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Abstract: The basis set issue has always been one of the most important factors of accuracy in the
quantum chemical calculations of NMR chemical shifts. In a previous paper, we developed new
pecS-n (n = 1, 2) basis sets purposed for the calculations of the NMR chemical shifts of the nuclei of the
most popular NMR-active isotopes of 1–2 row elements and successfully approbated these on the DFT
calculations of chemical shifts in a limited series of small molecules. In this paper, we demonstrate
the performance of the pecS-n (n = 1, 2) basis sets on the calculations of as much as 713 1H and
767 13C chemical shifts of 23 biologically active natural products with complicated stereochemical
structures, carried out using the GIAO-DFT(PBE0) approach. We also proposed new alternative
contraction schemes for our basis sets characterized by less contraction depth of the p-shell. New
contraction coefficients have been optimized with the property-energy consistent (PEC) method. The
accuracies of the pecS-n (n = 1, 2) basis sets of both the original and newly contracted forms were
assessed on massive benchmark calculations of proton and carbon chemical shifts of a vast variety of
natural products. It was found that less contracted pecS-n (n = 1, 2) basis sets provide no noticeable
improvement in accuracy. These calculations represent the most austere test of our basis sets as
applied to routine calculations of the NMR chemical shifts of real-life compounds.

Keywords: pecS-1; pecS-2; 1H NMR; 13C NMR; 15N NMR; chemical shift; DFT; PEC; natural products

1. Introduction

The 1H and 13C nuclear magnetic resonance (NMR) spectroscopy has become one
of the most important means of studying the structure and dynamics of large naturally
occurring compounds. The effectiveness and accuracy of the NMR analysis are enhanced
via high-quality quantum chemical calculations, appending a great deal of validity to the
assignments of the resonance signals of the NMR spectra. The accuracy of the quantum
chemical calculations of NMR chemical shifts is determined using many factors, among
which the most important ones are the method of calculation and the basis set used.

Evidently, in modern quantum chemical NMR calculations of large natural molecules,
the electron density functional theory (DFT) has become extremely popular [1,2]. In-
deed, the DFT method takes into account the electron correlation effects via the exchange–
correlation (XC) potential and has moderate computational requirements comparable to
that of the Hartree–Fock method [3]. In this sense, one can hardly expect to find a more
balanced approach than the DFT method. Today, a lot of work has been conducted to
establish the most suitable XC functionals for the calculation of NMR chemical shifts [4–10].
However, regardless of what XC functional is employed, using unsuitable basis sets of
little flexibility in the DFT calculations of NMR chemical shifts may give the results of poor
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quality or even erroneous results. In this respect, one should pay no less attention to the
basis set issue than the choice of the XC functional used.

It is of prime importance to use the basis sets that give results, which are sufficiently
close to the complete basis set (CBS) limit reached in a particular computational method.
Early on, the NMR calculations of any compounds via the DFT approach were carried
out using nonspecialized energy-optimized basis sets. Thus, the suitability of different
families of energy-optimized basis sets to NMR chemical shift calculations was widely
investigated [11], and it was found that in order to reach an acceptable convergence
towards the CBS limit, one should resort to large quadruple-ζ quality basis sets. For
example, Dunning’s cc-pVQZ [12] and Kutzelnigg’s IGLO-IV basis sets [13,14] of quadruple-
ζ quality, consisting of, accordingly, 55 and 51 functions for the second-row atoms give the
results close to the CBS limit [11]. However, this number of functions on each atom of the
carbon skeleton presents an unsurmountable problem for large organic compounds. Such
compounds may contain hundreds of carbon atoms, therefore, the calculations of their
NMR chemical shifts using the DFT method with an otherwise favorable scaling factor
of N3-N4 (with N being the size of basis set space) were practically unfeasible till the first
decade of the 21st century.

The alleviation of the problem came with the appearance of the first specifically
optimized basis sets, called the chemical shift-oriented (or, briefly, δ-oriented) basis sets.
Frank Jensen was the first to make a suggestion that, in order to reduce the sizes of the
basis sets used in the NMR shielding calculations, one should take usual energy-optimized
moderate-sized basis sets, expand them with the least needed number of functions in the
important exponential regions and optimize the added exponents with regard to the NMR
shielding constants under interest. This allows dealing with the featured δ-oriented basis
sets of moderate sizes in the NMR calculations, which, in turn, opens new avenues for
accurate and fast predictions of the NMR chemical shifts of large natural products using
the DFT method.

Specifically, the famous Jensen’s (aug)-pcS-n (n = 0–4) basis sets [15] for the atoms
of 1–3 periods (H-Ar) were created by adding an optimized tight p-function to the corre-
sponding energy-optimized (aug)-pc-n (n = 0–4) basis sets [16–19]. Later on, more efficient
segmented contracted basis sets of Jensen’s series, namely, the (aug)-pcSseg-n (n = 0–4) [20],
were developed for the atoms of 1–4 periods by applying the P-orthogonalization proce-
dure [21] to the generally contracted property-tuned basis sets. Remarkably, in our personal
experience, the pcS-2 basis set of triple-ζ quality consisting of only 33 functions for carbon
atom provides the accuracy comparable to that of a large nonspecialized cc-pVQZ basis set
of quadruple-ζ quality consisting of as much as 55 functions.

The development of the δ-oriented basis sets continues today. We also have introduced
recently new effective δ-oriented basis sets, viz., the pecS-n (n = 1, 2), purposed for the cal-
culations of 1H, 13C, 15N, 17O, and 31P NMR chemical shifts [22,23], which were optimized
using the property-energy consistent (PEC) method [24]. The pecS-1/pecS-2 basis sets
consisting of only 5/14 and 18/34 functions for hydrogen and carbon atoms, respectively,
demonstrated a very good accuracy against the experiment. Moreover, we also watched the
pecS-n basis sets manifesting a remarkable robustness of the results in relation to the choice
of the XC functional used. In all respects, our NMR-oriented basis sets [22–26] showed a
fine balance between size and accuracy, which makes them a promising tool in demanding
DFT calculations of the NMR parameters of large natural products.

The first tests of the designed pecS-n (n = 1, 2) basis sets for the 1–2 row elements were
performed on the example of 35 small and rigid molecules consisting of up to 15 atoms [22].
The performance of the pecS-n basis sets has never been studied on large real-life com-
pounds. That is the gap that requires completion.

A matter of this present study is to demonstrate the performance of our pecS-n (n = 1, 2)
basis sets on practice on the example of routine DFT calculations of 713 1H and 767 13C
NMR chemical shifts of 23 large biologically active natural products of different classes.
For this purpose, we have naturally chosen the PBE0 functional [27–29] because the pecS-n
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basis sets logically perform the best in combination with the PBE0 due to the fact that the
latter was used for optimizing the original pecS-n basis sets. Thus, the pecS-n logically
manifests the best performance only in combination with the PBE0 functional, and there
is no point in discussing other functionals when calculating with the pecS-n basis sets.
Thus, what is tested in this work is the performance of the developed basis sets only in
combination with the PBE0 functional and no others.

Another important goal of this work is to study the changes in accuracy when applying
our basis sets with less contracted p-shell. Indeed, we are witnessing rapidly developing
computer technologies nowadays, which opens new perspectives for more computer-
resource-demanding quantum chemical calculations. This allows one to slacken the pursuit
of very small basis sets used in the NMR calculations of large molecules to some extent.
In this respect, our pecS-1 and pecS-2 basis sets are indeed very compact due to a large
contraction ratio, being of about 50 and 30% for the hydrogen pecS-1 and pecS-2 basis
sets, respectively, and of about 30% for the rest of atoms. Thus, based on solid statistics,
we will give the answer to the question of what benefits one can obtain in accuracy when
lowering the contraction of the p-shell of our basis sets. This is an important question from
a practical point of view since whatever computer power is accessible now, adding only
one p-function leads to as many as three additional functions for each hydrogen and carbon
atom, which results in a substantial increase in the overall basis set space in the case of
large natural products.

2. Results and Discussion
2.1. Brief Notes on PEC-Generated Contraction Coefficients

The main idea of the PEC method [24] consists of the optimization of basis sets in
relation to a certain molecular property provided that the least possible total molecular
energy of fitting molecules is achieved. More specifically, the basis set exponents are
randomly generated around the starting set via the Monte Carlo simulations. The generated
arrays are verified whether they give the property under interest within a desired diapason
or not. Of all sets that provide the property in the desired range, only one set is selected,
namely, the one that gives the lowest energy. It should be mentioned that the optimization
of the property under the energetic constraint represents a nonlinear problem with multiple
solutions, which is not correctly solvable using standard optimization procedures based
on the directed search, like numerical Newton-like methods [30]. In this sense, our PEC
approach, based on Monte Carlo simulations, is more suitable for solving such optimization
problems because it is not bound to find only a single extremum in the close vicinity of the
starting point.

The pecS-n (n = 1, 2) basis sets for hydrogen and carbon atoms presented in refer-
ence [22] were obtained via the PEC algorithm, viz., by minimizing the mean absolute
deviations of the 1H and 13C NMR chemical shifts of several fitting molecules from their
target values under the energetic constrain. Their original contraction schemes were chosen
based on a minimally necessary number of functions capable of providing the near-zero
contraction error. These contractions are very tight and close to that of Jensen’s contraction
schemes of the pcS-n basis sets.

In this work, we have decided to release one p-function of both pecS-n (n = 1, 2)
basis sets for hydrogen and carbon atoms and perform the optimization procedure for
the whole set of the contraction coefficients for the p-shell via the PEC algorithm. This
idea was inspired by constantly developing computer power and an observation made by
Jensen [15], which consists of the p-shell that plays an important role in the paramagnetic
term of shielding constants. It is worth noting that in the case of hydrogen atoms, releasing
one p-function in both pecS-n (n = 1, 2) basis sets results in a fully uncontracted p-shell.
Thus, further discussion of the optimization procedure is relevant to carbon atoms only.

New contraction coefficients for the p-shell were optimized using the DFT approach
with the PBE0 exchange-correlation (XC) functional [27–29] in the gauge, including atomic
orbitals (GIAO) formalism [31]. The PBE0 functional represents the model that has been
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used in our previous work [22] to generate both the exponents and the original contraction
coefficients for the pecS-n basis sets. That is why it represents a reasonable choice in
this work.

The main procedure can briefly be described as the minimization of the contraction
errors due to the p-shell contractions, provided the least possible molecular energy of the
fitting molecules is achieved. The optimization of the contraction coefficients for the carbon
basis sets of both levels was carried out using three fitting molecules, namely, acetylene
(C2H2), ethylene (C2H4), and methane (CH4). The fitting molecules were chosen to be small
in size and to provide a wide diversity of carbon shielding constants.

The pecS-n basis set with varying p-shell contraction coefficients was set on the carbon
atoms, while the originally contracted pecS-n basis set of the corresponding level was set
on hydrogen atoms.

Thus, the optimization process of contraction coefficients can be represented as follows:

∼
∆ =

1
3

3

∑
n=1

∣∣∣∼σn − σideal,n

∣∣∣→ min (1)

3

∑
n=1

∼
En → min (2)

The ideal or target values of the carbon shielding constants (σideal,n) of the fitting
molecules were obtained using the pecS-n basis sets with fully uncontracted p-shells (and
contracted s-shells), set on carbon atoms, and the original pecS-n basis sets on hydrogen
atoms. The ideal values of σ(13C) are as follows: 108.06, 50.87, and 192.94 ppm for C2H2,
C2H4, and CH4, respectively. The total molecular energy tolerance threshold was set to

10−5 Hartree. The final mean absolute error
∼
∆ of the carbon shielding constants of three

fitting molecules relative to their ideal values did not exceed 0.01 ppm.
The pecS-n (n = 1, 2) basis sets for carbon atoms with newly optimized contraction

coefficients of the p-shell are presented in the Supplementary Material. Detailed structures
of modified and original pecS-n (n = 1, 2) basis sets together with their sizes and numerical
estimations of the contraction depths and mean absolute and percentage contraction errors
(MACEs, MAPCEs) are given in Table 1.

Table 1. Comparative analysis of the original and new contraction schemes for the p-shell of the
pecS-n (n = 1, 2) basis sets.

Atom Basis Set
[Uncontracted|

Contracted]
Composition

Detailed
Contraction of the

p-Shell

Number of
Uncon-

tracted Basis
Set

Functions,
Nuc

Number of
Contracted
Basis Set

Functions,
Nc

Cont. Depth
(Nuc − Nc)/Nuc,

%
MACE,
in ppm

MAPCE,
in %

H

original
pecS-1 [4s2p|2s1p] 2p→ (2) 10 5 50 0.03 0.1

modified
pecS-1 [4s2p|2s2p] 2p→ (1, 1) 10 8 20 0.03 0.1

original
pecS-2 [6s3p1d|3s2p1d] 3p→ (2, 1) 20 14 30 0.03 0.1

modified
pecS-2 [6s3p1d|3s3p1d] 3p→ (1, 1, 1) 20 17 15 0.01 0.0

C

original
pecS-1 [7s5p1d|4s3p1d] 5p→ (3, 1, 1) 27 18 33 0.39 0.5

modified
pecS-1 [7s5p1d|4s4p1d] 5p→ (2, 1, 1, 1) 27 21 22 0.18 0.3

original
pecS-2 [10s7p2d1f |5s4p2d1f ] 7p→ (4, 1, 1, 1) 48 34 29 0.45 0.6

modified
pecS-2 [10s7p2d1f |5s5p2d1f ] 7p→ (3, 1, 1, 1, 1) 48 37 23 0.05 0.0

The mean absolute contraction errors (MACEs) were evaluated as the average absolute
deviations of the 1H and 13C NMR shielding constants of three fitting molecules, calculated



Int. J. Mol. Sci. 2023, 24, 14623 5 of 17

with either originally or newly contracted pecS-n basis sets, set on the NMR spectator atoms
(σi,c, i = 1−3), from the values obtained with totally uncontracted (in all shells) pecS-n basis
sets, set on the same atoms (σi,uc). The rest atoms were described in the originally contracted
pecS-n basis sets. For the hydrogen shielding constants, σi,c represent the values obtained
with the pecS-n basis set with fully uncontracted p-shell. Thus, the MACE is expressed
as follows:

MACE =
1
3

3

∑
n=1
|σi,c − σi,uc| (3)

The mean absolute percentage contraction errors (MAPCEs) were evaluated as the
average relative deviations of the σi,c from σi,uc, taken in an absolute value and expressed
in the percentage terms:

MAPCE =
1
3

3

∑
n=1

∣∣∣∣σi,c − σi,uc

σi,uc

∣∣∣∣× 100% (4)

As one can see from Table 1, releasing one p-function did not lead to a noticeable
effect. To be more precise, the MACE of the pecS-1 basis set for hydrogen atoms does
not change at all, keeping its value of ca. 0.03 ppm on going from the original to the
newly contracted version. At the same time, the MACE provided by the pecS-2 basis
set for hydrogen decreases only insignificantly, from ca. 0.03 to 0.01 ppm. In the case of
carbon basis sets, releasing one p-function reduces the MACE almost in half (decreasing
it from 0.39 to 0.18 ppm) for the pecS-1 basis set and almost negates the error (decreasing
it from 0.45 to 0.05 ppm) for the pecS-2 basis set. However, the MACEs provided by the
original carbon pecS-n basis sets are insignificant per se. Therefore, diminishing them
next to nothing by releasing one p-function is expected to bring about only a minor effect
on the overall accuracy. Moreover, the corresponding MAPCEs for the original and new
contractions of carbon basis sets are also very small, being of, accordingly, 0.5 and 0.3%
and 0.6 and 0.0% for the pecS-1 and pecS-2 basis sets, respectively. At this point, we expect
only a small positive effect from less succinct contractions of the p-shell of the hydrogen
and carbon pecS-n basis sets. However, this conclusion is to be validated on the extensive
calculations of the 1H and 13C NMR chemical shifts.

2.2. Benchmark Calculations

To examine the performance of the pecS-n (n = 1, 2) basis sets, including both newly
and originally contracted versions, we have carried out calculations of 1H and 13C NMR
chemical shifts of 23 natural products at the GIAO-DFT level with PBE0 functional and
compared the theoretical results with experiment. We have used the PBE0 functional,
as it hitherto has been shown to be one of the best functionals for predicting the NMR
chemical shifts of light nuclei, especially as applied to natural products [32]. Remarkably,
Adamo and Barone [9] showed that the PBE0 functional is competitive with low-order
perturbation post-HF techniques, such as the MP2 method, for well-behaved systems
and gives significantly improved results in the presence of huge correlation effects. Now,
PBE0 functional is one of the most popular functionals used in the calculations of NMR
chemical shifts of a vast variety of molecules. Moreover, it is worth mentioning again
that the PBE0 functional was used by us when generating the pecS-n basis sets for the
atoms of 1–2 periods. That is why the PBE0 represents the best choice when calculating the
proton and carbon NMR chemical shifts with the pecS-n basis sets, and there is no point
in considering any other functionals. However, it could be assumed that the tendencies
observed in this work shall repeat themselves because in the previous paper [22], we have
shown that the MAEs for 1H and 13C chemical shifts, calculated using the PBE0, B97-2,
B3LYP, HCTH, B3PW91, and OLYP functionals in combination with our basis sets, occurred
to be not much of a difference, if any.

The considered natural products are produced by living organisms such as marine
sponges, fungi, and plants. Practically all of them represent very important species with po-
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tential biological activity. The considered compounds include 10′-hydroxyusambarensine
(1), 2-2-di(3-indolyl)-3-indolone (2), acantholactam (3), alasmontamine A (4), anabsinthin
(5), asperlicin (6), chetomin (7), diosgenin-3-O-β-D-glucopyranoside (8), itoaic acid (9),
jaspamide Q (10), korundamine A (11), limonin (12), matopensine (13), mulberrofuran G
(14), 1α,8β,9β,14α,15β-pentaacetoxy-3β-benzoyloxy-7-oxojatropha-5,12-diene (15), pedun-
culagin (16), phyllaemblicin B (17), physalin D (18), procyanidin B2 (19), strychnine (20),
strychnobaillonine (21), terrequinone A (22), and viomycin (23).

In particular, 10′-hydroxyusambarensine (1) was isolated by Frédérich et al. [33]
as a new derivative of usambarensine [34], a plant alkaloid extracted from the roots of
Strychnos usambarensis growing in Central Africa. Compound (1) was presented as a new
antiplasmodial bisindole alkaloid possessing potential antimalarial activity. The structure
of compound 1 was deduced from UV spectra, IR spectrum, and, more importantly for
us, from the analysis of 1H and 13C NMR spectra supported by the data obtained from 2D
NMR experiments such as 1H-1H COSY, HMQC, HMBC, and NOESY [33].

2-2-di(3-indolyl)-3-indolone (2) was isolated by Kobayshi et al. [35] from the Okinawan
marine sponge Hyrtios altum, though originally it was reported as the oxidation product
of indole by Capdevielle and Maumy [36]. Compound 2 showed antibacterial activity
against Bacillus cereus [37], an anaerobic, toxin-producing Gram-positive bacterium found
in soil, vegetation, and food. Its structure was validated via 1H and 13C NMR spectroscopy
together with liquid chromatography–mass spectrometry (LC-MS) and high-resolution
mass spectrometry (HRMS) methods [37].

Acantholactam (3) represents a manzamine alkaloid isolated from the marine sponge
Acanthostrongylophora ingens from Indonesian waters [38]. Compound 3 was shown to ex-
hibit rather low cytotoxic activity, inhibitory activity against the proteasome, and inhibitory
activity against the accumulation of cholesterol esters in macrophages compared to other
products isolated from Acanthostrongylophora ingens [38]. Therefore, its possible application
is yet to be found. The structure of compound 3 was confirmed via 1H and 13C NMR
spectra, supported by the 2D NMR spectra, obtained via COSY, HOHAHA (or TOCSY),
HSQC, and HMBC experiments [38].

Alasmontamine A (4) is a tetrakis monoterpene indole alkaloid, which was isolated
from the leaves of Tabernaemontana elegans [39], a tropical plant found in Indonesia. Com-
pound 4 exhibits moderate cell growth inhibitory activity against HL-60 cells. Structural
studies of Alasmontamine A were carried out using 1H and 13C NMR, COSY, HOHAHA,
HSQC, and HMQC spectroscopy [39].

Anabsinthin (5) is sesquiterpene lactone that can be extracted from the aerial parts
of Artemisia absinthium L., commonly known as wormwood, which is a yellow-flowering,
perennial plant distributed throughout various parts of Europe and Siberia and used for
the antiparasitic effects, as well as to treat anorexia and indigestion. Structural elucidation
of anabsinthin was performed by Aberham et al. [40] based on High-Performance Liquid
Chromatography (HPLC) in combination with 1H and 13C NMR studies.

Asperlicin (6) is a quinazoline alkaloid that was isolated from Aspergillus alliaceus [41],
a species of fungus in the genus Aspergillus. Asperlicin is a competitive cholecystokinin
(CCK) antagonist, which is highly selective for peripheral CCK receptors relative to brain
CCK and gastrin receptors. High-quality 1H and 13C NMR structural studies for asperlicin
were carried out by Sun et al. [42].

Chetomin (7) represents an antibiotic metabolite produced from the fungi species
Chaetomium cochliodes of the family Chaetomiaceae [43,44]. The originally proposed isolation
procedures [43,44] were modified by Brewer et al. [45], who also performed comprehensive
high-resolution NMR studies of compound 7.

Diosgenin-3-O-β-D-glucopyranoside (8) is a steroidal saponin that has been found in
Trillium tschonoskii Maxim Root and has diverse biological activities, including the decrease
in neuronal damage in a rat model of spinal cord injury, the decrease in serum levels
of glucose, insulin, and triglycerides in diabetic mice, and many others [46–50]. The
structure of diosgenin-3-O-β-D-glucopyranoside was thoroughly investigated with IR, Fast
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Atom Bombardment Mass Spectrometry (FABMS), and high-resolution 1H and 13C NMR
spectroscopy by Feng et al. [51].

Itoaic acid or 2β,11β-dihydroxy-3,4-secofriedelolactone-27-oic acid (9) represents a
rare naturally occurring triterpenoid of 3,4-seco-friedelolactone skeleton with potential
anti-inflammatory activity against COX-2, which was isolated from Flacouritaceae plants.
The isolation procedure and structural studies of compound 9, carried out using MS, 1D,
and 2D NMR techniques, were reported by Chai et al. [52].

Jaspamide Q (10) was isolated from the marine sponge Jaspis splendens collected in
Kalimantan (Indonesia). The structure of compound 10 was unambiguously elucidated
via the 1D and 2D NMR spectroscopy by Ebada et al. [53]. In addition, compound 10
was established to manifest significant inhibitory activity against the growth of the mouse
lymphoma (L5178Y) cell line [53].

Korundamine A (11) is a unique heterodimeric naphthylisoquinoline alkaloid compris-
ing two different monomeric biaryl halves. Hallock et al. [54] isolated Korundamine A from
the Cameroonian tropical liana Ancistrocladus korupensis and carried out comprehensive
structural studies using 1H and 13C NMR spectroscopy, including 2D HMQC and HMBC
techniques. Korundamine A was shown to possess anticytopathic activity against HIV-l
and antimalarial activity against Plasmodium falciparum.

Limonin (12) is a natural tetracyclic triterpenoid compound that exists in Euodia rutae-
carpa (Juss.) Benth., Phellodendron chinense Schneid., and Coptis chinensis Franch. Limonin
has a wide spectrum of pharmacological effects, including anti-cancer, anti-inflammatory,
analgesic, anti-bacterial and anti-virus, anti-oxidation, and liver protection properties [55].
The isolation procedure of limonin from the bark of Phellodendron amurense, together with
its NMR study, was presented by Min et al. [56].

Matopensine (13) is a symmetrical bisindole alkaloid, which is extracted from the roots
of Strychnos matopensis and Strychnos kasengaensis, plants from eastern Africa. Matopensine-
type alkaloids were found to exhibit potent and selective activities against Plasmodium [57].
The structure of matopensine has been elucidated using NMR spectroscopy by
Massiot et al. [58,59].

Mulberrofuran G (14) is a Diels–Alder-type adduct derived from mulberrofuran C,
which can be isolated from the ethyl acetate extract of the root bark of cultivated mulberry
tree. Intravenous injection of mulberrofuran G causes a marked depressor effect. The
derivation of mulberrofuran G from mulberrofuran C, together with its NMR study, was
presented by Fukai et al. [60].

1α,8β,9β,14α,15β-pentaacetoxy-3β-benzoyloxy-7-oxojatropha-5,12-diene (15) was iso-
lated from the white latex of Pedilanthus tithymaloides. Compound 15 showed notable
antiplasmodial activity and antimycobacterial activity against Mycobacterium tuberculosis.
The isolation procedure and structural identification based on 2D NMR and MS investiga-
tions were reported on by Mongkolvisut and Sutthivaiyakit [61].

Pedunculagin (16) is a hydrolyzable tannin found in the pericarp of pomegranates
(Punica granatum), in plants in the order Fagales such as walnuts (Juglans regia), in leaves of
Camellia pachyandra Hu., and in some other species. Pedunculagin is an ellagitannin, and el-
lagitannins are known to exhibit antioxidant and anti-inflammatory bioactivity, facilitating
the suppression of disease initiation and progression [62,63]. The first biomimetic synthesis
of pedunculagin (1) was presented by Feldman et al. [64] and its isolation from the leaves
of Camellia pachyandra Hu. supported by 1H, 13C, and 2D-NMR (including 1H-1H COSY,
HSQC, and HMBC) studies was presented by Gao et al. [65].

Phyllaemblicin B (17) is a natural product found in Phyllanthus emblica, a shrub or
tree growing in subtropical and tropical areas of the People’s Republic of China, India,
Indonesia, and the Malay Peninsula. Phyllaemblicin B was found to inhibit Coxsackie virus
B3-induced apoptosis and myocarditis [66]. The procedure of isolation of Phyllaemblicin B
supported via 1H and 13C NMR measurements was reported on by Zhang et al. [67].

Physalin D (18) is a fraction from aerial parts of Physalis angulate, known in Brazil
as camapu, being a branched annual shrub that belongs to the Solanaceae family. Extracts
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from this plant have been used in traditional folk medicine to treat tumors. Physalin D
per se was found to exhibit an inhibitory activity against Mycobacterium tuberculosis. The
procedure of isolation of Phyllaemblicin B supported via 1H and 13C NMR measurements
was carried out by Januário et al. [68].

Procyanidin B2 (19) is a flavonoid that was extracted from hawthorn. Procyanidin
B2 manifests an antioxidant and anti-inflammatory activity [69]. A heteronuclear NMR
study of Procyanidin B2 was undertaken by Khan et al. [70] in order to reliably establish
its structure.

Strychnine (20) is a highly toxic alkaloid that is found in Strychnos nux-vomica (Logani-
aceae). It causes excitation of all parts of the central nervous system, with a characteristic
motor pattern. Strychnine is a competitive antagonist at inhibitory neurotransmitter glycine
receptors in the spinal cord, brain stem, and higher centers. It thus increases neuronal
activity and excitability, leading to increased muscular activity [71]. Strychnine was used
by Martin et al. [72] as a model compound in studying long-range correlations observed
with the earlier reported ACCORD-HMBC pulse sequence using both static and accordion
optimization of the long-range coupling delay.

Strychnobaillonine (21) is an unsymmetrical bisindole alkaloid found in the roots of
liana Strychnos Icaja, mainly used by local populations of Africa as an arrow or ordeal poison
and as a means of the treatment of skin diseases and chronic, persistent malaria. In particu-
lar, strychnobaillonine showed potent activity against the chloroquine-sensitive 3D7 strain
of Plasmodium falciparum. Its structure was defined via detailed 1H, 13C NMR, HSQC, COSY,
NOESY, HMBC, and HRESIMS spectroscopic analyses performed by Tchinda et al. [73].

Terrequinone A (22) is a cytotoxic metabolite isolated from extracts of Aspergillus
Terreus. He et al. [74] reported on the isolation procedure and structure elucidation of
Terrequinone A using 1H and 13C NMR experiments and investigated its cytotoxicity
toward a panel of four human cancer cell lines.

Viomycin (23) is a cyclic peptide antibiotic that has been used in the treatment of
tuberculosis. Hawkes et al. [75] carried out 1H, 13C, and 15N NMR analysis of viomycin,
using it as a model compound in the investigation of intramolecular hydrogen bonding
in peptides.

Aside from bearing a pronounced bioactivity, compounds 1–23 also pose a challenging
computational task due to their considerable sizes and complex electron structure. Given
that NMR data for compounds 1–23 are available, these represent ideal candidates for
rigorous benchmarking of our recently proposed pecS-n basis sets. Indeed, the considered
compounds include only two moderate molecules, namely, strychnine (20) and 2-2-di(3-
indolyl)-3-indolone (2) consisting of 47 and 45 atoms, respectively, while the rest are bulky
molecules containing 60 to 195 atoms, with half of them consisting of more than 80 atoms.
The largest one is alasmontamine A (4), which consists of as many as 195 atoms. For
example, alasmontamine A (4) and strychnine (20) are presented in Scheme 1.

All considered compounds possess multiple degrees of conformational freedom, there-
fore, very accurate protocols for calculating their 1H and 13C NMR chemical shifts would
inevitably involve a multistep procedure, which implies obtaining accurate Boltzmann
conformer weights, followed by NMR calculations for the individual conformers. However,
large natural products potentially have dozens of practically relevant conformers. Thus,
an approach that involves the NMR calculations for all of them becomes very demanding.
Therefore, it can be noticed that when dealing with large molecules, it is frequently the case
that one calculates the NMR chemical shifts for the lowest-energy conformer only [76–78],
while a proper conformational averaging is still the exception rather than the rule [1]. In
this work, we also have performed the calculations in an ordinary manner, considering only
the lowest-energy conformer in each case, as we indeed deal with as many as 23 natural
products of considerable sizes, each of which presents a computational challenge per se.
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Thus, we have carried out six series of calculations of 1H and 13C NMR shielding
constants of compounds 1–23 using different basis set schemes. In the first four series of
calculations, Jensen’s pcS-1 and pcS-2 and our original pecS-1 and pecS-2 basis sets were
used on all atoms. The last two series of calculations were performed with newly contracted
pecS-1 and pecS-2 basis sets (pecS-1 mod and pecS-2 mod) used on hydrogen and carbon
atoms, whereas the rest of atoms were presented, accordingly, in the original pecS-1 and
pecS-2 basis sets. In view of the absence of pecS-n basis sets for sulfur, the corresponding
pcS-n basis sets were used for the atoms of this type.

Calculated shielding constants were transformed to the chemical shifts scale via the
linear regression models, derived from the mapping of the calculated shielding constants
(σcalc) onto the experimental chemical shifts (δexp): δexp = Aσcalc + B, where A represents
the slope (the tangent of the line angle), and B represents the intercept of the model with
the δexp-axis. This was followed by the evaluation of the scaled chemical shifts (δscaled)
that represent the values of chemical shifts restored from the σcalc via the established
linear models.

The measure of accuracy in this work is the Corrected Mean Absolute Errors (CMAEs)
calculated between δscaled and the corresponding experimental values:

CMAE =
1
N

N

∑
n=1

∣∣δscaled,n − δexp,n
∣∣ (5)

where N is the total number of chemical shifts (overall, 713 1H and 767 and 13C NMR
chemical shifts were calculated).

The CMAEs evaluated for scaled 1H and 13C NMR chemical shifts of the whole series
of compounds 1–23, obtained from the shielding constants calculated in each of the six
basis set schemes described above, against the experiment are shown in Figures 1 and 2.
The parameters of each linear regression model are given below in Table 2.

All calculated 1H and 13C shielding constants together with scaled chemical shifts
retrieved from linear regression models and experimental chemical shifts are given in
Tables S1–S4 of Supplementary Material.

Roughly speaking, all considered basis sets give accuracies around 0.28 and 2 ppm for
proton and carbon NMR chemical shifts, respectively. In spite of sufficiently favorable accu-
racies, there are some examples of noticeably large deviations for scaled values of 1H and
13C chemical shifts from their experimental values (see, for example, the calculated scaled
proton chemical shifts of 3.06, 3.09, and 3.11 ppm in compound 1 against its experimental
value of 4.38 ppm in Table S2, or calculated scaled carbon chemical shifts of 140.4, 142.0,
and 141.3 ppm of compound 1 against its experimental value of 135.2 ppm (Table S3), etc.).
Apparently, such outliers can be explained, in the first place, with the omitted factor of
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vibrational corrections. On average, the rovibrational effects are known to provide as much
of a value as the solvent effects do in the case of proton and carbon chemical shifts, and this
factor cannot be said to be systematic; hence, it cannot be alleviated when applying linear
regression analysis. For today, in the case of large real-life compounds consisting of 100–200
atoms, this factor cannot be taken into account within reasonable computational efforts, as it
requires determining the effective (vibrationally averaged) geometry with the calculation of
the cubic force field and the calculation of the second derivatives of the shielding constants
using the numerical differentiation with regard to the normal coordinates at the effective
geometry. Thus, one should bear in mind that the obtained favorable statistics was built
on the data that is not deprived of noticeable outliers, and it is an encouraging fact that
without abandoning such largely deviating values, the general CMAEs are very moderate.
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Table 2. The parameters of linear regression models δexp = Aσcalc + B obtained by mapping the
shielding constants calculated at the GIAO-DFT(PBE0) level with different basis sets (σcalc) onto the
experimental values (δexp) taken from different sources 1.

1H NMR 13C NMR

Basis Set A B R2 A B R2

pcS-1 −0.92079 29.32047 0.96457 −0.95991 179.6763 0.99657
pecS-1 −0.94085 30.03978 0.96750 −0.93108 173.1887 0.99660

pecS-1 mod −0.93398 29.88718 0.96765 −0.94531 175.7673 0.99663
pcS-2 −0.90872 28.87741 0.96807 −0.93833 173.0559 0.99674
pecS-2 −0.91012 28.87941 0.96850 −0.93670 172.2379 0.99676

pecS-2 mod −0.91125 28.94657 0.96860 −0.94024 172.9650 0.99676
1 For the experimental values, see the references: 1 [33], 2 [37], 3 [38], 4 [39], 5 [40], 6 [42], 7 [45], 8 [51], 9 [52],
10 [53], 11 [54], 12 [56], 13 [58,59], 14 [60], 15 [61], 16 [65], 17 [67], 18 [68], 19 [70], 20 [72], 21 [73], 22 [74], and
23 [75].

Going into details, one can see from Figures 1 and 2 that the pecS-n basis sets
demonstrate a better accuracy in both cases compared to the commensurate Jensen’s
basis sets, pcS-n.

Now, we also can give the answer to one of the main questions posed in the beginning:
is it worthwhile to apply a less succinct contraction of the p-shell to our pecS-n basis sets?
From Figures 1 and 2, it is clearly seen that releasing one p-function in the pecS-1 basis sets
gives a benefit in accuracy of about 0.001 and 0.02 ppm in CMAEs for hydrogen and carbon
chemical shifts, respectively, while the same action applied to the pecS-2 basis set for both
atoms gives nothing at all. Thus, we confidently can say that a less succinct contraction of
the p-shell of our pecS-n basis sets does not make sense. This fact indicates high-quality
contraction of our original pecS-n basis sets, such that even releasing one p-function has
no effect on accuracy. At that, the computational costs or the formal operational costs for
modern implementations of the DFT method increase significantly on going from pecS-n to
pecS-n mod version. The example for alasmontamine A is given below in Figure 3. Therein,
N represents the total number of contracted basis set functions participating in the NMR
calculation of alasmontamine A with different basis sets, with N0 being the total number
of contracted basis set functions for the case of smallest pcS-1 basis set (this equals 2223).
The computational costs of modern DFT methods can roughly be estimated as N3, with
N being the total number of basis sets functions. Therefore, the ratio (N/N0)3 depicted in
Figure 3 represents the estimation of the characteristic number of operations algorithmically
executing via the DFT method when applying one of the considered basis sets in relation to
the number of operations needed for the calculation with the pcS-1 basis set.

Overall, we can conclude that our pecS-n basis sets have successfully passed the first
austere test on real-life molecules and demonstrated very good accuracy in the calculations
of proton and carbon chemical shifts of a vast variety of bulky natural products, carried
out using the GIAO-DFT method, even without accounting for Boltzmann averaging. To
demonstrate the accuracy provided by the pecS-2 basis set, we showed in Figure 4 the
correlation plots between the proton and carbon shielding constants calculated at the
GIAO-DFT(PBE0) level with the pecS-2 basis set against the corresponding experimental
chemical shifts for two representative compounds, alasmontamine A (4) and strychnine
(20), depicted on Scheme 1 (vide supra).
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3. Materials and Methods

Geometry optimizations of three fitting molecules (used for the optimizations of
contraction coefficients) were performed in the gas phase at the DFT(PBE0) [27–29] level
of theory using the pc-3 basis set [16,17] on all atoms via the Dalton program [79]. The
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optimizations of contraction coefficients were performed using the PEC algorithm [24].
The calculations of shielding constants of three fitting molecules, involved in the PEC
optimization process or in the estimations of contraction errors, were performed at the
DFT(PBE0) level of theory in the gauge, including atomic orbitals (GIAO) formalism [31] in
the Dalton program.

The initial conformational search of compounds 1–23 was carried out using the OPLS3
force field in the liquid phase of a specific solvent, employing the MacroModel module
implemented in the Schrödinger Maestro 11.5 package [80]. The first-step geometries of the
lowest-energy conformers of each compound were then reoptimized at the DFT level of
theory with the Minnesota M06-2X exchange-correlation functional [81] using the cc-pVTZ
basis set for hydrogen and carbon atoms [12] and aug-cc-pVTZ for nitrogen, oxygen and
sulfur atoms [12,82,83], using the Gaussian 09 code [84]. The optimizations were performed
taking into account the solvent effects using the integral equation formalism polarizable
continuum model (IEF-PCM) [85,86], parametrized for a particular solvent mentioned
in the article with the corresponding experimental data. The equilibrium geometries of
compounds 1–23 are available in the Supplementary Material.

All benchmark calculations of shielding constants were carried out at the GIAO-DFT
theory with exchange–correlation functional PBE0 via the IEF-PCM using the pcS-1, pcS-
2 [15], pecS-1, and pecS-2 [22] basis sets, including the modified versions of the latter two,
in the Gaussian 09 program.

4. Conclusions

In this paper, we have performed the first challenging test of our previously proposed
pecS-n (n = 1, 2) basis sets on the example of 23 real-life biologically active natural products.
The pecS-n basis sets have successfully passed this austere test, demonstrating very good
accuracy in the calculations of 713 1H and 767 13C chemical shifts, carried out at the
GIAO-DFT(PBE0) level of theory. The accuracy reached can be expressed in terms of the
corrected mean absolute errors (CMAEs) as 0.284 and 0.271 ppm for hydrogen chemical
shifts and as 2.04 and 1.98 ppm for carbon chemical shifts, for the pecS-1 and pecS-2 basis
sets, respectively.

In this paper, we also have proposed new alternative contraction schemes for our
pecS-n (n = 1, 2) basis sets by releasing one function in their p-shells and reoptimizing
the contraction coefficients for the whole p-shell using the property-energy consistent
(PEC) method. The performance of the pecS-n (n = 1, 2) basis sets with new contraction
of the p-shell was also tested on the calculations of proton and carbon chemical shifts of
all 23 natural products. It was found that the new contraction of the pecS-1 basis sets
gives the benefit in accuracy of only 0.001 and 0.02 ppm in CMAE terms for hydrogen
and carbon chemical shifts, respectively, while the new contraction of the pecS-2 basis set
for both atoms gives no advantage in accuracy at all. Thus, a less succinct contraction of
the p-shell of our pecS-n basis sets does not make sense. This points to the fact that the
original contraction of the pecS-n basis sets is of high quality. Therefore, it does not need
any corrections, and the pecS-n basis sets as they are now can be of great practical use in the
large-scale calculations of 1H and 13C NMR chemical shifts of real-life organic compounds.
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