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Abstract: In the field of neurodegenerative pathologies, the platforms for disease modelling based
on patient-derived induced pluripotent stem cells (iPSCs) represent a valuable molecular diagnos-
tic/prognostic tool. Indeed, they paved the way for the in vitro recapitulation of the pathological
mechanisms underlying neurodegeneration and for characterizing the molecular heterogeneity of
disease manifestations, also enabling drug screening approaches for new therapeutic candidates. A
major challenge is related to the choice and optimization of the morpho-functional study designs in
human iPSC-derived neurons to deeply detail the cell phenotypes as markers of neurodegeneration.
In recent years, the specific combination of high-throughput screening with subcellular resolution
microscopy for cell-based high-content imaging (HCI) screening allowed in-depth analyses of cell
morphology and neurite trafficking in iPSC-derived neuronal cells by using specific cutting-edge
microscopes and automated computational assays. The present work aims to describe the main recent
protocols and advances achieved with the HCI analysis in iPSC-based modelling of neurodegenera-
tive diseases, highlighting technical and bioinformatics tips and tricks for further uses and research.
To this end, microscopy requirements and the latest computational pipelines to analyze imaging data
will be explored, while also providing an overview of the available open-source high-throughput
automated platforms.

Keywords: iPSC; HCI; personalized medicine; imaging software; data analytics

1. Introduction

Experimental use of human induced pluripotent stem cells (hiPSCs) is a powerful
research tool to overcome the limitations of human embryonic stem cells or murine primary
neurons, and to allow analysis of molecular pathways in live human neurons [1–3]. As
first described by Yamanaka et al. in 2006 [4], this cellular model finds its milestone in the
reprogramming of adult human somatic cells (generally skin fibroblasts or peripheral blood
mononuclear cells) into pluripotent stem cells by means of a cocktail of transcription factors.
In this way, the generated cellular system preserves human differentiation potentials and
genotypes of embryonic stem cells while overcoming ethical concerns [3].

In recent years, iPSC technology has vastly improved, providing more efficient and
safe reprogramming techniques and numerous feasible protocols to differentiate iPSCs into
a large variety of cell lines and phenotypes [e.g., different neuronal phenotypes such as
cortical, dopaminergic, striatal, and motor neurons (MN)] [1]. Furthermore, the increased
availability and maintenance advances of iPSC cultures derived from human patients
carrying disease-associated mutations [2] offer the advantage, in the context of disease
modelling, of avoiding biases in the reproduction of multifactorial and multigenic charac-
teristics of human disorders, compared to primary cultures or the expansion of neuron-like
immortalized cell lines [1–3]. In the study of neurodegenerative diseases, the use of patient-
derived iPSC-based disease modelling platforms as a molecular diagnostic/prognostic tool
has already improved the in vitro recapitulation of the pathological mechanisms underly-
ing neurodegeneration. Indeed, this approach has paved the way for characterizing the
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molecular heterogeneity of disease manifestations, predicting phenotypes that will arise
in patients, and enabling low- and high-throughput screening of drug candidates for new
therapies (for extended review, see [2,3,5]). However, several technical challenges remain
to exploit iPSC-based neurodegenerative disease neuron cultures to improve the scalability,
reproducibility, and quality of this type of descriptive disease modelling [6].

A major challenge is related to the choice and optimization of the morpho-functional
study designs in patient iPSC-derived neurons, to deeply detail the phenotypes (e.g., dam-
age to neuronal morphology, subcellular organelle dysfunctions, and cytopathies) as mark-
ers of late neurodegeneration in vivo [3,5,7]. To date, high-throughput screening assays
based on advanced technologies (including robotics, liquid handling, high-sensitivity detec-
tors, and high-performance computing) have enabled full automation in micro-quantitative
experiments with large-scale data analysis [8,9]. In this context, the specific combination
of high-throughput screening with subcellular resolution microscopy, which provides
cell-based high-content imaging (HCI) screening, represents a powerful tool also used for
stem cell research and drug discovery. In detail, HCI approaches enable studies of complex
heterogeneous biological systems (as mixed cultures) in a high-throughput manner: they
provide quantitative observations of comprehensive phenotypes at the subcellular level
with spatial and temporal resolution of multiple targets and using multiple measurements
as readouts (unattainable goal with traditional approaches) (for a more detailed description,
see [10–13]).

In recent years, HCI analysis methods have enabled in-depth analyses of cell morphol-
ogy and neurite trafficking in iPSC-derived neuronal cells by using specific microscopes and
automated computational assays for several phenotypic screenings (including cell migra-
tion, differentiation, and neurite outgrowth) in large datasets from fluorescence microscopy
imaging. For instance, these approaches are preferred and required for screening highly
complex neurite structures over small-scale screenings with manual or semi-automated
quantification of neurite outgrowth, which are subject to time-consuming protocols and
possible user-related bias [14,15]. Recent HCI analysis of iPSC-derived neurons have led
to enabling in-depth studies of several hallmarks related to neurodegeneration, classifi-
able to the following: (i) neuronal dysmorphogenesis and survival; (ii) aberrant neuronal
protein aggregation and intracellular transport; (iii) mitochondrial dysfunctions; and (iv)
compound-induced neurotoxicity (Figure 1). Moreover, several HCI protocols and different
cell analysis systems, also useful for drug screening studies, can be employed and classi-
fied on the basis of their degree of automation and for their accessibility (i.e., licensed or
open-source software; for an extended overview see [14]).
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Figure 1. Workflow for HCI and analysis in hiPSC-based modeling of neurodegenerative diseases. 
Created with BioRender software (BioRender.com) (accessed on 24 September 2023). 
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recognition, which is already being exploited in HCI assessment of iPSC-derived cell 
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Hence, different programs are also leveraged for HCI specialized AI. For example, 
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response from unknown datasets according to a pre-trained program, is the most 
prominent one used for AI, often, for example, in neural network analysis [23,25–27]. 
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Thus, the purpose of this review is to describe the main recent protocols and the
advances achieved with the HCI analysis in iPSC-based modelling of neurodegenerative
diseases, highlighting technical and bioinformatics tips and tricks for further uses and
research. To this end, microscopy requirements (allowing for imaging of fixed or live
cell samples) and the latest computational pipelines for analyzing imaging data will be
explored, while also providing an overview of the available open-source high-throughput
automated platforms.

Most Common Microscope Settings and Platform Analysis in iPSC-Based Neuronal Models

To maximize data acquisition in morphological analysis of iPSC-derived neurons,
several recent HCI approaches exploit high-throughput microplate imager microscopes [16].
These imaging platforms are suitable for HCI in 24/96/384-well plates and are used in
different steps of the experimental design, according to microscope features. For instance,
optimization of long-term culture conditions and real-time kinetic information on neuronal
cell status and morphological differentiation is feasible through live cell imaging systems
for automated live acquisitions and measurements. These microplate imagers, usually
equipped with a dedicated suite of assays, automatically collect large datasets of real-time
images, in phase contrast and fluorescent modes, from wells stored in the cell incubator [17].

Higher resolution analyses often rely on the use of confocal microscopes with a spin-
ning disk design, also using an increased pinhole-to-pinhole distance, a complementary
metal oxide semiconductor scientific camera, and high numerical aperture water immersion
objectives: these characteristics assure high-resolution fast imaging of complex cell models,
also reducing spectral cross talk [10,18–20]. This kind of microscope generally offers the
possibility, along with the fastest high-efficiency large-scale imaging of fixed cells in their
culture plates, of exploiting the relative specialized licensed software, in order to automati-
cally analyze data with multiple parameters. However, in addition to the licensed image
analysis software, HCI analysis for neurite outgrowth and trafficking quantification can be
also performed on raw image files exported after acquisition by using a wide variety of
open-source software with comparable workflow pipelines (for a detailed description of the
employed microscopes and analysis platforms, see Tables 1 and 2) [21–24]. Recently, HCI
analysis workflows have also been implemented and improved with the development of
artificial intelligence (AI) technology. Indeed, among its various applications, AI technology
is specialized for image recognition, which is already being exploited in HCI assessment
of iPSC-derived cell disease-specific phenotypes and drug screening, from label-free mi-
croscopic images. Hence, different programs are also leveraged for HCI specialized AI.
For example, machine learning technology, which enables computer systems to learn and
predict response from unknown datasets according to a pre-trained program, is the most
prominent one used for AI, often, for example, in neural network analysis [23,25–27].

Finally, since conventional confocal microscopy provides a resolution spectrum limited
to hundreds of nm, in order to overcome the diffraction limit (e.g., the size of synaptic
vesicles is about 40 nm), the HCI analysis-based experiments can currently benefit from the
use of super-resolution methods, such as structured illumination microscopy (SIM), stimu-
lated emission exhaustion microscopy (STED), or photoactivated localization microscopy
(PALM). In fact, these applications have recently reached neuronal investigations focused
on the characterization of the spatial organization of proteins in synapses, of the structures
of the axon cytoskeleton, or of the temporal dynamics of vesicle fusion [28–30].
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Table 1. Overview of open-source software and related workflow pipelines for iPSC-based HCI analysis.

Open-Source Analysis Software
Advantages: Open-Source, Enabling Single-Cell Tracing and Measurements, Free Plug-Ins Download for Several Cellular Analysis Types, Feasible for Custom-Made Algorithm Analysis

or Macros

Analysis Platform Software HCI Analysis Plug-In and Tools
Microscopes

(Used in the Mentioned
References)

References

-neurite outgrowth
-Software analysis pipeline: https:

//doi.org/10.5281/zenodo.6642365
(accessed on 24 September 2023)

-Operetta CLS High-Content
Analysis System—with Harmony
software (PerkinElmer, Waltham,

U.S.)

-CellProfiler software: [31];
-[32]

-mitochondrial fitness, neuronal
toxicity quantification of neuronal

branching complexity

-Software analysis pipeline: https:
//github.com/StemCellMetab/

Mitochondrial-membranepotential
(accessed on 24 September 2023)

-Operetta CLS High-Content
Analysis System with Harmony
software (PerkinElmer, Waltham,

U.S.)

-[33,34]

-mitochondrial function,
morphology and cell viability

-Software analysis pipeline:
automated synaptic imaging assay

(ASIA), https://github.com/
thayerlab/ASIA-pipelines scripts
written (accessed on 24 September

2023)

-Opera High-Content Screening
System, (live imaging) (PerkinElmer,

Waltham, U.S.)
-[35]

CellProfiler (automated)
(https://cellprofiler.org/, accessed on

24 September 2023)

-discrimination in synaptic density
changes

-Nikon, Tokyo, Japan A1 confocal
microscope (Nikon, Tokyo, Japan) -[36]

ImageJ (semi-automated)
(https:

//imagej.nih.gov/ij/download.html,
accessed on 24 September 2023)

-Neurite outgrowth, growth cone,
axonal swellings

-ImageJ-NeuronJ plug-in
-ImageJ-Neurite tracer macro

-Axioplan2 (Carl Zeiss AG,
Oberkochen, Germany), LSM-710

(Carl Zeiss AG, Oberkochen,
Germany), BZ9000 (Keyence, Itasca,
U.S.), or IN Cell Analyzer 6000 (GE

Healthcare, Chicago, U.S.)

-ImageJ software: [24,37];
-NeuronJ plug-in: [38];

-Neurite tracer macro: [39];
-[40]

https://doi.org/10.5281/zenodo.6642365
https://doi.org/10.5281/zenodo.6642365
https://github.com/StemCellMetab/Mitochondrial-membranepotential
https://github.com/StemCellMetab/Mitochondrial-membranepotential
https://github.com/StemCellMetab/Mitochondrial-membranepotential
https://github.com/thayerlab/ASIA-pipelines
https://github.com/thayerlab/ASIA-pipelines
https://cellprofiler.org/
https://imagej.nih.gov/ij/download.html
https://imagej.nih.gov/ij/download.html
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Table 1. Cont.

Open-Source Analysis Software
Advantages: Open-Source, Enabling Single-Cell Tracing and Measurements, Free Plug-Ins Download for Several Cellular Analysis Types, Feasible for Custom-Made Algorithm Analysis

or Macros

Analysis Platform Software HCI Analysis Plug-In and Tools
Microscopes

(Used in the Mentioned
References)

References

-Neurite outgrowth, axon
degeneration index; protein

aggregates automated quantification

-ROI manager tool, Threshold
function, analyze particles plug-in;

cell counter plug-in
-Image Mining: custom-made image
processing and analysis application

with an extendable “plug-in”
infrastructure (based on data
mining, AI, machine learning,

image retrieval, image processing,
computer vision and database)

-Opera High-Content Screening
System (PerkinElmer, Waltham,

U.S.)

-Axon degeneration index:
[41–43];

-Image mining: [44];
-[26]

-Motility of fluorescently labeled
organelle and neurite number

quantification

-Pairwise Stitching plug-in; Simple
Neurite Tracer plug-in with Sholl

Analysis;
-segmented line and ROI manger

tool;
-Multiple Kymograph plug-in;

-Custom MATLAB GUI
(Kymograph Suite) (Manually

tracing of individual organelles)

-UltraView Vox Spinning Disk
Confocal system (PerkinElmer,

Waltham, U.S.) with a Nikon Eclipse
Ti inverted microscope (Nikon,

Tokyo, Japan); inverted DMI6000B
microscope (Leica Microsystems,
Wetzlar, Germany) using LAS-X
software (Leica Microsystems,

Wetzlar, Germany).

-Pairwise Stitching: [45];
-Sholl Analysis:

[46,47];
-[48]

ImageJ (semi-automated)
(https:

//imagej.nih.gov/ij/download.html,
accessed on 24 September 2023)

-Membrane trafficking

-Reslice function (Kymograph
construction)

(https://imagej.nih.gov/ij/
plugins/radial-reslice/index.html,

accessed on 24 September 2023)

-Incucyte SX1 live-cell analysis
system (Sartorius, Göttingen,

Germany); Nikon, Tokyo, Japan
Eclipse Ti microscope (with optical
autofocus system and a motorized

piezo stage) spinning disk
microscope (Nikon, Tokyo, Japan)

(real-time quantitative live imaging);
-Andor Ixon Ultra (EM-CCD)
camera and the MetaMorph

software imaging system (Molecular
Devices, San Jose, U.S.);

-[49]

https://imagej.nih.gov/ij/download.html
https://imagej.nih.gov/ij/download.html
https://imagej.nih.gov/ij/plugins/radial-reslice/index.html
https://imagej.nih.gov/ij/plugins/radial-reslice/index.html
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Table 1. Cont.

Open-Source Analysis Software
Advantages: Open-Source, Enabling Single-Cell Tracing and Measurements, Free Plug-Ins Download for Several Cellular Analysis Types, Feasible for Custom-Made Algorithm Analysis

or Macros

Analysis Platform Software HCI Analysis Plug-In and Tools
Microscopes

(Used in the Mentioned
References)

References

-Neuronal local neuronal secretory
system

-Custom-made macro intracellular
for quantification of intracellular

markers colocalization (%)

-Leica SP8 confocal microscope and
a LASX imaging system (Leica

Microsystems, Wetzlar, Germany).
-[50]

-Discrimination in synaptic density
changes

-Software analysis
pipeline:automated synaptic

imaging assay (ASIA),
https://github.com/thayerlab/
ASIA-pipelines scripts written

(accessed on 24 September 2023)

-Nikon Eclipse Ti-E inverted
confocal microscope and the NIS
Element software (Nikon, Tokyo,

Japan) + Carl Zeiss LSM 880
AiryScan confocal microscope and
the Zen Black 2.3 software, within

the AiryScan super-resolution mode
(Carl Zeiss AG, Oberkochen,

Germany)

-[36]

ImageJ (semi-automated)
(https:

//imagej.nih.gov/ij/download.html,
accessed on 24 September 2023)

-Axonal outgrowth and muscle
maturation

-ImageJ macro for calculating pillar
deflection:

Method A: Supplementary Data 4 of
[15].

Method B: Supplementary Data 5 of
[15].

-Nikon A1 confocal microscope
controlled with the JOBS module of
Nikon Elements software (Nikon,

Tokyo, Japan)
-Zeiss, Axiovert 200 (Phase-contrast)

(Carl Zeiss AG, Oberkochen,
Germany);

-Olympus, model no. FV-1000
(Confocal laser microscope with

motorized stage) (Olympus, Tokyo,
Japan)

Tokai Hit, INUG2F-ZM (Tokai Hit,
Fujinomiya, Japan) (Phase-contrast
and fluorescent microscope with a

stage-top incubator)

-[15]

https://github.com/thayerlab/ASIA-pipelines
https://github.com/thayerlab/ASIA-pipelines
https://imagej.nih.gov/ij/download.html
https://imagej.nih.gov/ij/download.html
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Table 1. Cont.

Open-Source Analysis Software
Advantages: Open-Source, Enabling Single-Cell Tracing and Measurements, Free Plug-Ins Download for Several Cellular Analysis Types, Feasible for Custom-Made Algorithm Analysis

or Macros

Analysis Platform Software HCI Analysis Plug-In and Tools
Microscopes

(Used in the Mentioned
References)

References

-Autophagy LC3-based assay

-Customed R script
(https://www.r-project.org/;

accessed on 24 September 2023)
version 3.5.2 and data processing

with Bioconductor R package
cellHTS2 (https://www.

bioconductor.org/packages//2.7
/bioc/html/cellHTS2.html,

accessed on 24 September 2023)
Coloc2 plug-in for Fiji (providing

Pearson’s R correlation)
(https://imagej.net/Coloc2;

accessed on 24 September 2023);

-Opera Phenix High-Content
screening System with Harmony
software (PerkinElmer, Waltham,

U.S.)

-[51]

ImageJ (semi-automated)
(https:

//imagej.nih.gov/ij/download.html,
accessed on 24 September 2023)

-Intracellular transport
-plusTipTracker software (for
microtubule dynamics video

quantification)

-Olympus Inverted FV1000 confocal
microscope (Olympus, Tokyo,

Japan);
-STED imaging was performed on a

custom built, dual color, beam
scanning system;

-Leica SP5 microscope equipped
with a controlled environment
chamber (Leica Microsystems,

Wetzlar, Germany).

-plusTipTracker: [52];
-[53]

https://www.r-project.org/
https://www.bioconductor.org/packages//2.7/bioc/html/cellHTS2.html
https://www.bioconductor.org/packages//2.7/bioc/html/cellHTS2.html
https://www.bioconductor.org/packages//2.7/bioc/html/cellHTS2.html
https://imagej.net/Coloc2
https://imagej.nih.gov/ij/download.html
https://imagej.nih.gov/ij/download.html
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Table 2. Overview of licensed software and related workflow pipelines for iPSC-based HCI analysis.

Licensed Analysis Software
Advantages: Allowed with Licensed Microscopes, Powerful Image Analysis Capabilities with Highly Flexible and Easy-to-Use Building Blocks to Analyze Simple and Complex

Phenotypes of Cells, Automated Cell Tracking, Automated Multiple Segmentation and Co-Localization Analysis, Fast Automated Cell Analysis (Minutes) Enabling Multi-Threaded,
Parallel Image Processing, Teachable Interface for Analysis Creation, and Batch Processing for Large Time-Lapse Image Datasets.

Analysis Platform Software HCI Analysis Building Blocks for Analysis
Segmentation and Tools Required Microscopes References

-Neurite outgrowth and neuron
maturation assessment

-Find nuclei, Find neurites,
Calculate Intensity Properties

-Opera PhenixPlus CLS High-Content
screening System (PerkinElmer,

Waltham, U.S.) with CSIRO Neurite
analysis software (https://www.csiro.
au/en/research/technology-space/

data/neurite-analysis-software,
accessed on 24 September 2023)

-[54]

-Intracellular protein aggregation -Find Spot
-Operetta or Opera Phenix CLS
High-Content Analysis System
(PerkinElmer, Waltham, U.S.)

-[55]

-Harmony High-Content Imaging and Analysis
Software(PerkinElmer, Waltham, U.S.)

(https://www.perkinelmer.com/it/product/
harmony-4-8-office-hh17000001, accessed on 24

September 2023)

-neurite outgrowth -nuclear parameters
neurite parameters

-Opera CLS High-Content Analysis
System (PerkinElmer, Waltham, U.S.) -[56]

-Mitochondrial fitness and neuronal
toxicity and quantification of

neuronal branching complexity

-Software analysis pipeline: https:
//github.com/StemCellMetab/

Mitochondrial-membrane-potential
(accessed on 24 September 2023)

-Operetta CLS High-Content Analysis
System (PerkinElmer, Waltham, U.S. -[33,34]

-Columbus (image data storage and analysis
system allowed for connection with Harmony

software) (PerkinElmer, Waltham, U.S.)
(https://www.perkinelmer.com/it/product/

harmony-4-8-office-hh17000001, accessed on 24
September 2023) -Autophagy LC3-based assay

-Opera Phenix CLS High-Content
screening System (PerkinElmer,

Waltham, U.S.)
-[51]

-Neurite outgrowth

-Software analysis: https:
//www.moleculardevices.com/
applications/neurite-outgrowth
(accessed on 24 September 2023)

-MetaMorph Microscopy Automation
and Image Analysis Software

(Molecular Devices, San Jose, U.S.)
-[57]

-MetaMorph Microscopy Automation and Image
Analysis Software (Molecular Devices, San Jose,

U.S.)
Automated

(https://www.moleculardevices.com/products/
cellular-imaging-systems/acquisition-and-
analysis-software/metamorph-microscopy,

accessed on 24 September 2023) -Membrane trafficking
-MetaMorph Microscopy Automation

and Image Analysis Software
(Molecular Devices, San Jose, U.S.)

-[49]

https://www.csiro.au/en/research/technology-space/data/neurite-analysis-software
https://www.csiro.au/en/research/technology-space/data/neurite-analysis-software
https://www.csiro.au/en/research/technology-space/data/neurite-analysis-software
https://www.perkinelmer.com/it/product/harmony-4-8-office-hh17000001
https://www.perkinelmer.com/it/product/harmony-4-8-office-hh17000001
https://github.com/StemCellMetab/Mitochondrial-membrane-potential
https://github.com/StemCellMetab/Mitochondrial-membrane-potential
https://github.com/StemCellMetab/Mitochondrial-membrane-potential
https://www.perkinelmer.com/it/product/harmony-4-8-office-hh17000001
https://www.perkinelmer.com/it/product/harmony-4-8-office-hh17000001
https://www.moleculardevices.com/applications/neurite-outgrowth
https://www.moleculardevices.com/applications/neurite-outgrowth
https://www.moleculardevices.com/applications/neurite-outgrowth
https://www.moleculardevices.com/products/cellular-imaging-systems/acquisition-and-analysis-software/metamorph-microscopy
https://www.moleculardevices.com/products/cellular-imaging-systems/acquisition-and-analysis-software/metamorph-microscopy
https://www.moleculardevices.com/products/cellular-imaging-systems/acquisition-and-analysis-software/metamorph-microscopy
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Table 2. Cont.

Licensed Analysis Software
Advantages: Allowed with Licensed Microscopes, Powerful Image Analysis Capabilities with Highly Flexible and Easy-to-Use Building Blocks to Analyze Simple and Complex

Phenotypes of Cells, Automated Cell Tracking, Automated Multiple Segmentation and Co-Localization Analysis, Fast Automated Cell Analysis (Minutes) Enabling Multi-Threaded,
Parallel Image Processing, Teachable Interface for Analysis Creation, and Batch Processing for Large Time-Lapse Image Datasets.

Analysis Platform Software HCI Analysis Building Blocks for Analysis
Segmentation and Tools Required Microscopes References

-Neurite outgrowth -Segmentation of ROI
(Dendrites, cell bodies, and axons.)

-IN Cell Analyzer 6000
high-performance and high-content

automated laser-based confocal
imaging platform and ImageXpress

Micro Confocal High-Content Imaging
System (GE Healthcare, Chicago, U.S.)

-[58]

-Intracellular protein aggregation
-IN Cell Analyzer 6000 IN Cell

Developer Toolbox version 1.9 (GE
Healthcare, Chicago, U.S.)

-[59]

-Cell population assays,
fluorescence intensity analysis,

neurite length analysis

-IN Cell Analyzer 6000 IN Cell
Developer Toolbox version 1.9 (GE

Healthcare, Chicago, U.S.)
-[60]

-Neuronal classification and
outgrowth

convolutional neural network
analysis (random forest

classification using total neurite
length, number of cells, and average

size of neuronal soma as random
classifiers)

-* Keras/TensorFlow
framework (v1.13.1)12 on

GTX1080Ti by using CUDA 10.0.
scikit-learn (v0.23.2),

gradient-weighted class activation
mapping (Grad-CAM) and guided

Grad-CAM algorithm

-IN Cell Analyzer 6000
high-performance and high-content

automated laser-based confocal imaging
platform (GE Healthcare, Chicago, U.S.)

-[61,62];
-[27]

-IN Cell Analyzer 6000 software
(GE Healthcare, Chicago, U.S.)

-Image segmentation in individual
mitochondria

(masking of somatic, axonal, and
dendritic mitochondria)

-Cell bodies count and analysis of
the number, area, median circularity,

and length of mitochondria

-IN Cell Analyzer 6000 confocal
microscope (GE Healthcare, Chicago,

U.S.)
and GE Developer Toolbox (1.9.2, build
2415) software (GE Healthcare, Chicago,

U.S.)

-[63,64]
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Table 2. Cont.

Licensed Analysis Software
Advantages: Allowed with Licensed Microscopes, Powerful Image Analysis Capabilities with Highly Flexible and Easy-to-Use Building Blocks to Analyze Simple and Complex

Phenotypes of Cells, Automated Cell Tracking, Automated Multiple Segmentation and Co-Localization Analysis, Fast Automated Cell Analysis (Minutes) Enabling Multi-Threaded,
Parallel Image Processing, Teachable Interface for Analysis Creation, and Batch Processing for Large Time-Lapse Image Datasets.

Analysis Platform Software HCI Analysis Building Blocks for Analysis
Segmentation and Tools Required Microscopes References

-CL-Quant Automated Image Analysis Software
(Nikon, Tokyo, Japan)

(https://www.nikon.com/company/news/2019
/1008_cl-quant_01.html,

accessed on 24 September 2023)

-Cell population assays,
fluorescence intensity analysis,

neurite length analysis

-Nuclei and neurite tracing, fiber
objects quantification (neurite

lengths)
-BioStation CT (Nikon, Tokyo, Japan) -[60]

-Cellomics software (Thermo Fisher Scientific,
Waltham, U.S.)

(https://www.thermofisher.com/it/en/home/
brands/thermo-scientific/cellomics.html,

accessed on 24 September 2023)

-Cell population assays,
fluorescence intensity analysis,

neurite length analysis

-Nuclei and neurite tracing, fiber
objects quantification (neurite

lengths)

-ArrayScan high-content system
(Thermo Fisher Scientific, Waltham,

U.S.)
-[65]

-Membrane trafficking
-Surface function 3D cellular

structures reconstruction from
different image dataset

-Andor Ixon Ultra (EM-CCD) camera
and the MetaMorph software

(Molecular Devices, San Jose, U.S.)
imaging system

Leica SP8 confocal microscope and a
LASX imaging system (Leica

Microsystems, Wetzlar, Germany)

-[49]

-Imaris
(Bitplane, Belfast, UK) (Not requiring specific HCI

microscope)
(https://www.oxinst.com/search-results?search=

IMARIS&businesses=bitplane, accessed on 24
September 2023)

-Axonal outgrowth and muscle
maturation

-Zeiss, Axiovert 200 (Phase-contrast)
(Carl Zeiss AG, Ober-kochen, Germany);
Olympus, model no. FV-1000 (Confocal
laser microscope with motorized stage)

(Olympus, Tokyo, Japan) with a
stage-top incubator (Tokai Hit,

INUG2F-ZM, Tokai Hit, Fujinomiya,
Japan)

(Phase-contrast and fluorescent
microscope)

-[15]

* Platform and plug-ins available for trained AI or machine-learning driven data analysis and classification.

https://www.nikon.com/company/news/2019/1008_cl-quant_01.html
https://www.nikon.com/company/news/2019/1008_cl-quant_01.html
https://www.thermofisher.com/it/en/home/brands/thermo-scientific/cellomics.html
https://www.thermofisher.com/it/en/home/brands/thermo-scientific/cellomics.html
https://www.oxinst.com/search-results?search=IMARIS&businesses=bitplane
https://www.oxinst.com/search-results?search=IMARIS&businesses=bitplane
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2. HCI Analysis of Neuronal Dysmorphogenesis in iPSC-Based Neurodegenerative
Diseases Modelling

Nowadays, phenotypic analysis of human iPSC (hiPSC)-based disease models is the
most reliable probe (i) to define cellular differences and vulnerabilities in patients compared
to healthy control cells, as well as (ii) to investigate the underlying molecular mechanisms of
various neurodegenerative processes [56,66–68]. Cell body shrinkage, axonal degeneration,
and/or neurite pathologies are key pathological hallmarks in a number of neurodegen-
erative diseases, including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis
(ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD), and hereditary spastic paraple-
gia (HSP) [14,40]. Outlining and quantifying the degree of aberrant neuronal morphology,
which strongly affects the connectivity and the processing/distribution of information
within neural circuits [14], is a critical step to apply to patient-derived iPSC analysis for
identifying early disease-specific defects and designing possible therapeutic strategies.
Once the specific immunohistochemical or immunofluorescent reactions have been per-
formed, the evaluation of neurite/soma morphology generally requires a multiparametric
analysis, including neurite length and number; roots (i.e., the emerging neurites from the
cell body; branches and nodes (i.e., the ramification points); internodal segments; and tips
and soma sizes (Figure 2). This analysis allows for quantification of neuron maturation,
synaptic loss, and/or atrophy and degeneration.
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Figure 2. HCI for neuronal morphology phenotypes. Analysis workflow for automated skeletoniza-
tion of neurite outgrowth. Representative cartoon for basic analysis pipeline for neurite outgrowth
quantification. Fixed iPSC-neurons are automated and analyzed by software that enables image
segmentation, breaking down the image into discrete objects (such as single nuclei or neurites),
detected according to immunostaining of specific markers (most commonly used are indicated on the
right). Typically, the nuclei staining (reference input for cell counting) (a,b) and neuronal staining
channel (a) are detected, and then the binary images for neurites and soma area (c) are processed.
The neurite skeleton is produced (d) and evaluated (after soma subtraction) (e) for neurite outgrowth
analysis. Created with BioRender software (BioRender.com) (accessed on 24 September 2023).

2.1. Experimental Design and Analysis Setting for hiPSC-Based HCI for Neuronal
Morphology Phenotypes

In recent years, several HCI analysis methods have been published for in-depth
studying of the morphological changes in iPSC-derived neuronal cells. To this aim, sug-
gestions for specific microscope setups and choice of automated computational assays
for a high-throughput skeletonization approach in large datasets from fluorescence mi-
croscopy imaging have been provided (Figure 2). Here we report some examples of
experimental workflows and related applications in patient iPSC-based models of neurode-
generation. All the details about the employed microscopes and analysis platforms are
listed in Tables 1 and 2.

The works of Lickfett and colleagues in 2022 provide a step-by-step description on how
to perform HCI imaging for quantification of both axonal and dendritic length, number
of branch points, staining signal areas, and other parameters in 384-well plates of fixed
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iPSC-derived neurons [32]. Specifically, the cells of interest were obtained through various
differentiation approaches (NGN2 induction [69] from the engineered iPSC line BIHi005-
A-24, dopaminergic neurons obtained by exposing iPSCs to specific growth factors and
small molecules) [32]. The protocol-specific settings have been designed for use in a
high-content analysis (HCA) system spinning disk microscope (in both confocal and non-
confocal imaging mode) equipped with relative licensed imaging analysis software. The
work also provides an example of HCI analysis for the quantification of neurite outgrowth
to be performed using the open-source software CellProfiler 4.2.1 [31] as a robust tool that
enables automated image processing from high-throughput experiments image datasets:
it allows the analysis of neurite outgrowth and branching of differentiated iPSC-derived
neurons to eventually unravel disease-specific morphological defects.

Another similar example was provided by Wali et al. in 2023: the authors performed a
high-content screening to measure neurite outgrowth and length, roots, extremities, and
segments in immature (Day 1 post seeding neural progenitor cells) and mature neurons
(Day 15) [54] by using a confocal HCA system spinning disk microscope. In particular, the
neuronal morphology HCI analysis was performed on 96 well-plated fixed neurons through
the licensed Harmony software 5.1 (PerkinElmer, Waltham, U.S.). The software building
blocks to image segmentation enabled breaking down the image into discrete objects (such
as individual nuclei or neurites), detected according to immunostaining of specific markers.
Specifically, the analyses were performed by first segmenting the image using the “Find Nu-
clei” building block: this tool identifies each nucleus as reference point for a cell object from
which the MAP2-positive neurites extend, thus continuing the segmentation of the neurites
with “Find Neurites” building block exploitation and the measurement of the related out-
growth parameters. Notably, these segmentation tools for evaluating neuron morphology
could otherwise be obtained from other licensed image analysis software (such as MetaX-
press software, Molecular Devices, San Jose, U.S., https://www.moleculardevices.com/
products/cellular-imaging-systems/acquisition-and-analysis-software/metaxpress, ac-
cessed on 24 September 2023) and from open-source image analysis software such as the
above-mentioned Cell Profiler and ImageJ (https://imagej.nih.gov/ij/download.html,
accessed on 24 September 2023) [37] with the NeuronJ plugin [38].

The limitations of the mentioned protocols are related to the automated imaging
approaches of cultured neurons: for instance, automated analysis might not involve single
cell assessment of dendritic arborization (possible to perform with Sholl analysis [46,47]) or
might not avoid possible axonal/dendritic crossing-over from two or more neighboring
neurons. Although new plug-ins are not excluded from being implemented in the available
HCA pipelines, careful experimental design is generally recommended (setting the optimal
seeding density and fixation time point for each neuronal cell type) [32,70,71].

2.2. HCI Analysis of Neuronal Morphology Phenotypes in Patient iPSC-Based
Neurodegeneration Modelling

Nowadays, modelling neurodegenerative diseases by HCI analysis in iPSC-derived
neurons is common in different research fields, such as AD, PD, and MNs diseases.

For example, Chang et al. (2019) exploited the HCI of neuronal morphology as a
critical step in the experimental characterization process of AD-relevant cellular features in
an iPSC model generated from two familial AD patients carrying a mutation heterozygous
D678H in the APP gene (AD-iPSC) [57]. Herein, the neurite outgrowth measurements of
differentiated neurons (including total outgrowth, processes, and branches) were assessed,
following HCA-microscope system spinning disk microscope cell images acquisition, by
MetaMorph microscopy automation image analysis software (Molecular Devices, San Jose,
U.S.), detecting the neurites by the immunofluorescence staining of the neuronal marker
TUBB3. The work highlighted the reduced neurite outgrowth in AD-iPSC-derived neurons,
in association with aberrant accumulation of Aβ and tau phosphorylation, compared to
wild-type iPSCs [57].

https://www.moleculardevices.com/products/cellular-imaging-systems/acquisition-and-analysis-software/metaxpress
https://www.moleculardevices.com/products/cellular-imaging-systems/acquisition-and-analysis-software/metaxpress
https://imagej.nih.gov/ij/download.html
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Bassil et al. (2021) performed a similar experimental analysis and applied a compa-
rable workflow pipeline in a complex multicellular system. Indeed, they generated an
automated, consistent, and long-term culturing platform of hiPSC AD neurons, astrocytes,
and microglia to investigate and quantify Aβ plaque-induced dystrophic neurites, synapse
loss, dendrite retraction, axon fragmentation, and neuronal cell death [58]. The work-
flow began with induced differentiation of iPSC-derived neurons in large batches, which
were then replated in 384-well imaging plates, with following serial addition of differenti-
ated astrocytes and microglial cells. Automated confocal image acquisition and analysis
were performed with a HCA-microscope system spinning disk microscope and with cus-
tomed imaging analysis software. Herein, 384-well plates enabled simultaneous testing
of numerous experimental conditions: image analysis scripts indeed provided precise
segmentation of markers of interest, including dendrites (MAP2), cell bodies (CUX2), axons
[Tau, phospho-tau (p-Tau)], and synapses (Synapsin 1/2), and thus measures of related
outgrowth. The results of the work provided an in vitro recapitulation of the hallmarks of
AD, developed in a sequential order of events comparable to the disease progression of AD
in humans. In particular, HCA imaging of neuronal cells exposed to chronic treatment with
soluble Aβ42 [72] allowed the accurate reconstruction and quantification of the degree of
p-Tau-positive dystrophic neurite formation around the plaques, microtubule fragmenta-
tion and axon degeneration, and consequent loss of nuclear CUX2 and dendrite atrophy in
different stages of the disease [58].

The same above-mentioned HCI automated analysis tools and methods were success-
fully applied on hiPSC-MNs to study their morphology for MN diseases (MNDs) modelling.
In particular, the Fujimori (2018) and Imamura groups (2021) performed a phenotypic dis-
crimination in the pattern of neuronal degeneration using a large sampling of hiPSCs from
ALS and healthy controls. In more detail, relying on parameters of total neurite length, cell
number, and mean neuronal soma size, the two works obtained phenotypic discrimination
respectively between several heterogeneous sporadic ALS iPSC models [60] and between
images derived from healthy control subjects or ALS patients in constructing an AI-based
predictive model of ALS [27,61,62].

As a further example of HCI in iPSC-based models of MNDs, Rehbach et al. (2019)
performed a multiparametric screening in hereditary spastic paraplegia (HSP) patient-
specific neurons. They reported the synergistic exploitation of both licensed and open-
source imaging software to achieve shorter read-out times in the quantification of HSP-
induced neuronal morphology degeneration from different phenotypic assays [40]. The
study analysis indeed, following 96-well plated fixed-cells acquisition with different HCA
confocal spinning disk microscopes, relied on differentiated imaging analysis: (i) neurite
outgrowth assays were analyzed (24 h after plating), first in a semi-automated manner
by using ImageJ and the NeuronJ plug-ins [21] and then in automation mode with the
InCell Developer licensed software toolbox (GE Healthcare, Chicago, U.S.); (ii) concomitant
growth cone assays were conducted using a semi-automated CellProfiler script [31] or an
automated InCell Developer script; (ii) axonal swelling assays quantification was performed
manually (5 days after plating) and normalized to the length of TAU1 positive axons as
determined via ImageJ with the Neurite Tracer macro [39] or the InCell Developer toolbox.
The designed multiparametric and rapid phenotyping approach highlighted that HSP-iPSC
neurons have a 51% reduction in the growth of neurites and a 60% increase in growth cone
area and axon swellings (after only 5 days), suggesting its feasible application also to other
iPSC-based research models of neurodegenerative diseases.

3. HCI Analysis for Aberrant Neuronal Protein Aggregation and Intracellular
Transport in iPSC-Based Neurodegenerative Disease Models

The major factors contributing to the collapse of the synaptic network structure and
function (leading to neurodegeneration) include defective long-range pathological protein
aggregation, intracellular transport, aberrant proteostasis, cytoskeleton abnormalities,
impaired mitochondrial homeostasis, DNA and RNA defects, and neuroinflammation [73].
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Recent works have contributed to clarify the interrelationships of the cellular and molecular
processes underlying neurodegeneration and how hallmarks can be detected and monitored
using HCI analysis methods (Figure 3). For instance, several approaches based on the
feasibility of gene editing (by CRISPR/Cas9), transfection and transient expression of
genetically encoded fluorescent markers, or the employment of advanced fluorescent
probes have favored the HCI of neuronal and organelle protein dynamics and their tracking
by automated analysis [48,73].
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Figure 3. HCI for studying (i) aberrant neuronal protein aggregation, (ii) intracellular and axonal
transport of endogenously labelled vesicles, and (iii) mitochondrial dynamics and homeostasis in
iPSC-based neurodegenerative disease models. In culture or fixed iPSC-derived neurons can be
automatically analyzed by HCI software, which enables image segmentation and identification
of different neurodegeneration-related molecular pathways (the most commonly used markers
are listed in the figure captions). Created with BioRender software (BioRender.com) (accessed on
24 September 2023).

Here, we report a few examples of HCI approaches and automated analysis tools for
live or fixed-samples imaging that enabled the delineation of neurodegeneration-related
molecular hallmarks in human iPSC-derived neurons. A detailed description of the em-
ployed microscopes and analysis platforms is provided in Tables 1 and 2.

3.1. HCI Analysis for Aberrant Neuronal Protein Aggregation in iPSC-Based Neurodegenerative
Disease Models

Aberrant protein aggregation is a key pathological hallmark and diagnostic marker
of a variety of proteinopathies, including AD, PD, and ALS, respectively characterized by
abnormal folding and aggregation of Aβ peptides [58], αSyn proteins [74], and TAR DNA
binding protein 43 (TDP-43) or superoxide dismutase 1 (SOD1) proteins [75–77]. In this con-
text, the application of HC imaging analysis in a patient’s iPSCs enables the quantification
of intracellular protein aggregates by specific tracing of selected fluorescence markers.

In 2022, Manos et al. provided an example of HCI of protein aggregation aimed at
establishing a physiologically relevant AD model for studying the tau pathobiology [55]. In
more detail, the work focused on the evaluation of possible endogenously induced protein
aggregation in MAPT (microtubule-associated protein tau gene) WT and CRISP-CAS9
edited MAPT KO iPSC neurons in response to AD brain-derived tau species. With this goal,
a timeline for cell seeding and amplification to determine the minimum analysis window
to achieve quantifiable Tau aggregation for high-throughput applications was established,
further examining multiple time points to determine the impacts of tau aggregation on
cell health. HCI of immunofluorescence staining for Tau aggregation was conducted
on an HCA-microplate reader microscope fitted with the related automation analysis
software for images analysis; tau aggregates were defined using MC1 staining and then
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analyzed throughout the “Find Spot” segmentation algorithm. Furthermore, for evaluating
intracellular localization of tau seeds, confocal microscopy was performed, and MAP2-
somatodendritic staining was utilized as a marker of the cell status [55]. Overall, the
obtained results demonstrated the increase of insoluble, endogenous tau aggregates in
hiPSC-derived cortical neurons seeded with AD brain-derived competent tau species. The
work provides a successful demonstration of combining human neurons, endogenous tau
expression, and AD brain-derived competent tau species, offering a more physiologically
relevant platform to study tau pathobiology or, more in general, to recapitulate protein
aggregation mechanisms.

Concerning PD, automated quantification of αSyn neurotoxic protein aggregates in
patient iPSCs has been reported in the Antoniou et al. work (2022), in which the aggregation
process was detected as a fluorescent signal in PD patient p.A53T-iPSC-derived neurons [26].
To this aim, a red fluorescent molecular rotor dye (PROTEOSTAT Aggresome Detection
Kit; Enzo) was administered to the neurons: it becomes brightly fluorescent when it binds
to protein aggregates. Then, immunolabeling for TUJ1 or TH22 markers was performed.
Finally, manual analysis of protein aggregates from image dataset was performed by
isolating individual cells from images selected from the region of interest (ROI), applying a
threshold, and utilizing the “analyze particles” ImageJ function [24,37]. Additional details
are provided and commented on in Section 4.3.

A similar example comes from the ALS field: indeed, a rapid and robust high-
throughput screening system for TDP-43 or SOD1 protein aggregation in ALS iPSC cells has
been provided by Kondo et al. (2023) to develop a cell culture system allowing feasible anal-
ysis of pathological protein aggregation and hyperexcitation in iPSC-derived MN models of
sporadic ALS [59]. Using MNs generated from genome-edited and patient iPSCs carrying a
mutation in the fused sarcoma (FUS) and SOD1 genes, and from a healthy patient’s cell line
as controls, HCI analysis of immunostained 96-well plates was performed using the HCA
microplate reader microscope. Then, quantitative analysis of protein accumulation (based
on immunofluorescence marker staining for different protein aggregates) was performed
using the licensed HCI automated analysis software IN Cell Developer Toolbox version 1.9
(GE Healthcare, Chicago, U.S.): the sum cytosolic FUS+ aggregate area, G3BP+ aggregate
area, FUS + G3BP+ aggregate area, or SOD1+ area/βIII+ cell number were quantified. By
reproducing several ALS phenotypes (successfully assessed for their protein accumulation
and neuronal death by the robust detailed phenotypic screening), the proposed experi-
mental workflow appears suitable to facilitate the discovery of new therapies for ALS and,
more broadly, to favor stratified and personalized medicine for MNDs.

3.2. HCI Analysis of Axonal Transport of Endogenously Labelled Vesicles in Neurodegenerative
Patient iPSC-Derived Neurons

Neurons rely on intracellular transport to deliver newly synthesized organelles and
macromolecules to the far-reaching ends of their neurites and to carry cargos (such as
neurotrophic factors) back to the soma to alter gene expression. Defects in long-range
intracellular transport have emerged as a common factor of several neurodegenerative
disorders, including PD, AD, and MNDs [48,78], and can be unraveled by HCI studies.

A work by Boecker et al. in 2020 described an approach for live HCI analysis of
axonal and dendritic transport in iPSC-derived cortical neurons, enabled by monitoring
the motility of fluorescently labelled organelle markers, including early, late, and recycling
endosomes, as well as autophagosomes and mitochondria [48]. By performing inducing
transient expression in iPSC-derived neurons of genetically encoded fluorescent mark-
ers to characterize the motility of Rab-positive vesicles [79] and generating, by genome
editing, LAMP1-EGFP knock-in iPSCs, the study exploited different image acquisition
methods, followed by open source analysis platform exploitation for whole quantifications.
In detail, neurons (with a focus on axon imaging) were live-imaged in an environmental
chamber at 37 ◦C on an inverted microscope spinning disk confocal system (for imaging
Rab-, LAMP1- and LC3-vesicles, and mitochondria); phase-contrast images of differenti-
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ating glutamatergic cortical GFP-labeled neurons for morphology studies were instead
recorded with an inverted confocal microscope using LAS-X software (Leica Microsys-
tems, Wetzlar, Germany). To analyze the whole neuron, images were stitched together
using the FIJI plug-in Pairwise Stitching [45]. While neurite number quantification was
performed on stitched images using the FIJI plug-in, simple neurite tracer was performed
with Sholl analysis [41,46,47]. The authors discriminated axons and dendrites based on
morphological parameters, including diameter, length, and branching of the extensions [80].
Therefore, axons were manually traced and measured using the FIJI segmented line and
ROI manager tools. Finally, kymographs were generated using the Multiple Kymograph
plug-in for FIJI, while tracks of individual organelles were manually traced using a custom
MATLAB GUI (Kymograph Suite). The work provides a robust approach for live imaging
and measurement of axonal and dendritic transport in iPSC-derived cortical neurons by
exploiting transient overexpression of organelle markers and generating LAMP1-EGFP
knock-in iPSCs to study transport of fluorescently labelled or endogenously labelled vesi-
cles, respectively. These powerful HCI methods could also be extendable to more complex
iPSC-derived neural cell systems, allowing for in-depth characterization of organelle dy-
namics in neurodegenerative disease progress.

In this regard, more recently, the work of Wang et al. (2023), further exploiting the
HCI of live-imaged hiPSC-derived neurons, provided an important advance in defining
the specialized pathways of membrane trafficking in human neurons [49]. The study shed
light on the dynamics of the local dendritic secretory system and on the structural stability
of organelles in the neuronal transport of newly synthesized proteins by quantifying the
spatial and dynamic behavior of the dendritic Golgi elements and endosomes in neuronal
differentiation [81]. A real-time quantitative live-cell imaging system was used both to
monitor growth and differentiation of cells and to highlight the distinct dynamics of each
type of endosome in the dendrites of human neurons during early neuronal development.
To allow fluorescent endosome tracking and subsequent analysis, neurons were loaded
with the red BODIPY TR ceramide Golgi staining reagent (Abcam, Cambridge, UK) and/or
transduced with various GFP-tagged protein markers (as GFP-tagged wild-type Rab5, Rab7,
or Rab11 plasmids). For higher resolution live-cell imaging (enabling the visualization
of dynamic endosome movements within the dendrites of mature neurons), an inverted
confocal spinning disk microscope (with an optical autofocus system and a motorized piezo
stage), an Andor Ixon Ultra (EM-CCD) camera and the MetaMorph software (Molecular
Devices, San Jose, U.S.) imaging system were used. Kymographs for dendrite images were
constructed using the “Reslice” function in FIJI/ImageJ software (https://imagej.nih.gov/
ij/plugins/radial-reslice/index.html, accessed on 24 September 2023). Image acquisition
for fixed samples was performed using a confocal microscope and a LASX imaging system.
Then the images were sequentially collected for multicolor imaging, enabling tracking of
the fluorescent labelling of specific organelle markers in the MAP2+ dendrite: KDEL (ER),
GM130 (cis-Golgi), p230/golgin245 (trans-Golgi network [TGN]), EEA1 (early endosome),
CD63 (late endosome/lysosome), Rab11 (recycling endosome), and Tom20 (mitochondria).
Following the deconvolution of raw microscopy images using Huygens software (Scientific
Volume Imaging, Hilversum, Netherlands), the 3D cellular structures from different image
datasets were reconstructed using the “Surface” function to measure relevant parameters.
Finally, the analysis was performed using Imaris software (Bitplane, Belfast, UK). This
study provided a reliable model to study molecular players and pathways regulating
dendritic Golgi and local protein trafficking in human neurons, laying the foundation for
defining the trafficking pathways associated with neuronal networks in health and disease.

IPSC organelles fluorescent labelling has also been recently applied in the neurode-
generative disease field in order to investigate the neuronal secretory system [50]. This
study was intended to better substantiate how the physical interaction of APP protein
with β (BACE1)- and γ-secretase in endo-lysosomal organelles affects APP processing
in the generation of amyloid Aβ (a central point in AD research) [50]. The experimental
evaluations have been carried out on low Aβ-secreting neural progenitor cells and high
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Aβ-secreting mature hiPSC-derived neurons. In these cells, the colocalization of both
full-length APP/BACE1 and the APP-derived C-terminal fragment/presenilin-1 (the cat-
alytic subunit of γ-secretase) were evaluated with immunocytochemistry combined with a
proximity ligation assay (PLA) [82]. This assay, taking advantage of short oligonucleotide-
tagged antibodies, can highlight fluorescently the proximity of two target proteins. Then
colocalization analysis was normalized on the number of cells by calculating the ratio
between the area of PLA dots and the area of nuclei. The immunocytochemistry-stained
cell analysis was performed using an inverted confocal spinning disk microscope. The
analysis of colocalization of APP and the secretases by PLA and that of intracellular local-
ization of PLA dots were performed by using confocal microscopy, within the AiryScan
super-resolution mode, to thoroughly evaluate the protein interactions. Of note, image
analysis was performed using a custom-made macro for ImageJ [37], for which all detailed
processing steps are described in the paper methods [50]. Another custom-made macro
for Image J was employed and described for the analysis of intracellular localization of
APP/secretase colocalization, calculated with the percentage of organelle (GFP-tagged
organelle marker) that was occupied by PLA dots. This work contributed to clarifying the
AD biology by studying the regulation of APP-secretase interaction in Aβ-secreting mature
human neurons and suggesting a novel therapeutic strategy for this disease.

HCI analysis for in-depth characterization of intracellular transport in iPSC modelling
of neurodegenerative diseases also relied on the use of super-resolution methods. In this
regard, the work of Paonessa et al. (2019) focused on the effects of Tau gene (MAPT)
mutations on nucleocytoplasmic transport as a pathological mechanism contributing to
frontotemporal dementia (FTD)-induced neuronal degeneration by performing STED-
based super-resolution imaging of Tau colocalization in the invaginations of the nuclear
lamina [83]. In more detail, the HCI analysis was performed in FTD patient-derived iPSC
neurons carrying different MAPT mutations with different microscopy methods [53]. In-
deed, the mislocalization of hyperphosphorylated tau in the cell bodies and dendrites of
FTD-neurons was assessed using confocal microscopy, while the colocalization imaging
of tau to the outer nuclear membrane, particularly within hundreds of nanometers of the
nuclear lamina, was allowed by STED microscopy (reference settings are indicated in the
work methods). For image analysis, several ImageJ software plug-ins were exploited: the
colocalization of tau and MAP2 was calculated using the Coloc2 plug-in for Fiji, provid-
ing Pearson’s R correlation (https://imagej.net/Coloc2, accessed on 24 September 2023);
quantification of nuclear invaginations in neurons was achieved using a custom plug-in
for Fiji bioimage analysis software [37] based on nuclear co-staining for LaminB1 and
DAPI. Further live imaging analyses of microtubule dynamics were performed on neurons
grown in single 35 mm m-Dish dishes (Ibidi) and transfected with a plasmid encoding for
GFP-EB3 using a confocal microscope equipped with a controlled environment chamber
(37 ◦C; 5% CO2) and allowing resonant scanning acquisition (for real-time imaging). The
latter acquisitions (in video form) were analyzed using the plusTipTracker software [52].
The results of the work provided an in-depth assessment of tau mislocalization in the
FTD-MAPT neuronal cell body, which was shown to underlie abnormal movements of
microtubules that deform the nuclear membrane. These data indicate that impaired nucleo-
cytoplasmic transport is a pathogenic mechanism in multiple forms of neurodegenerative
disease, and the application of super-resolution microscopy could be widely employed to
perform similar analysis in other neurodegenerative models of iPSCs as well.

3.3. iPSC-Derived Neurons HCI Analysis of Mitochondrial Dynamics and Homeostasis

Synaptic function requires a tight regulation of mitochondrial function and energy
supply to maintain correct neuronal signaling, elimination, and replenishment of con-
stituents for proper synaptic function, as well as general neuronal coordination of different
molecular pathways [73]. While mitochondrial defects represent a precipitating factor for
some genetic forms of PD, ALS, and Charcot-Marie Tooth disease, mitochondrial dysfunc-
tion also plays a very important role in the neuropathology of many neurodegenerative
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diseases (such as AD), being also considered one of the triggering factors of disease onset
and progression [64,84]. Several studies have been conducted to improve HCI analysis that
focus on mitochondrial phenotypic readouts and allow the evaluation of mitochondrial
dynamics and homeostasis in iPSC-based neurodegenerative disease modelling (for a more
detailed description, see [64]).

The works of the Zink group [33,34] provided a description of a novel high-throughput
assay to quantify mitochondrial fitness and neuronal toxicity, specifically designed for
neural cells obtained from human iPSCs, by performing a so-called mitochondrial neuronal
health (MNH) assay. The assay combines live-cell measurement of mitochondrial mem-
brane potential (MMP) with quantification of neuronal branching complexity (the latter
according to the Lickfett et al., 2022 protocol [32], see Section 2.1). The protocol takes ad-
vantage of the potentiometric fluorescent dye tetramethylrhodamine methyl ester (TMRM)
for evaluating (in live-imaging mode or in post-fixation assay) both the mitochondrial
MMP and organelle morphology in the extending labelled neurites. HCI was performed
throughout the HCA confocal microscope system with fitted automation imaging software
analysis, while the analysis of the image dataset was suggested to be carried out by using
two different pipelines: the first one is based on the open-source software CellProfiler, and
the second pipeline is based on the image data storage and analysis system Columbus
(PerkinElmer, Waltham, U.S.). Both of the imaging analysis setups are reported in detail in
the work’s paper and also available with a relative tutorial in the provided web links [33,34].

A further example is provided by the work of Little et al. (2018), showing reduced
MMP and altered mitochondrial morphology in PD neurons compared to control neu-
rons [35]. Here, a HCI assay was used to simultaneously measure mitochondrial function,
morphology, and cell viability in iPSC-derived dopaminergic neurons from PD patients
with mutations in Synuclein Alpha (SNCA) gene and unaffected controls. The cells were
stained with the MMP-dependent dye TMRM, alongside Hoechst-33342, and a calcein-
based cell-permeant dye, used to determine cell viability (Calcein-AM). Images were ac-
quired using an automated confocal screening microscope, and single cells were analyzed
using the automated image analysis software CellProfiler (version 2.1.1). In this way, the
authors demonstrated that PD neurons display reduced MMP and altered mitochondrial
morphology compared to control neurons.

Therefore, these high-content methods can be successfully applied to the analysis of
mitochondria in iPSC-derived neurons and can be exploited to test potential therapeutics for
all the neurodegenerative diseases similarly characterized by mitochondrial dysfunctions.

4. HCI Analysis for Drug Screening and Neurotoxicity Assays in hiPSC-Based
Neurodegenerative Disease Modelling

The above-described use and improvement of large-scale phenotyping approaches
and HCI screenings for neuron morphology, long-range intracellular transport, protein
aggregation, or altered organelle homeostasis using human iPSC-derived neurons have
paved the way, in addition to the investigation of specific neuropathological mechanisms,
for new drug screening strategies and precision medicine in neurodegenerative diseases.
Indeed, the creation of integrated workflows for cell cultures, the numerous HCI methods,
and consultable platforms for different degrees of data analysis automation (described
above) have provided a powerful tool for drug screening studies specifically based on
patient-derived hiPSCs as a complex investigation model that could precede human clinical
trials for the treatment of neurodegenerative diseases [85].

4.1. Experimental Design and Analysis Settings

Many authors have developed protocols to perform drug screening on hiPSCs, poten-
tially relevant for different pathologies.

The work of Sherman and Bang (2018) focused on HCI analysis of neurite growth,
providing evidence that many pathways and targets known to play roles in neurite growth
have similar activities in hiPSC-derived neurons that can be identified in an unbiased
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phenotypic screen [56]. Specifically, starting from a larger collection of bioactive small
molecules (including FDA-approved drugs), the work identified 108 hit compounds able to
regulate the neurite outgrowth. The specifically designed HCI assay for neurite outgrowth
and inhibition was set up by using staurosporine (a broad-spectrum kinase inhibitor acting
as a promoter of neurite outgrowth and branching [86]) as a positive control for establish
analysis parameters for 384-well plated human iPSC-derived, cortical-like cell population
screening. As previously reported for this type of phenotypic screening, the assay data
were acquired on a confocal spinning disk microplate imaging system microscope, and
all images were analyzed using the licensed software for automated analysis Columbus
Acapella (PerkinElmer, Waltham, U.S.) to identify nuclei and perform neurite segmentation
analysis [56]. Therefore, the work’s screening provided a powerful tool for phenotypic
discrimination analyses of hiPSC-based disease models in patients in comparison to cells,
highlighting disease-related molecular vulnerabilities.

HCI can be also useful to study specific molecular pathways and their pharmacological
modulation. The work of Papandreou et al. (2023) reported a high-content screening of
small molecule libraries in 11 patient-derived ventral midbrain progenitor cells in 96-well
plates for an autophagy LC3-based assay. They studied how selected candidate small
molecules restored or ameliorated the patient-specific phenotypic deficit [51]. The work
further provided an ImageJ macros pipeline suitable for LC3 staining-based autophago-
somes quantification (in this protocol compounds that significantly enhanced LC3 puncta
production were indeed selected) and also shared technical tips to improve this type of
drug screening approach in homogeneous samples of patient iPSCs [51]. Since autophagy
is involved in the pathological change occurrence of many neurodegenerative disorders
(including AD, PD, HD, ALS, and SMA), such a protocol/approach could be successfully
applied in different research fields to screen efficient drugs.

Particular attention was also paid in setting up an HCI analysis workflow to screen and
select potential therapeutic compounds that improve mitochondrial health, dynamics, and
homeostasis in iPSC-based neurodegenerative disease modelling. The work of MacMullen
and Davis (2021) provides a step-by-step protocol to perform rapid live-imaging mito-
chondrial phenotypic analysis of compounds with effects on mitochondrial dysregulations
in differentiated hiPSC-derived neurons [64]. With this aim, hiPSCs differentiated into
excitatory human neurons were further exposed to lentivirus vector infection to express a
mitochondrial-targeted fluorescence reporter (TagGFP2 reporter), enabling morphological
investigation of the neuronal organelles. Therefore, 384-well-plated glutamatergic neurons
were treated with 4-hydroxychalcone and 2,4-dihyrdroxychalcone, belonging to a class of
compound modulators of neuronal mitostasis (MnMs), able to influence mitochondrial
features (number, elongation, and circularity) [63]. The phenotypic effects of the adminis-
tered compounds were measured in neurons after live HCI by automated HCA confocal
microscope image acquisition and, subsequently, automated analysis based on image seg-
mentation in individual mitochondria (according to Varkuti et al., 2020 [63]) using the
GE Developer Toolbox (1.9.2, build 2415, GE Healthcare, Chicago, U.S.) licensed software.
In detail, the used segmentation workflow encompasses masking of somatic mitochon-
dria, allowing measurements of axonal and dendritic mitochondria; then, the software
generates data on the count of cell bodies and on the number, area, median circularity,
and length of mitochondria. The authors demonstrated that MnMs had positive effects
on iPSC-derived neurons by inducing morphological changes in mitochondria (reduced
circularity and improved length) compared to controls. Therefore, the work supports the
use of the iPSC-based HCI mitochondrial phenotypic assay for select key compounds
effective on mitochondrial dysregulations linked to neurodegeneration.

4.2. Neuromuscular Diseases

HCI and drug screening approaches have been rather exploited in the field of neuro-
muscular diseases.
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With the aim of evaluating in real-time live imaging neuromuscular junction (NMJ)
formation, axonal outgrowth, and/or muscle maturation, the Osaki group set up an
iPSC-derived on-chip 3D neuromuscular model [15]. The work reported the design and
exploitation step process of a 3D physiological and pathophysiological motor unit model
consisting of MNs coupled to skeletal muscles interacting via the NMJ within a microfluidic
device. Of note, after acquiring the images (with a confocal microscope with a motorized
stage and phase contrast and a fluorescent microscope with a stage-top incubator), the
authors recommended performing automated image processing for high-throughput data
collection by using different methods. For instance, they suggested the use of Python or
Fiji programming (Image J) to (i) quantify microfluidic device pillar array deflection and
(ii) measure contractile force muscles according to the area change and pillar edge tracking.
While providing detailed instructions for both different analysis methods (FIJI mMacro for
calculating pillar deflection is indicated), the protocols also suggested the alternative use of
the Python/OpenCV package, enabling the automatic quantification of the displacement
of the pillar and muscle contractile force from the captured image dataset [15]. In the field
of neuromuscular diseases, the proposed system represents a good model to be applied in
the pipeline of drug screening preceding clinical trials.

Other examples are provided by the works of Fujimori et al. (2018) and Rehbach et al.
(2019), in which selected drug libraries were screened on several sporadic heterogeneous
models of ALS iPSCs and HSP iPSC neurons, respectively [40,60]. In both works, the hit
compounds were selected as potential therapeutic candidates (ropinirole for ALS models
and a liver X receptor (LXR) agonist for HSP models) for their rescue of pathological
neuronal morphology phenotypes, of which the measurements were evaluated according
to the designed HCI analysis setup (described in Section 2.2).

4.3. Parkinson’s Disease

An example of HCI in PD modelling has been provided in the work of Antoniou
et al. (2022), in which HCA was performed on iPSC-derived neurons from patients with
familial PD [bearing the G209A (p.A53T) α-synuclein (αSyn) mutation] for the evaluation of
disease-associated neurodegenerative phenotypes being rescued by a multi-kinase inhibitor
BX795 [26]. Since the therapeutic targets of PD are mainly represented by the aggregation of
misfolded αSyn as the main pathogenic factor causing cellular toxicity, the work aimed to
evaluate the neuroprotective phenotypic effect of BX795, an inhibitor of 3-phosphoinositide-
dependent kinase 1 (PDPK1). The compound, identified from a screening campaign on a
small kinase inhibitor library, was tested for its phenotypic effects by quantifying the degree
of impaired neuritic outgrowth, dystrophic neurites or fragmented cells, the presence of
intracellular protein aggregates, and maintenance of axonal integrity in treated neurons,
compared to untreated cells. Furthermore, the analysis was performed at both early and
later stages of neuronal maturation, when disease-associated phenotypes were already
established. Images were captured by automated HCA-confocal microscopy, while image
segmentation parameters were set as follows: primary object detection (cell nuclei) was
based on Hoechst staining; detection of neurons was based on TUJ1 immunofluorescence
signals and on TH immunofluorescence signals. For quantification of TUJ1 and TH intensity,
the authors used Image Mining, a custom-made image processing and analysis application
with an extendable “plug-in” infrastructure [44]. Neurite length was estimated manually
by tracing the length of all neurites on TH-labeled neurons using the NeuronJ plug-in
of ImageJ. The number of TUJ1+ spots in blebbed or fragmented axons was counted
manually (ImageJ), and the ratio between the number of spots and the total TUJ1+ staining
area (ImageJ) was defined as the axon degeneration index [41–43]. The work results,
also reinforced by proteomic analysis outcomes, highlighted the neuroprotective effects
of multi-kinase inhibitor BX795 on PD-iPSCs neurons, showing the rescue of disease-
associated neurodegenerative phenotypes. Providing a promising novel small molecule
as a candidate therapeutic for PD and other protein conformational disorders, the work
also represents a successful example of combining high-throughput screening approaches
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iPSC-based disease modelling as a promising unbiased strategy to identify therapies for
neurodegenerative disorders.

4.4. Alzheimer’s Disease

Moreover, in the AD field, several studies have exploited HCI analysis to obtain
in-depth phenotypic characterizations of neurite dysmorphogenesis associated with aber-
rant accumulation of Aβ and p-Tau, thus providing new foundations for drug screening
applications.

For instance, the HCI screening of a Library of Pharmacologically Active Compounds
(LOPAC) in AD iPSC-derived neurons allowed Wang and colleagues (2017) [65] to iden-
tify moxonidine and metaproterenol (two adrenergic receptor agonists) as endogenous
human tau-lowering compounds. In detail, 384-well-plated differentiated glutamatergic
neurons from an integrated, inducible, and isogenic Ngn2 iPSC line (i3N) were treated
with 1280 compounds from the LOPAC library, and then human tau, total neurites, and
nuclei were detected by an immunostaining procedure and images acquired with the fully
automated ArrayScan high-content system (Thermo Fisher Scientific, Waltham, U.S). Tau-
lowering hits were selected according to automated quantification of multiple cellular and
well neuronal features with Cellomics software (Thermo Fisher Scientific, Waltham, U.S),
quantification of viable cell number (based on nuclei count and characterization), neurite
total length, and total tau levels. The described approach represents a reliable tool for drug
screening-based research for AD and tauopathies therapies [65].

Other examples come from the works of Chang et al. (2019) and Bassil et al. (2021)
(already mentioned in the present review [see Section 2.2]), which provided HCI analysis
of neurite outgrowth in AD- and wild-type iPSC-derived neurons, together with aberrant
accumulation of Aβ and tau phosphorylation [57,58]. By establishing an HCI analysis
workflow for the neurite outgrowth measurements of differentiated neurons, Chang et al.
performed a small-molecule screening on AD-iPSC-derived neurons carrying the APP-
D678H mutation. The HCI analysis suggested the neuroprotective effect of the synthetic
indolylquinoline compound NC009-1, since it was able to improve neuronal cell viability
and neurite outgrowth [57]. In a similar way, Bassil et al. (2021) performed the screening of
a library of 70 small molecules and natural products and investigated by HCI analysis in
the established culturing platform of human iPSC-AD neurons, astrocytes, and microglia
[see Section 2.2] the neuroprotective effect of anti-Aβ antibody treatments. Based on
the area quantification of MAP2+ dendrites and Aβ plaque (X04 stained), synapse count
(synapsin labeled), and p-Tau 396–404 induction fold (S235 stained), the work demonstrated
that the anti-Aβ intervention was able to slow down neuron degeneration and plaque
formation in a precise therapeutic time window. Therefore, the study highlighted the value
of investigating the AD model high-throughput culture platform used with HCI analysis
to screen potential therapeutic compounds by also defining the intervention window and
deepening our understanding of AD [58].

4.5. Neurotoxicity Assays

HCI approaches can also be used to perform neurotoxicity assays on hiPSC-derived
neurons.

Indeed, tools have been optimized to measure synaptic density changes (triggering
cell death pathways). For instance, the work of Green et al. designed an automated synaptic
imaging assay (ASIA) that allows for the labelling and imaging of live neuron synapses
with both confocal and wide-field microscopy (the latter requires a deconvolution step
in the analysis) [36]. To this aim, the work exploits the use of viral transduction-induced
fluorescent protein expression (PSD95-eGFP) to identify agents that regulate synapse
number in iPSC-derived cortical neurons exposed to different doses of glutamate. The
automated image acquisition protocol, applied to a confocal microscope controlled with the
JOBS module for design of automated acquisition (NIS-Elements software, Nikon, Tokyo,
Japan) and possibly equipped with a Photometrics CMOS camera and a LED light source
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for wide-field imaging, was integrated into JOBS to define a plate alignment function that
allows automatic imaging from the same ROI over time. The work then shared the basic
workflow image analysis protocols (with related description of sequential steps for image
processing and the files for running the analysis) to obtain the primary analysis endpoints
(the number of structural synapses and cell viability) in the open-source software platforms
MetaMorph, ImageJ, and CellProfiler [36]. Therefore, ASIA is an efficient approach to label,
image, and analyze synapses in live neurons: it can help in identifying agents that evoke
synaptic toxicities and screening for compounds preventing or reversing synapse loss.

Additionally, HCI methods in hiPSCs have also been employed to combine quantita-
tive epidemiological study and assessment of neurodegenerative hallmarks with compound
toxicity screening in patient neurons. In this regard, a recent work of Paul et al. (2023)
reported effects of pesticide exposures in dopaminergic neurons derived from PD hiPSCs
to identify Parkinson’s-relevant pesticides [87]. In detail, selecting a subclass of compounds
in a library of specific pesticides associated with PD risk in a comprehensive pesticide-wide
association study, a live-cell imaging screening was performed in the work for patient-
derived dopaminergic neurons exposed to a large number of pesticides (possible used
in combinations in cotton farming) throughout a chamber-equipped high-throughput
microscope. Cultured iPSCs were previously engineered with THtdTomato fluorescent
reporter, since endogenous THtdTomato signal colocalized with anti-TH-labelling enabled
selective evaluation of the effects of pesticides on midbrain dopaminergic differentiated
neurons and excluded other contaminating cell types present in patterned iPSC-derived
cultures. Therefore, a live-cell images dataset was analyzed using the licensed software
Columbus (PerkinElmer, Waltham, U.S.) for automated imaging analysis that enables the
segmentation algorithm of fluorescently labelled nuclei and neurites. The analysis was in
fact performed in several phases: the first aimed at identifying the live cells that met size
and roundness criteria while excluding the debris; in the second phase, neurite detection
algorithms were applied in order to identify neurites based on the THtdTomato signal in
these cellular processes using the Find Neurites, CSIRO neurite analysis method (setting
parameters are available in paper methods) [87].

5. Conclusions

The present review aimed to provide useful suggestions to guide the choice and op-
timization of study designs for the use of hiPSC-derived neurons in neurodegenerative
diseases modelling by exploiting HCI methods. These approaches enable the achievement
of high-quality in vitro data for the characterization of new disease pathways, precision
medicine, and drug screening. Therefore, reporting the most recent improvements in
experimental designs published in last years, we dissected iPSC-plating methods, tools
of fluorescent labelling for organelle tracking, and, most importantly, microscope require-
ments, imaging platforms, data analytics, and management tools to be employed. All the
reported works shed light on the currently achievable applications in iPSC-based HCI
disease modelling and HCI, both to recapitulate/predict disease phenotypes in vivo and
to gain new insights into the heterogeneity of disease manifestations, thereby improving
drug screening applications. The limitations of all presented protocols are based on their
foundation with two-dimensional (2D) cell cultures. Research based on three-dimensional
(3D) models (spheroids, organoids, and assembloids) is rapidly growing due to the im-
provement of morphological characteristics, cellular complexity, and the physiological
relevance of cell systems, which appear to be better suited for drug discovery applications
than 2D monolayer cultures [88–91]. However, the transition from 2D monolayer models
to 3D spheroids in HCI applications is challenging and requires 3D-optimized protocols,
instrumentation, and resources. Thus, while emerging 3D technologies and platforms aim
to overcome such limitations for the successful implementation of HCI assays in 3D models,
HCI as single cells in patient-derived iPSCs, leveraging all recent improvements, represents
an accessible and powerful tool for modelling and addressing neurodegenerative disease
research issues.
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