indicated the
development of hepatic steatosis marked by high hepatic TG levels in mice fed a high-fat
and high-calorie diet. Interestingly, the HCLF-diet (F-15) group had increased hepatic
deposition of total cholesterol in the liver (p < 0.01) (Figure 3E). The activity of AST in
the serum was not significantly different among the four groups (Figure 3D). However,
the activity of ALT in the serum was significantly higher in the F-45 group than in the
F-15 group (p < 0.05) (Figure 3C). These results suggest that a high-fat and high-calorie diet
adversely affects liver function by increasing serum ALT levels.
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Representative images of the liver tissue of male mice from different experimental groups (upper 
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Figure 2. Effects of energy supply from fat on hepatic steatosis and fibrosis in mice. (A) Representative
images of the liver tissue of male mice from different experimental groups (upper row), H&E-stained
(second row), oil red O-stained (third row), and Sirius red staining (bottom row) (magnification 50×,
scale bar = 200 µm; magnification 200×, scale bar = 50 µm). (B) Positive areas stained with Sirius red
were quantitated using digital image analysis of liver sections of mice. n = 3 for each group. Different
superscript letters (a–c) indicate significant differences.
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Figure 3. Effects of energy supply from fat on the expression of genes and proteins related to
cholesterol synthesis in the livers of mice. (A) Liver weight. (B) Liver index. (C) Serum ALT content.
(D) Serum AST content. (E) Liver TC content. (F) Liver TG content. (G) The mRNA expression levels
of genes associated with lipid synthesis and decomposition in the livers of mice n = 5 for each group.
(H) Western blot protein bands. (I) protein expression of ACAT1. (J) protein expression of UCP20.
(K) protein expression of SREBP2. Data are presented as the mean ± SEM. For all groups, n = 15.
Different superscript letters (a–c) indicate significant differences.

Although the HCLF diet did not cause substantial weight gain, it induced more
cholesterol deposition in the liver compared with the high-fat and high-calorie diet. To
examine the underlying mechanisms, RT-qPCR was performed to detect the expression
of mRNAs related to fatty acid metabolism and cholesterol anabolism in the liver and
small intestine (Figure 3G). The mRNA levels of Ucp20, mTorc1, Lxrα, Fxr, and Srebp2
(five regulatory factors of lipid metabolism); Pparα and Cpt1 (two lipid-decomposition-
associated genes); Hmgcr (the rate-limiting enzyme associated with cholesterol synthetic);
Aact1, Abcg8, and Abcg5 (related genes of cholesterol storage and transport protein); and
Ldlr were markedly higher in the F-15 group than in the F-45 group (p < 0.05). However, no
significant differences were found in the mRNA levels of Pi3k, Akt, Srebp-1c, Ampk, Insig1,
Pcsk9, Apoa1, Asgr1, and Lact (p > 0.05). In addition, the expressions of genes associated with
fatty acid decomposition and cholesterol storage and transport in the liver were significantly
lower in the F-15 group than in the F-25 and F-35 groups (p < 0.05). Western blot analysis
showed that the protein expression of ACAT1 and UCP20 in the livers of mice in the F-15
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group was significantly higher than that in the other three groups (p < 0.05) (Figure 3H–J),
while the protein expression of SREBP2 increased although it was not significantly different
from that in the other three groups (p > 0.05) (Figure 3H,K). Protein expression results
were consistent with gene results. These results indicate that compared with a high-fat and
high-calorie diet, intake of the HCLF diet can significantly up-regulate the expression of
cholesterol regulators and rate-limiting enzymes of cholesterol synthesis in the livers of
mice, thereby increasing the risk of hepatic cholesterol deposition. We further examined
gene expression associated with liver fibrosis and inflammation. As shown in Figure 3G,
the mRNA expression levels of Col4a1, Adamts1, and Il-1β in the livers of mice in the F-15
group were significantly higher than those in the remaining three groups (p < 0.05), and
the mRNA expression level of Il-6 was significantly higher than that in the F-35 group,
whereas there was no significant difference in the mRNA expression levels of Tnf-α among
the groups (p > 0.05), but the expression in the F-15 group was still the highest.

2.3. The Structure and Lipid Absorption of the Small Intestine Are Impaired by a High-Fat Diet

To evaluate the absorption of fatty acids and cholesterol in the small intestine, tissue
sections of the small intestine were examined via histological analysis, and the expressions
of mRNA and proteins related to fatty acid absorption and transport in the duodenum
were evaluated. In the F-15, F-25, and F-35 groups, the structure of the ileum was normal,
mucosal epithelial cells were normal in structure and tightly arranged, and cell degeneration
and shedding or the infiltration of inflammatory cells were not observed (Figure 4A).
However, the structure of the ileum was slightly abnormal and vacuolation was observed
in some epithelial cells in the mucosal layer. The height of villi was significantly higher
in the F-15 and F-25 groups than in the F-45 group, and the villus height-to-crypt depth
ratio was lowest in the F-45 group (p < 0.01) (Figure 4B–D). These results suggest that high
dietary fat intake adversely affects intestinal structure. The expressions of Cd36 and Fabp2
were higher in the F-35 and F-45 groups than in the F-15 and F-25 groups (p < 0.01). The
expression of Fatp4 was highest in the F-45 group (p < 0.01). In addition, the expressions
of Abca1 and Abcg8 genes, which are associated with cholesterol efflux, were reduced in
the F-45 group (p < 0.05). However, the mRNA expressions of Lxr and ApocIII in the small
intestines of mice were significantly higher in the F-15 group than in the F-35 and F-45
groups (p < 0.05).

2.4. The Effect of Different Fat Intake Levels on the Diversity of Intestinal Microbiota

16S rRNA gene sequencing was performed to examine the influence of blended oils
with different energy supply levels on the composition of the gut microbiota. The number
of OTUs was 258, 305, 210, and 283 in the F-15, F-25, F-35, and F-45, respectively (Figure 5A).
The total number of OTUs in all groups was 143. The highest read amounts in intestinal
microbiota OTUs were observed when the energy supply from fat was 25%. Very high or
very low levels of dietary energy supplied from fat led to a reduction in the number of OTUs.
As shown in Figure 5B, the richness of the intestinal microbiota measured based on OTUs
(Chao index) was significantly higher in the F-25 group than in the F-35 and F-45 groups
(p < 0.05). The Shannon and Shannoneven indices, indicating community diversity and
evenness among groups at the OTU level, respectively, were not significantly different
among the four groups (p > 0.05) (Figure 5C,E). The coverage index was significantly lower
in the F-25 group than in the F-35 and F-45 groups at the OTU level (p < 0.05) (Figure 5D).
The principal coordinate analysis (PCoA) revealed a significant difference in microbiome
diversity among the four groups (R2 = 0.2005, p = 0.012) (Figure 5F). These results suggest
that different levels of energy supply from fat lead to differences in the diversity of the
intestinal microbiota.
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Figure 4. Effect of energy supply from fat on the structure of the ileum and expression of genes
regulating lipid absorption in the duodenums in mice. (A) Representative images of H&E-stained
ileum tissues (magnification 100×, scale bar = 100 µm), n = 3 for each group. (B) Villus height.
(C) Crypt depth. (D) Villus height/ Crypt depth. (E) The mRNA expression levels of genes associated
with lipid absorption and efflux in the duodenums of mice, n = 5 for each group. Data are presented
as the mean ± SEM. Different superscript letters (a–c) indicate significant differences.
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(B) Chao index. (C) Shannoneven index. (D) Coverage index. (E) Shannon index. (F) The principal
coordinates analysis (PCoA). For all groups, n = 5 for each group. * p < 0.05.

2.5. The Effect of Different Fat Intake Levels on the Composition of Intestinal Microbiota

Figure 6 demonstrates the effects of different levels of energy supplied from fat
on intestinal microbiota at the phylum and genus levels. At the phylum level, Firmi-
cutes, Actinobacteria, Verrucomicrobiota, and Bacteroidota were the most abundant bacteria
(Figure 6A–G). The abundance of Proteobacteria was highest in the F-15 group, whereas De-
ferribacterota was highest in the F-45 group (Figure 6F,G). At the genus level, significant dif-
ferences were observed in the relative abundance of Erysipelatoclostridium, Akkermansia, un-
classified_f__Lachnospiraceae, Dubosiella, and Romboutsia among the four groups (Figure 7A–I).
The F-15 group had the lowest abundance of Erysipelatoclostridium, Akkermansia, Dubosiella,
and unclassified_f_Lachnospiraceae and the highest abundance of Coriobacteriaceae_UCG-
002, Romboutsia, Enterorhabdus, and Enterococcus, whereas the F-45 group had the high-
est abundance of unclassified_f_Lachnospiraceae, Erysipelatoclostridium, and Akkermansia
(Figure 7A–I). Furthermore, the relationship between lipid metabolism and gut micro-
bial diversity was assessed through a correlation analysis. The relative abundance of
Erysipelatoclostridium, Akkermansia, and unclassified_f__Lachnospiraceae was significantly pos-
itively correlated with liver weight, body weight, insulin levels, visceral fat ratio, and FBG.
However, the relative abundance of Staphylococcus, norank_f_Muribaculaceae, norank_f_ no-
rank_o_Clostridia_UCG_014, and Dubosiella was significantly negatively correlated with TC
levels of the livers in mice (Figure 8A). The expression of mRNA for cholesterol synthesis-
related genes such as Lxrα, Srebp-2, mTor, Acat1, and Ucp20 in the livers of mice was
negatively correlated with the relative abundance of Erysipelatoclostridium, Akkermansia,
Staphylococcus, Dubosiella, and unclassified_f__Lachnospiraceae; however, it was significantly
positively correlated with the relative abundance of Coriobacteriaceae_UCG-002, Rombout-
sia, Enterorhabdus, and Enterococcus (Figure 8C). The expression of mRNA for fatty acid
transporters such as Fatp4, Fabp2, and Cd36 in the small intestines of mice were significantly
positively correlated with the relative abundance of Erysipelatoclostridium, Akkermansia, and
unclassified_f__Lachnospiraceae; however, it was significantly positively correlated with the
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relative abundance of Coriobacteriaceae_UCG-002. The relative abundance of Erysipelato-
clostridium was significantly negatively correlated with the mRNA expressions of Abcg8,
Abca1, and ApcoIII in the small intestines of mice (Figure 8B).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 6. Relative abundance of gut microbes at the phylum and genus levels. (A,B) Relative 
abundance of Firmicutes and Bacteroidota at the phylum level. (C) F/B ratio. (D,E) Relative abundance 
of Actinobacteriota and Verrucomicrobiota at the phylum level. (F,G) Linear discriminant analysis with 
effect size measurement (LEfSe) for estimating multi-level species differences. 

 
Figure 7. Relative abundance of gut microbes at the genus and genus levels. (A–I) Relative 
abundance of Erysipelatoclostridium, Akkermansia, unclassified_f__Lachnospiraceae, Staphylococcus, 
Dubosiella, Coriobacteriaceae_UCG-002, Romboutsia, Enterorhabdus, and Enterococcus at the genus 

Figure 6. Relative abundance of gut microbes at the phylum and genus levels. (A,B) Relative
abundance of Firmicutes and Bacteroidota at the phylum level. (C) F/B ratio. (D,E) Relative abundance
of Actinobacteriota and Verrucomicrobiota at the phylum level. (F,G) Linear discriminant analysis with
effect size measurement (LEfSe) for estimating multi-level species differences.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 6. Relative abundance of gut microbes at the phylum and genus levels. (A,B) Relative 
abundance of Firmicutes and Bacteroidota at the phylum level. (C) F/B ratio. (D,E) Relative abundance 
of Actinobacteriota and Verrucomicrobiota at the phylum level. (F,G) Linear discriminant analysis with 
effect size measurement (LEfSe) for estimating multi-level species differences. 

 
Figure 7. Relative abundance of gut microbes at the genus and genus levels. (A–I) Relative 
abundance of Erysipelatoclostridium, Akkermansia, unclassified_f__Lachnospiraceae, Staphylococcus, 
Dubosiella, Coriobacteriaceae_UCG-002, Romboutsia, Enterorhabdus, and Enterococcus at the genus 

Figure 7. Relative abundance of gut microbes at the genus and genus levels. (A–I) Relative abun-
dance of Erysipelatoclostridium, Akkermansia, unclassified_f__Lachnospiraceae, Staphylococcus, Dubosiella,
Coriobacteriaceae_UCG-002, Romboutsia, Enterorhabdus, and Enterococcus at the genus level. For all
groups, n = 5. Data are expressed as the mean ± SEM. Different superscript letters (a and b) indicate
significant differences.



Int. J. Mol. Sci. 2023, 24, 14700 10 of 20

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 11 of 21 
 

 

level. For all groups, n = 5. Data are expressed as the mean ± SEM. Different superscript le ers (a 
and b) indicate significant differences. 

 
Figure 8. Correlation among phenotypes, genes, and the abundance of key microbial species. (A) 
Heatmap demonstrating the correlation between the abundance of intestinal microbes and glucose 
levels, final body weight, visceral fat ratio, and final glucose. (B) Heatmap demonstrating the 
correlation between the abundance of intestinal microbes and the expression of genes associated 
with glucose and lipid absorption and transport in the duodenum. (C) Heatmap demonstrating the 
correlation between the abundance of intestinal microbes and the expression of genes associated 
with glucose and lipid metabolism in the liver. For all groups, n = 5. *p < 0.05; **p < 0.01; ***p < 0.001. 

Figure 8. Correlation among phenotypes, genes, and the abundance of key microbial species.
(A) Heatmap demonstrating the correlation between the abundance of intestinal microbes and
glucose levels, final body weight, visceral fat ratio, and final glucose. (B) Heatmap demonstrating
the correlation between the abundance of intestinal microbes and the expression of genes associated
with glucose and lipid absorption and transport in the duodenum. (C) Heatmap demonstrating the
correlation between the abundance of intestinal microbes and the expression of genes associated with
glucose and lipid metabolism in the liver. For all groups, n = 5. * p < 0.05; ** p < 0.01; *** p < 0.001.

The BugBase platform was used to analyze and predict phenotypes in the gut micro-
biota at the genus level. The predicted microbial phenotypes were divided into seven cate-
gories as follows: Gram-positive, Gram-negative, biofilm formation, potentially pathogenic,
containing mobile elements, oxygen utilizing, and stress tolerant. At the genus level, the
top 9 Gram-positive bacterial species in each group were Dubosiella, Romboutsia, Enterococ-
cus, unclassified_f_Lachnospiraceae, Lachnoclostridium, Lactobacillus, norank_f__Lachnospiraceae,
Blautia, and Lachnospiraceae_NK4A136_group (Figure 9A); and the top 10 Gram-negative
bacterial species in each group were Akkermansia, norank_f__Muribaculaceae, Desulfovibrio,
Candidatus_Saccharimonas, Alistipes, Escherichia-Shigella, Helicobacter, Burkholderia-Caballeronia-
Paraburkholderia, Bradyrhizobium, and Alloprevotella. No significant differences were ob-
served in the proportion of Gram-negative species among the four groups (Figure 9B).
The top 10 potentially pathogenic species in each group were norank_f__Muribaculaceae,
norank_f__norank_o__Clostridia_UCG-014, Candidatus_Saccharimonas, Staphylococcus, Colidex-
tribacter, norank_f__Ruminococcaceae, Clostridium_sensu_stricto_1, Alistipes, Escherichia-Shigella,
and Jeotgalicoccus (Figure 9C). The top 10 biofilm-forming species in each group were Akker-
mansia, Desulfovibrio, Enterorhabdus, Parvibacter, Escherichia-Shigella, Burkholderia-Caballeronia-
Paraburkholderia, Rhodococcus, Bradyrhizobium, Ralstonia, and norank_f__Eggerthellaceae
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(Figure 9D). No significant differences were observed in the proportion of Gram-positive,
Gram-negative, potentially pathogenic, and biofilm-forming species among the four groups.
The above results indicate that different dietary patterns can have a greater impact on
the composition of intestinal microbiota in mice, and there is a certain link between these
changes in intestinal microbiota and liver lipid metabolism in mice.
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3. Discussion

A high-fat and high-calorie diet is closely associated with the development of metabolic
diseases such as obesity, diabetes, and NAFLD [12]. In contrast, the relationship between
an HCLF diet and metabolic diseases remains controversial. In this study, we compared the
effects of different carbohydrate and fat intake levels on metabolism in mice. Body weight,
visceral fat deposition, serum lipid levels, and TG levels in the liver were higher among
mice fed a high-fat and high-calorie diet (F-45 group) than among mice fed an HCLF diet
(F-15 group). However, TC content in the liver was highest in mice fed an HCLF diet.
Yan et al. [11] reported that an HCLF diet led to lipid metabolism disorders and NAFLD in
mice after 16 weeks but did not induce obesity. Tessitore A et al. [12] demonstrated that long-
term intake of an HCLF diet induced the development of hepatocellular cancer in mouse
models of NAFLD/NASH without causing weight gain. Pompili S et al. [10] reported that
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an HCLF diet was equally as effective as a high-fat diet (HFD) in developing NAFLD in
mice. HCLF diets can effectively reduce body weight without calorie restriction [24–26].
Hu S et al. [27] reported that fat macronutrients, not proteins or carbohydrates, led to
adiposity, which is consistent with the results of this study. However, an HCLF diet
induced total cholesterol deposition in the livers of mice, but liver weight and serum levels
of ALT were lower in this group of mice than in the high-fat group. We hypothesized that
the reason why the liver weights of mice in the HCLF diet group were lower than those in
the HFD group was related to the body weights of the mice because our results showed
that the liver indices of the two groups of mice were similar. This result was consistent
with the findings of Pompili et al. [10]. The enzyme activity of ALT in the HCLF group of
mice was lower than that in the HFD group and is probably related to the feeding cycle of
the mice. It might be that the feeding cycle of mice was not long enough (only 6 months) in
our experiment. Although mice in the HFLD group showed cholesterol deposition, it did
not cause serious damage to hepatocytes. Pompili et al. [10] demonstrated that prolonged
LF-HCD induced the same effect as an isocaloric HFD in a nutritional mouse model of
NAFLD/NASH after feeding mice with an HCLF diet and HFD diet for 18 months.

However, which HCLF diets contribute to the increase in TC content in the livers
of mice remains unknown. To investigate this underlying mechanism, we examined the
mRNA expression of genes related to fatty acid and cholesterol metabolism in the liver and
genes related to lipid absorption and transport in the small intestines of mice. Luo et al. [28]
indicated that cholesterol metabolism includes four main parts: endogenous synthesis,
exogenous uptake, efflux, and esterification. First, cholesterol is mainly synthesized in
the liver, with 3-hydroxy-3-methylhydroxypentanedioyl-CoA reductase (HMGCR) being
the rate-limiting enzyme of the endogenous synthesis pathway, and increased mRNA
expression of Hmgrc causes increased cholesterol synthesis in the liver [29]. Srebp-2 is a
key factor for cholesterol synthesis, and up-regulation of Srebp-2 stimulates the gene ex-
pression of both Ldlr and Hmgrc [30]. Serum LDL-C is internalized by hepatocytes through
Ldlr, so up-regulation of the expression of the Ldlr gene may promote the absorption of
serum cholesterol by hepatocytes [31]. In addition, Lu et al. [32] reported that feeding
induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Wang et al. [33]
similarly showed that activation of ASGR1 upregulates mTorc1 expression. Lipin-1 is a key
metabolic enzyme of the fat synthesis pathway [34], and mTORC1 can upregulate SREBP2
protein expression by phosphorylating lipin1 and preventing its nuclear entry [28]. Choles-
terol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in cholesterol metabolism, and
cholesterol is transferred to high-density lipoprotein (HDL) particles and returned to the
liver for conversion into bile acids (Bas) predominantly via the CYP7A1 [35]. In this study,
the mRNA expression of Asgr1, mTorc1, Ucp20, Srebp2, Hmgcr, and Ldlr was higher in mice
on an HCLF diet (F-15 group) than in mice on a high-fat and high-calorie diet (F-45 group).
The intake of HCLF-diet-induced hepatic cholesterol synthesis in mice through the ASGR1-
mTORC1-USP20-HMGCR signaling pathway may be one of the reasons for the highest
cholesterol content in the livers of mice in the F-15 group. Moreover, in this study, Acat1
expression in the liver was higher in the F-15 group. Acetyl coenzyme acetyltransferase
1 (Acat1) is a key enzyme catalyzing lipid synthesis in the endoplasmic reticulum in the
liver. Its primary function in the liver is to convert free cholesterol into cholesteryl esters,
and its elevated expression can increase the content of total and esterified cholesterol in
the liver [36]. This phenomenon may explain why the cholesterol content in the liver in
the F-15 group was highest. Increased cholesterol levels in hepatocytes stimulate Lxrα
expression, and up-regulation of Lxrα stimulates ABCG5/ABCG8 transporter activation,
thereby enhancing cholesterol efflux into bile [37]. Our study yielded consistent results,
such as the upregulation of Abcg8 mRNA expression. However, Npc1l1 expression did not
significantly differ among the four groups. In our study, it is meaningful to find that the
mRNA expression of Lxrα in the liver was significantly higher in the HCLF group than the
other three groups because Lxrα is a sterol sensor that can regulate intracellular cholesterol
levels and induce the expression and activation of Srebp-1c [38]. Srebp-1c is positively
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regulated through the transcription factor Lxrα, which forms a heterodimer with retinoid X
receptor α [39]. In addition, stimulation of peroxisome proliferator-activated receptor alpha
(Pparα) increases the mRNA expressions of Lxrα [30,39,40], the accumulated fatty acids in
the liver, which are endogenous Pparα agonists, may increase Lxrα expression [41]. Accu-
mulation of fatty acids in the liver upregulates the expression of Pparα, whereas activation
of Pparα activates Lxrα. Additionally, upregulation of Lxrα promotes the upregulation of
Srebp-1c, thereby promoting the synthesis of fatty acids; upregulates the expression of Cpt1
(the rate-limiting enzyme of fatty acid β-oxidation); and promotes the oxidation of fatty
acids, which can explain the lower TG content in the liver in the F-15 group than in the
F-45 group. Tnf-α is not only a marker of inflammation but also a known risk factor for the
development of NAFLD [42]. Il-1β and Il-6 are two important pro-inflammatory cytokines
that amplify inflammation and sensitize hepatocytes to TNF-induced liver damage [43].
ADAMTS1, a metalloproteinase belonging to the ADAMS family, is involved in extracellu-
lar matrix (ECM) remodeling [44]. Several studies suggest a link between ADAMTS1 not
only with the development of atherosclerotic plaques and ATH [45] but also with the ability
to activate hepatic fibrotic TGF-b [46]. Col4a1 is a hepatic fibrosis-associated gene, and the
expression of its mRNA induces hepatic fibrosis, which can result in liver injury [47]. Our
study showed that the mRNA expression levels of Col4a1, Adamts1, and Il-1β in the livers
of mice in the HCLF group were significantly higher than those in the HFD group. This
result suggests that the intake of the HCLF diet increases the risk of liver inflammation and
fibrosis, but is not consistent with the above results of ALT activity in the serum.

The intestine and liver are anatomically connected by the hepatic portal system, also
known as the gut-liver axis. The gut microbiota and their metabolic products may in-
fluence liver pathology [48,49]. Diet plays an important role in shaping the composition
and function of the intestinal microbiota in humans and rodents [37,50]. Therefore, we
analyzed the effects of diets with different ratios of carbohydrates and fats on the microbial
diversity of the small intestine, the associated phenotypes, and the mRNA expression of
genes. Alpha diversity reflects the species richness of the microbial community and can be
evaluated based on several indices, including the Chao, Shannon, Shannoneven, and cover-
age indices [51,52]. Increasing studies have shown that the reduced Firmicutes/Bacteroidetes
(F/B) ratio was associated with NASH and most of that was significantly associated [53]
and Actinobacteriota were significantly correlated with liver steatosis [54]. In our results,
compared with the level of 25% fat energy, HCLF diets consistent with HCHF decreased
the F/B ratio. However, the abundance of Actinobacteriota was increased compared with
the other three groups. Rodrigues et al. [55] reported the presence of Romboutsia species in
the intestines of >80% of patients with obesity. The Romboutsia genus may be a ubiquitous
microbial community in people who are overweight, and reducing its abundance can
play a role in alleviating obesity [56]. In our results, HCLF diets consistent with HCHF
significantly increased the abundance of Romboutsia. Moreover, it has been shown that
Akkermansia has the ability to produce SCFAs [57], which are effective molecules to lower
cholesterol levels [58], and that they reduce cholesterol levels in the host through five major
pathways [59]. First, SCFAs can reduce plasma cholesterol levels in mice by downregulat-
ing the expression of Srebp2 and Hmgcr, thereby reducing the rate of cholesterol synthesis in
the liver and small intestine [60,61]. Second, up-regulation of Cyp7a1 by SCFAs promotes
the conversion of cholesterol to Bas, thereby reducing cholesterol levels [58]. Third, SCFAs
could inhibit intestinal cholesterol absorption by decreasing the expression of Npc1l1 and
increasing the expression of Abcg5/8 in mouse intestinal tissues [62]. Fourth, SCFAs can
accelerate cholesterol export from the liver by regulating ATP-binding cassette transporter
A1 (ABCA1) [62]. Fifth, SCFAs can also affect cholesterol levels through signaling pathways
mediated by G protein-coupled receptors 41 and 43 (GPR41/43) [63]. In addition, Wang
et al. [64] reported that the abundance of unclassified_f_Lachnospiraceae was significantly
reduced in the mice models of methotrexate-induced hepatoxicity. However, Li et al. [65]
reported that the abundance of unclassified_f_Lachnospiraceae was significantly high in mice
models of high-fat diet-induced glucose metabolism disorders. Gallates have been used to
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reduce the abundance of unclassified_f_Lachnospiraceae and improve immune function in the
ileum of mice fed an HFD [66]. In this study, the abundance of Akkermansia and unclassi-
fied_f_Lachnospiraceae in the intestines of mice in the F-15 group was significantly lower than
that in the F-45 group, and they were significantly positively correlated with body weight,
liver weight, and Fabp2 and significantly negatively correlated with the mRNA expression
of Lxrα, Srebp-2, mTor, Acat1, and Ucp20 in the livers of mice. It may be the reason why
hepatic cholesterol content was higher in mice fed the HCLF diet than in the high-fat group.
The results of this study showed that the HCLF diet induced hepatic cholesterol deposition
more easily in mice than a high-fat diet. It has been shown that the HCLF diet can be used
in studies of lean NAFLD. Moreover, the HCLF diet is better suited to mimic Asian dietary
conditions to interrogate NAFLD pathogenesis than a high-fat diet. The reason for this lies
in the different dietary conditions, with high-fat diets predominating in the United States
and Europe, while high-carbohydrate diets predominate in Asia [11].

4. Methods and Materials
4.1. Experimental Design and Feed Formulation

Eight-week-old male C57BL/6J mice (n = 60) were purchased from Hunan SJA Labo-
ratory Animal Co., Ltd. (Changsha, China) (SCXK (Xiang) 2019-0004). All experimental
animals in a Special Pathogen Free (SPF) environment were fed on a regular diet for one
week and randomly divided into four groups (n = 15 per group) according to body weight.
The animals in the different groups were fed on purified diets containing 15% (F-15, 62.7%
carbohydrate supply, 15% fat supply), 25% (F-25, 52.7% carbohydrate supply, 25% fat
supply), 35% (F-35, 42.7% carbohydrate supply, 35% fat supply), and 45% (F-45, 32.7%
carbohydrate supply, 45% fat supply) of fat energy for 24 weeks. The purified diets were
produced by Trophic Animal Feed High-Tech Co., Ltd. (Nantong, China), according to the
American Dietetic Association AIN93M. The diet formulas are shown in Table S1. The mice
were housed at a humidity of 50–60%, a temperature of 24–26 ◦C, and a 12 h light/12h dark
cycle at the Hunan Agricultural University. They were allowed ad libitum access to water
and diet throughout the experiment.

An oral glucose tolerance test (OGTT) [67] was performed at 22 w. Mice were made to
fast without water for 6 h, n = 15, and 3 g/kg oral glucose was given. The blood glucose
values of mice were recorded at 0 min, 30 min, 60 min, 90 min, and 120 min after gavage.
The area under the curve from the obtained data was calculated to evaluate the glucose
tolerance of mice in each group [68]. For the insulin tolerance test (ITT) [69] at 23 w, mice
were made to fast without water for 4 h, n = 15. Then, blood glucose was measured, and
mice were intraperitoneally injected with insulin at a dose of 0.5 U/kg. Blood glucose levels
of each mouse were recorded at 0 min, 30 min, 60 min, 90 min, and 120 min after injection.
The area under the curve was calculated to evaluate the insulin resistance of each group
of mice. Growth changes were recorded throughout the experiment. All mice were made
to fast without water for 6 h and euthanized at the end of 24 weeks. The fasting blood
glucose levels, visceral fat rate, serum lipids, liver enzymes, and intestinal microbiota were
determined. The liver, duodenum, and ileal were frozen in liquid nitrogen and stored at
−80 ◦C for subsequent experiments. Serum was obtained by centrifuging blood samples
at 3 × 103 rpm for 10 min. Samples were then stored at −80 ◦C for further analysis. All
experimental procedures were approved by the Animal Welfare and Use Guidelines of
China and the Animal Welfare Committee of Hunan Agricultural University, approval code
(43321820).

Food efficiency ratio = feed intake (g)/body weight gain (g) ∗ 100%

Visceral fat ratio = (perirenal fat + epididymal fat) (g)/body weight (g) ∗ 100%

Liver index = weight of the liver (gallbladder removed) (g)/body weight (g)
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4.2. Determination of Fatty Acid Content in Dietary Oil or Fat

We referred to the national standard of the People’s Republic of China GB5413.27-
2010 [70], the food safety national standard for determining fatty acids in infant food
and dairy products. Fatty acids in the dietary oil/fat were determined using a gas chro-
matograph (7890A, Agilent, Santa Clara, CA, USA), Chromatographic column: CD-2560
(100 m × 0.25 mm × 0.20 µm). The method parameters included heating at 130 ◦C for
5 min, 4 ◦C/min to 240 ◦C for 30 min; Injector temperature: 250 ◦C; Carrier gas flow rate:
0.5 mL /min; Split injection, split: 10:1; Detector: FID; Detector temperature: 250 ◦C. The
results are shown in Table S2.

4.3. Biochemical Analysis

Serum triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL-C),
low-density lipoprotein (LDL-C), alanine aminotransferase (ALT) and aspartate aminotrans-
ferase (AST) levels were directly measured using a DS-161V automatic blood biochemical
analyzer (SINNOWA Medical Science & Technology, Nanjing, China). Blood glucose levels
were determined using a Roche glucometer (ACCU-CHEK, Roche, Shanghai, China). The
liver TC and TG levels were determined using commercial kits purchased from Nanjing
Jiancheng Bioengineering Institute Co., LTD (Nanjing, China) [68,71].

4.4. Histological Analysis

The liver and ileum tissues were collected upon dissecting the mice and were dehy-
drated and embedded in paraffin. Subsequently, the hepatic and intestinal tissues were
subjected to observation of pathological changes through Hematoxylin-eosin staining
(H&E-stained), oil-red O staining, and Sirius red staining. Images were obtained using an
optical microscope (Nikon Eclipse E100, Nikon, Tokyo, Japan) at 100×/200×magnifica-
tions [67,72]. Tissue sections were observed and analyzed using Caseviewer 2.4.0.119028.

4.5. RT qPCR

Total RNA was extracted from the tissues using a TRIzol reagent (Thermo Fisher
Scientific, Waltham, MA, USA). The RNA was reverse transcribed to complementary DNA
(cDNA) using a first-strand cDNA Synthesis Kit (Accurate Biology, Changsha, China).
Amplification of RNA from the duodenum was performed using an SYBR Green Tap
HS Mixture (Accurate Biology, Changsha, China) in the Real-time qPCR System (Gentier,
Tianlong, Xian, China) at the following thermal cycler conditions: 1 cycle at 95 ◦C for 30 s
and 40 cycles at 95 ◦C for 5 s and at 60 ◦C for 30 s. However, amplification of RNA from
liver samples was performed using a vGreen® Premix Ex TaqTM (Tli RNaseH Plus) (TaKaRa,
Beijing, China) in the RT-qPCR System (HiSeq2500, WaferGen Biosystems, Fremont, CA,
USA) at the following thermal cycler conditions: 1 cycle at 95 ◦C for 10 min and 40 cycles at
95 ◦C for 30 s and at 60 ◦C for 30 s. Expression of glucose and lipid metabolism-related genes
in the duodenum and liver tissues was also determined. β-actin was used for normalization
of the target gene expression [71,72]. Sequences of all primers used are shown in Table S3.
Relative amounts of mRNA were expressed as the 2−∆∆Ct method.

4.6. Western Blotting Analysis

The protein expression levels of ACAT1, UCP20, and SREBP2 were detected by west-
ern blotting in the four groups. Western blot analysis was performed as described previ-
ously [73]. Equal amounts of protein (50 µg) from each liver sample were electrophoresed
on 10% SDS polyacrylamide gels with prestained protein markers. The results were quanti-
tatively analyzed using Image J software (https://imagej.net/ij/) (National Institutes of
Health, Bethesda, MD, USA).

4.7. Intestinal Microbiota Analysis

Five mice were randomly selected from each group for intestinal microbiota anal-
ysis [69]. Microbial community genomic DNA was extracted from the small intestine

https://imagej.net/ij/
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samples using the FastDNA® Spin Kit for Soil (MP Biomedicals, Irvine, CA, USA) ac-
cording to the manufacturer’s instructions. The extracted DNA was visualized using 1%
agarose gel. The DNA concentration and purity were determined using a NanoDrop
2000 UV-vis spectrophotometer (Thermo Scientific, Waltham, MA, USA). The hypervari-
able region V3-V4 of the bacterial 16S rRNA gene was amplified using primers 338F
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R(5′-GGACTACHVGGGTWTCTAAT-3′)
in an ABI GeneAmp® 9700 PCR thermocycler (ABI, Foster, CA, USA). Genes were excised
from the agarose gel and purified using an AxyPrep DNA Gel Extraction Kit (Axygen Bio-
sciences, Union City, CA, USA) according to the manufacturer’s instructions and quantified
using a Quantus™ Fluorometer (Promega, Madison, WI, USA). Purified amplicons were
pooled in equimolar amounts and paired-end sequenced on an Illumina MiSeq PE300 plat-
form/NovaSeq PE250 platform (Illumina, San Diego, CA, USA) according to the standard
protocols. The raw 16S rRNA gene sequencing reads were demultiplexed and quality-
filtered by fast version 0.20.0, and paired reads were merged using FLASH version 1.2.7.
Operational taxonomic units (OTUs) with 97% similarity cutoff were clustered using UP-
ARSE version 7.1. Chimeric sequences were identified and removed. The taxonomy of each
OTU representative sequence was analyzed by RDP Classifier version 2.2 against the 16S
rRNA database (Such as Silva v138) using a confidence threshold of 0.7.

4.8. Statistical Analysis

SPSS version 25.0, was used to statistically analyze the experimental data of each group,
and all the data were in line with normal distribution. The data were analyzed by one-way
ANOVA. The LSD method was used when the variances were uniform, and Tamhanes’
T2 method was used when the variances were uneven. The results were expressed as the
mean and standard error of the mean (Mean ± SEM). Duncan’s marking method was used
to mark the significance of the groups. There was no significant difference in any group
having the same letter (p > 0.05), while there was a significant difference in the groups not
having the same letter (p < 0.05). GraphPad Prism 6.01 software was used for mapping.

Sequencing data were analyzed by the Meiji Biocloud platform, and Alpha diversity
and dilution curves used Mothur 1.30.1 analysis, Beta diversity analysis using Qiime 1.9.1
and R language, and community heat map between groups. The different test was calcu-
lated by the Wilcoxon sign rank test, and the correlation heat map of environmental factors
was calculated by Spearman Rank correlation coefficient and R language analysis.

5. Conclusions

High-fat and high-calorie diets (dietary energy ≥ 35% from fat) can cause obesity and
accumulation of serum and hepatic lipids in mice, both of which are closely related to
the change of gut microbiota. A high-carbohydrate and low-fat diet (62.7% carbohydrate
supply, 15% fat supply) does not cause an increase in body weight and body fat percentage
in mice but induces liver cholesterol deposition. However, the mechanisms underlying the
effects of a high-carbohydrate, low-fat diet are different from those underlying the effects
of a high-fat and high-calorie diet. In addition, a high-carbohydrate and low-fat diet can be
used as one of the dietary conditions for studying NAFLD, and it is preferable to a high-fat
diet when studying lean NAFLD or modeling Asian dietary habits.
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