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Abstract: The use of patient-derived tumor tissues and cells has led to significant advances in
personalized cancer therapy and precision medicine. The advent of genomic sequencing technologies
has enabled the comprehensive analysis of tumor characteristics. The three-dimensional tumor
organoids derived from self-organizing cancer stem cells are valuable ex vivo models that faithfully
replicate the structure, unique features, and genetic characteristics of tumors. These tumor organoids
have emerged as innovative tools that are extensively employed in drug testing, genome editing, and
transplantation to guide personalized therapy in clinical settings. However, a major limitation of this
emerging technology is the absence of a tumor microenvironment that includes immune and stromal
cells. The therapeutic efficacy of immune checkpoint inhibitors has underscored the importance of
immune cells, particularly cytotoxic T cells that infiltrate the vicinity of tumors, in patient prognosis.
To address this limitation, co-culture techniques combining tumor organoids and T cells have been
developed, offering diverse avenues for studying individualized drug responsiveness. By integrating
cellular components of the tumor microenvironment, including T cells, into tumor organoid cultures,
immuno-oncology has embraced this technology, which is rapidly advancing. Recent progress in
co-culture models of tumor organoids has allowed for a better understanding of the advantages and
limitations of this novel model, thereby exploring its full potential. This review focuses on the current
applications of organoid-T cell co-culture models in cancer research and highlights the remaining
challenges that need to be addressed for its broader implementation in anti-cancer therapy.

Keywords: patient-derived organoid; T cells; co-culture system; tumor microenvironment

1. Introduction

Recent progress in our understanding of the tumor microenvironment (TME) has
led to the development of effective therapies for advanced cancer in recent years. Treat-
ing numerous patients with cancer with monoclonal antibodies that target the inhibitory
receptors expressed by immune cells (immune checkpoint blockade, ICB) has shown
remarkable response rates in various solid tumors and hematologic malignancies [1].
Therefore, it is crucial to develop preclinical models that can investigate the TME and
guide clinical precision therapy [2]. Immune checkpoint inhibition (ICI) therapy has
emerged as a groundbreaking advancement in cancer treatment, revolutionizing the field.
Over the past decade, anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) drugs, such as nivolumab and ipilimumab,
have demonstrated remarkable clinical efficacy in specific patient groups [3,4]. Numerous
clinical trials have provided substantial evidence supporting the effectiveness of these
therapies [5]. They have shown particularly high efficacy in tumor types characterized by
high mutational burden resulting from genetic instability [6]. Although therapies focusing
on ICI show promising clinical potential, their effectiveness, particularly in solid tumors,
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remains limited [7]. Despite improvements in patient outcomes with ICI therapies for
various cancer types, only a small percentage of patients treated with ICI achieve long-
lasting responses. Even in melanoma, which has a relatively high response rate to ICI,
60–70% of patients do not experience a significant response to anti-PD-1 therapy. Among
those who respond, 20–30% eventually experience tumor relapse and progression [8–10].
These findings highlight the need for further research to understand the underlying mecha-
nisms of resistance to ICI therapy and to develop strategies to improve treatment responses
and long-term patient outcomes. Tumor organoids are three-dimensional (3D) in vitro
cultures derived from patient tumor samples that accurately represent the genetic features
and histological properties of the original tumor [11,12]. These organoids contain various
cell types, including differentiated and cancer stem cells, faithfully mimicking the compo-
sition of native tissue [13,14]. However, the lack of representation of the TME, including
the T cells surrounding the tumor in in vitro models, leads to discrepancies between the
clinical response to ICI administered to patients and the observed responsiveness in pre-
clinical settings [15,16]. Although precision 3D in vitro models have been successfully
implemented for certain cancer types (e.g., breast cancer [17] and liver cancer [18]), their
use in the preclinical modeling of pancreatic cancer has been largely limited to patient-
derived mouse xenografts. Patient-derived mouse xenograft models have primarily been
used for the preclinical evaluation of therapeutic agents, and the success of engraftment is
correlated with the extent of prior treatment [19]. Tumors that have undergone extensive
pre-treatment often fail to successfully engraft as xenografts. Therefore, recent attempts
have been made to co-culture tumor organoids and T cells to mimic the interactions be-
tween tumor and T cells [20]. Co-culture models of T cells and tumor organoids provide
valuable tools for investigating these interactions and understanding the mechanisms of
tumor immunity. This review aims to critically evaluate the current state of knowledge
on co-culture models of T cells and tumor organoids, identify gaps in the literature, and
provide recommendations for future research.

2. Overview of Co-Culture Models in Cancer Research

Co-culture models in cancer research have personalized medical applications [21,22].
Co-culture systems can be used to investigate the role of immune cells in tumor progression,
the impact of immune cell infiltration on tumor growth and metastasis, the effectiveness of
immunotherapies, and the development of drug resistance mechanisms [23–25]. Co-culture
models have been developed for various types of cancer, including solid tumors and hema-
tological malignancies [26,27]. Immunotherapy has significantly improved the overall
survival of patients with cancer, particularly those with hematological malignancies [28].
The co-culture models provide a powerful experimental platform for studying the complex
interactions between tumor cells and various immune cells, advancing our understanding
of cancer biology, facilitating the development of immunotherapeutic strategies, and en-
abling high-throughput screening [29,30]. These models include various types of co-culture
systems, such as direct or indirect co-cultures [31], media transfer models [32], transwell
co-cultures [33], 3D organoid co-culture systems [34], and microfluidic chambers [35], each
with its advantages and limitations (Figure 1). The current methods of preclinical discovery
for new anti-cancer therapeutics involving two-dimensional (2D) in vitro cell cultures and
animal models face challenges such as high costs, ethical concerns related to rodent use,
and low correlations with clinical trial data owing to species differences. Moreover, 2D cell
cultures do not accurately represent the 3D spatial environment, extracellular matrix, or
stromal cellular components of human tumors. To address these limitations, researchers
have turned to 3D in vitro tumor models as potential alternative testing platforms for
screening new anti-cancer drugs [36].
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to another dish for this purpose. In the transwell co-culture system, immune cells are embedded
in a matrix on top of a transwell insert, while cancer cells are embedded in the bottom. A 3D
spheroid co-cultured with immune cells represents a 3D cell culture model where cells aggregate
to form a spherical structure. The integration of organoids, immune cells, and cancer-associated
fibroblasts (CAFs) is achieved by embedding them in Matrigel. Microfluidic chambers, also referred
to as organ chips, are miniature devices designed to mimic the functions of human organs on a
microscale. These chips are typically constructed from transparent materials like silicone or glass and
feature tiny channels or chambers that can be lined with human cells. The primary component of
these microfluidic chambers is the irrigation-controlled microchannel, which supports the growth of
various living cells such as cell lines, immune cells, and organoid endothelial cells.

Cell spheroids have gained significant attention among the different types of 3D tumor
models and are widely used as scaffold-free models. Cell spheroids are aggregates of cancer
cells with tumor-like characteristics [37]. They provide a more realistic representation of the
TME than 2D cultures. Several technologies are available for the assembly of 3D spheroids.
These models offer a more representative simulation of the complex TME and aid in evaluat-
ing drug responses and potential immunotherapy strategies [38]. Spheroids are structurally
simple models that are primarily used for applications such as drug screening. Organoids,
however, derived from stem or progenitor cells, are cellular aggregates used to miniaturize
and replicate organ functions. They have gained increasing prominence in developmental
biology and medicine. Organoids closely resemble the histological and genetic character-
istics of the original tumor from which they are derived. Due to their ease of generation,
long-term culture capabilities, and the ability to cryopreserve them, organoids have become
increasingly important in fields such as cancer research, neurobiology, stem cell research,
and drug development, as they offer an enhanced modeling of human tissues [33].

Organoid-on-a-chip denotes an experimental model employed in scientific and medi-
cal research, combining two technologies: organoids and microfluidic chips (microchips).
These models are capable of replicating dynamic microenvironments, including those found
in tumor pathophysiology and tissue-tissue interactions [39]. Organoids have typically
been cultured in a substance called Matrigel. Matrigel is derived from the secretions of
Engelbreth-Holm-Swarm mouse sarcoma cells and is complex and poorly defined [40]. This
complexity makes it challenging to understand the specific factors of Matrigel that regulate
organoid development. Interestingly, according to research by Tsai and colleagues, after
72 h of cultivation in the liquid phase of organoid cultures, T-lymphocytes remained viable.
Interestingly, those T-lymphocytes situated at the periphery of empty Matrigel domes
formed a distinct boundary without infiltrating the Matrigel substance. In contrast, when
T cells were positioned at the boundary of Matrigel domes containing patient-derived
primary organoids, they exhibited infiltration into the Matrigel, migrated towards the
organoids, and diffused along the boundary. Notably, lymphocyte infiltration was ob-
served exclusively in the presence of organoids. These findings strongly suggest that T cell
migration in these innovative organotypic models is influenced by the presence of tumor
cells. T cells play a crucial role as major effectors of the immune response against tumors.
When activated by tumor-associated antigens, they can proliferate and exert cytotoxic
effects, eliminating tumor cells. However, immune escape mechanisms in tumors, includ-
ing the overexpression of immune checkpoints, such as PD-1, contribute to tumor-related
immunosuppression. Current immunotherapies targeting these pathways have shown
limited efficacy in colorectal cancer (CRC), highlighting the need to identify new targets for
immunotherapy in this cancer type. Bonnereau J et al. [41] investigated the phenotype of
tumor-related and non-tumor-related intestinal T cells in a prospective cohort of patients
with CRC (n = 44), focusing particularly on the adenosinergic pathway and its correlation
with the clinical phenotype. To create a relevant experimental model, they developed an
autologous co-culture system using patient-derived primary tumor spheroids and their
tumor-associated lymphocytes. Using this model, it is possible to assess the impact of
CD39 inhibition on the immune response of anti-tumor T cells. These results revealed an
increased expression of CD39, along with its co-expression with PD-1, in tumor-infiltrating
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T cells compared with that in mucosal lymphocytes. CD39 expression was higher in the
right colon and early-stage tumors, suggesting that a subset of patients may benefit from a
CD39 blockade. Moreover, under autologous conditions, they demonstrated that block-
ing CD39 induced T cell infiltration and led to the destruction of tumor spheroids in the
co-culture system. In recent years, significant efforts have been devoted to developing 3D
co-culture tumor models involving the co-cultivation of patient-derived organoids (PDO)
and T cells [41]. Cellular immunotherapy has reshaped the landscape of therapeutic oncol-
ogy. One notable approach is chimeric antigen receptor (CAR) T cell therapy, a technique
involving the collection of an individual’s T cells and genetically engineering them to
express CARs capable of recognizing and attacking cancer cells [42]. Typically, CAR T cells
are administered systemically to target tumor cells and exert their anti-tumor activity [43].
Organoid-immune cell co-culture models have been validated as crucial preclinical models
for assessing the efficacy and toxicity of immunotherapies for solid tumors. In cases where
the development of CAR T cells has been hindered by off-target toxicities related to antigen
expression in normal tissues, these models have provided crucial insights. Schnalzger et al.
(2019) developed experiments to evaluate the killing capacity of CAR-engineered natural
killer cells against both normal and tumor-derived PDOs. Their research demonstrates
the suitability of organoid models for validating tumor-specific neoantigen targets and
identifying off-target toxicities in a preclinical context [44]. More recently, Dekkers et al.
(2023) have developed a co-culture system to observe the real-time activity and behavior
of engineered T cells against PDOs [45]. Immune-compromised models fail to replicate
the intact immune system, thus limiting their ability to regulate CAR T cell function.
Furthermore, there is clinical evidence of crosstalk between infused CAR T cells and the
endogenous immune system [46,47], emphasizing the need to analyze CAR T cells in an
immune-competent environment.

Organoids self-assemble into intricate structures that partially mimic in vivo physiol-
ogy, making them promising tools for bridging the gap between preclinical research and
clinical applications. Consequently, organoids have emerged as a valuable resource for
in vitro drug testing [48]. Organoids are anticipated to facilitate advancements in under-
standing diseases that have historically been challenging or impossible to model accurately.

3. Co-Culture Models of T Cells and Tumor Organoids

Cancer organoids serve as valuable ex vivo and in vitro model systems to study the
impact of the tumor microenvironment (TME) on cancer growth. In recent years, co-culture
models of T cells and tumor organoids have gained popularity owing to advancements in
organoid technology and the increasing interest in cancer immunotherapy research [49,50].
Efforts have been made to co-culture tumor organoids with various immune cell types
(Table 1). These models contribute to our understanding of tumor immunology, aid in
developing novel immunotherapies, and facilitate personalized medical approaches by
assessing individual responses to treatments (Figure 2). A published protocol from 2021
provides a useful tool for co-culturing human intestinal organoids and CD4+ T cells to
investigate T cell–intestinal epithelial cell interactions during tissue development and
inflammation [51]. One approach involves co-culturing cancer organoids with peripheral
blood mononuclear cells (PBMCs) to generate patient-specific tumor-reactive cytotoxic
T cells [20]. This strategy takes advantage of the fact that a high level of neoantigen
presentation is crucial for eliciting a strong anti-tumor immune response mediated by
antigen-specific T cells. Dijkstra et al. [52] successfully expanded tumor-reactive T cells
from paired PBMCs using microsatellite instability (MSI)-high CRC and non-small cell lung
cancer (NSCLC) organoids. They quantified the expansion of T cells based on organoid-
specific killing. In co-cultures of CRC T cell organoids with high major histocompatibility
complex-I expression, CD8+ T cells showed an upregulation of CD107a and a secretion of
IFN-gamma in 50% of the cases. Similar responses were observed in NSCLC co-cultures,
even in patients who did not exhibit tumor reactivity before the co-culture. One study used
co-cultures to demonstrate PBMCs and purified T cell responses against patient-derived
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cholangiocarcinoma to study growth inhibition and the induction of organoid cell death by
these cells [53]. Furthermore, they investigated the mechanism of cell death induced by T
cells and described patient-specific differences in the sensitivity to immune cell cytotoxi-
city. Meng et al. [54] developed a platform that involved co-culturing autologous tumor
organoids with PBMCs to identify and expand tumor-targeting T cells from the circulation
of patients with pancreatic cancer. T cells pre-treated with these organoids underwent
clonal expansion and expressed tissue-resident memory T cell markers, demonstrating their
ability to effectively kill autologous tumor organoids. These findings suggest the potential
of co-cultures to generate tumor-reactive T cells, indicating the possibility of personalized
immunotherapy approaches. The extent of cell death observed in an in vitro co-culture
assay correlated well with the patient’s response to chemotherapy and immune checkpoint
blockades [55]. Additionally, the authors tested the effectiveness of ICB using PD-1 anti-
bodies in a co-culture model and found that blocking PD-1 improved organoid killing by
PD-1high T cells. Two other groups have described organoid-based immuno-oncology as-
says that involve engineered cytotoxic lymphocytes designed to recognize specific antigens
and kill organoids expressing these antigens [44,55]. The first group engineered chimeric
antigen receptor-modified natural killer cells to recognize selected antigens [44], whereas
the second group generated cytotoxic T cells with transgenic T cell receptors (TCRs). In both
cases, a robust antigen-specific cytotoxicity was observed against cancer organoids that
presented the target antigen [44]. Co-culture models of T cells and tumor organoids offer
a versatile platform for investigating the intricate interactions between T and tumor cells.
By incorporating various factors, such as the presence of other immune cell populations,
the role of tumor-associated antigens, and the effects of immune-modulating drugs, these
models enable the exploration of their impact on T cell–tumor interactions. Moreover,
these models serve as valuable tools for evaluating the effectiveness of novel therapies or
combination treatments in a clinically relevant context, aiding the advancement of cancer
research and the development of more efficient cancer treatments.
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cation. Tumor tissues are collected after surgical resections to isolate TILs and generate organoids
from patients. Additionally, autologous PBMCs can be isolated from the blood. The co-culture
model of organoids and T cells is optimized for studying disease modeling, patient-specific drug
responsiveness, and signaling pathways mediated by interactions in the TME, representing biological
relevance. It can be applied in various research areas.
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Table 1. Comparison of organoid microenvironment models and co-culture techniques.

Tissue Origin Organoid Success
Rate Co-Culture-Immune Cell Co-Culture Method Drug Test References

Colorectal cancer 80% Dendritic cells CD8+ T cell,
macrophage Domes Matrigel Immunotherapy [20,56,57]

Renal cell carcinoma 67% CD8+ T cell
Submerged Matrigel, ALI

system, a 3D spheroid
co-culture system

Immunotherapy [58,59]

Lung cancer 79% CD4+ T cell, CD8+ T cell,
macrophages

Submerged Matrigel
domes, ALI system

Immunotherapy,
CART cell therapy [21,60–62]

Bladder cancer 50% CD8+ T cell Domes Matrigel Immunotherapy [63–66]
Pancreatic cancer 75–83% CD8+ T cell, Dendritic cell Domes Matrigel Immunotherapy [67–70]
Liver cancer and

CCA 1
HCC organoids: 26%,
CCA organoids: 36% CD8+ T cell, TILs, PBMCs Domes Matrigel None [71–73]

Breast cancer 87.5% None None None [74,75]
Prostate cancer 20% None None None [76]

1 HCC, hepatocellular carcinoma; CCA, cholangiocarcinoma.

4. Clinical Relevance of Co-Culture Models of T Cells and Tumor Organoids

This immune–organoid co-culture platform can potentially advance immunotherapy
research based on individualized patient characteristics. One treatment approach that
can benefit from personalized strategies is ICB therapy, which relies on the interaction
between immune checkpoints and their corresponding ligands on immune and tumor cells.
Because of the intra- and inter-tumoral heterogeneities in the clinical efficacy of ICB therapy,
Votanopoulos et al. [77] investigated the effects of the PD-1 inhibitors pembrolizumab
and nivolumab on organoids. They observed a decrease in cell viability in organoids
made from a composite of patient-derived melanoma cells and lymph nodes. In 85% of
the cases (six out of seven), immune-enhanced patient-derived tumor organoids (iPTOs)
showed a good response to immunotherapy, consistent with the clinical response observed.
In another experimental study, T cells from PBMCs were circulated through iPTO and
subsequently transferred to tumor organoids from the same patient, resulting in tumor
killing, suggesting a possible role of iPTO in generating adaptive immunity. In the study
by Chalabi et al. [78]., a co-culture model was constructed using PBMCs from a cohort of
patients with early-stage colon cancer who received combined anti-PD-1 and anti-cytotoxic
T-lymphocyte-associated protein 4 neoadjuvant immunotherapy. Six non-responders and
six responders were selected for this study. The in vitro experiments demonstrated that T
cells from responders were activated and effectively killed tumor cells, whereas T cells from
non-responders showed no reactivity toward tumor organoids. Three of the six responder
patients did not exhibit T cell reactivity. This suggests that the co-culture model requires fur-
ther optimization to improve its accuracy in predicting the efficacy of ICI therapy. Teijeira
et al. [79] established seven PDOs from treatment-resistant metastatic CRC and one PDO
from treatment-naïve primary CRC. This study examined the sensitivity mechanisms of
cibisatamab, a bispecific monoclonal antibody that targets intratumoral carcinoembryonic
antigen (CEA), in relation to CD3 T cell activation Researchers have used a co-culture
system with PDOs and allogeneic CD8+ T cells to evaluate the efficacy of cibisatamab. The
results showed that PDOs with a low CEA expression exhibited resistance to cibisatamab,
whereas those with a high CEA expression were sensitive to the antibody. Using organoids
in co-culture models provides valuable insights into the resistance of MSI-high CRC to
ICI in the presence of inflammation. Sui et al. established tumor organoids derived from
MSI-high CRC patients who received PD-1 blockade therapy and co-cultured them with
TILs or PBMC-derived T cells. The results showed that patients with local inflammatory
conditions during treatment exhibited a higher proportion of disease progression and
worse progression-free survival [80]. Furthermore, the co-culture of organoids with im-
mune cells demonstrated a higher proportion of apoptotic organoid cells in the PBMC
group in one patient with inflammation, suggesting an inhibited local immune response to
tumors [81]. Previous studies have shown that inhibiting PI3K can enhance the effectiveness
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of immunotherapy by sensitizing tumor cells to immune recognition or improving T cell
functions [82]. Additionally, KRAS mutations are associated with promoting inflammation
and the secretion of immunosuppressive cytokines [83]. In this study, the researchers inves-
tigated whether the combination of PI3K and immune checkpoint inhibitors influenced T
cell-mediated tumor killing in a co-culture system using patient-derived tumor organoids
(PDTOs). They found that the pre-treatment of PDTOs with PI3K inhibitors resulted in a
reduction in IL-8 secretion, a cytokine that promotes NSCLC cell growth and survival, and
hinders T cell function by upregulating PDL-1 on tumor cells and inducing apoptosis in
certain CD8+ T cell subsets [64]. As preclinical models, PDTOs are still in the early stages
of development, particularly for therapies that require the presence of immune cells. It is
crucial to validate PDTO responses against patient responses to confirm the usefulness of
these co-culture platforms as preclinical models for immunotherapy. Although there is a
long road ahead and room for improvement, these models will undoubtedly positively
affect precision cancer immunology in the coming years.

5. Challenges and Limitations of Co-Culture Models of T Cells and Tumor Organoids

Although organoids are recognized as “miniature organs” and show great potential in
basic cancer research and clinical applications, several challenges and obstacles still need to
be addressed. First, the establishment, maintenance, and transplantation of organoids can
be costly [84]. Second, the success rates of establishing different types of cancer organoids
vary considerably. Improving the establishment rate is important and can be influenced
by various factors, such as the cellular composition of the original tissues [85]. Third, it is
necessary to establish optimized and standardized culture conditions for different tumor
organoids to enhance their reproducibility on a large scale and facilitate their applica-
tion in HTS [86]. In addition, intra-tumoral heterogeneity contributes to drug resistance,
compromising cancer treatment efficacy. Using established colon organoid and cell line
models, drug responses were measured for 24 anti-cancer compounds. All 12 patients ex-
hibited diverse molecular heterogeneity based on tumor regions, and even within the same
tumor region, significant differences in drug responses were observed among different
subregions [87]. In particular, organoids established from different regions within a single
tumor show varying responsiveness to the same molecularly targeted anti-cancer agents,
depending on their mechanisms of action. To overcome this challenge, it is important to
target mutations shared by all cancer subclones and comprehensively integrate various
genetic factors, transcriptomes, and protein heterogeneity. Obtaining patient-derived tumor
tissues and immune cells such as TILs can be challenging. Heterogeneity among patient
samples and the limited availability of these materials can affect the reproducibility and
scalability of co-culture models. Co-culture models often utilize isolated immune cell
populations such as T cells or PBMCs, which may not fully represent the complexity of the
entire immune system. The interactions and contributions of other immune cell subsets,
such as dendritic cells, macrophages, and natural killer cells, are not fully understood in
these simplified models [25].

Although it partially reflects interactions between tumor and immune cells, it cannot
fully replicate the intricate mechanisms and interactions found in the TME, including those
among surrounding cells such as vascular cells and CAFs. Consequently, co-culture models
require further refinement to better address the complexity and diversity of tumor-immune
interactions, as well as to tackle issues related to standardization and reproducibility.

6. Future Directions for Co-Culture Models of T Cells and Tumor Organoids

To enhance the efficacy of anti-tumor immunotherapy, there is a growing focus on
testing the immune response of patients using in vitro microfluidic technology, also known
as organ-on-a-chip technology. These systems, based on human microfluidic chips, aim to
assess the effects of ICB on a controlled and representative TME [23]. A lymph node-on-
a-chip flow device was developed to investigate the mechanical forces between antigen-
presenting dendritic cells (DCs) and different types of T cells (CD4+ versus CD8+) or antigen-
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specific and non-specific T cells in in vitro settings. This device utilizes a simple perfusion
system that applies a controlled tangential shear, allowing the study of interactions that
are not easily detectable using traditional in vitro systems [87]. Aung et al. [88] employed
a tumor-on-a-chip platform based on GelMA gelatin hydrogel to develop a breast cancer
model. This ex vivo platform incorporates multiple cell types, including cancer cells
(MCF7), monocytes (THP-1), and endothelial cells. To simulate this process, T cells were
dispersed in perfused media and allowed to infiltrate the tumor model. The addition of
monocytes to cancer cells improves T cell recruitment, which is associated with chemokine
secretion. This microfluidics-based approach enables the modeling of 3D tumor tissues
with microenvironmental heterogeneity, thereby providing valuable cancer models for
various clinical applications. Further studies are needed to validate the clinical applicability
of these novel tumor models, considering patient response data, and to evaluate their
suitability for immunotherapy screening purposes.

Organoids have emerged as a groundbreaking technology and become vital method-
ologies in biomedical studies. They have found applications in tissue engineering, regener-
ative medicine, disease modeling, drug screening, and toxicological studies, allowing for
the restoration of 3D structures and primary cell types. Furthermore, they have been used
in translational applications, such as predicting chemotherapy and radiotherapy resistance
before treatment, and gene editing for mutation rectification [89]. Although organoids
have diverse applications in cancer research and clinical practice, their current version
represents a preliminary model, and there is a constant need for the standardization and
improvement of culture procedures that are specific to different cancer types. Organoids
have been successfully generated from various organs, including the brain, retina, gastroin-
testinal tract, tongue, thyroid, liver, pancreas, skin, lungs, kidneys, and heart [64,90–98].
Three-dimensional organoid models have been established to investigate most cancers
without significant technological limitations. Tumor cell lines in mice and patient-derived
xenografts have been widely used as cancer research models, yielding valuable insights.
However, these models have limitations that hinder their clinical applications. Cell lines
typically lack the complexity of co-cultured immune cells, stromal cells, the TME, and
organ-specific characteristics, leading to a loss of genetic heterogeneity over time and clonal
selection. Xenograft models are time- and resource-intensive. Cancer organoids offer a
promising solution for overcoming these limitations. Genetically modified organoids can
be generated by genetically modifying stem cells to harbor oncogenic mutations. Unlike
patient-derived xenografts, cancer organoids are more accessible and can be stored in
biobanks for future use, enabling high-throughput drug screening. Cancer organoids that
are specific to certain types of cancer or individual patients hold great potential as powerful
tools for precision therapy. Additionally, biobanks of cancer organoids can be utilized for
drug discovery and exploring new indications. However, cancer organoids are limited by
the scarcity of immune cells and the specific types of stromal cells associated with cancer.
Nonetheless, this approach enables researchers to capture the complexity of the TME. Co-
culturing cancer organoids with immune cells offers a valuable model system for assessing
the sensitivity of individual cancers to immunotherapy at any stage of treatment. It also
provides a clinically applicable approach for generating patient-specific T cell products
for adoptive T cell transfer. By co-culturing circulating tumor-reactive T cells with cancer
organoids, it is possible to expand and enhance the functionality of these T cells. NK cells,
T cells, and dendritic cells were co-cultured with cancer organoids to investigate immune
responses in the context of cancer. This innovative model has proven effective for rapidly
evaluating the impact of ICI on activating cytotoxic lymphocytes and promoting T cell
infiltration, particularly within the context of T cell infiltrates. In addition, single-cell T cell
receptor sequencing (scTCR-seq) offers a novel approach for the identification of paired
α- and β-TCR subunits that determine the specificity of infiltrating T cells. Combining
scTCR-seq with the analysis of T cell phenotypes (activation, memory, and exhaustion)
and antigen specificity can provide more comprehensive insights into cancer immunother-
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apy [99]. This emerging tool has great potential for advancing our understanding of cancer
immunotherapy and improving its effectiveness.

7. Conclusions

Personalized medicine is becoming increasingly important because of a deeper under-
standing of the diversity of tumor-infiltrating cells and intra-tumoral heterogeneity. This
complexity is recognized because immunotherapeutic strategies are often perceived as
effective only in a subset of patients. Co-culture models of tumor and immune cells enhance
our understanding of tumor–immune interactions and, more importantly, serve as tools to
assess patient-specific responses before immune therapy. Furthermore, these models have
additional applications, such as transferring expanded tumor-reactive lymphocytes that
are specific to individual patients and discovering neoantigens for vaccine development.
Overcoming the limitations of co-culture models is crucial to gain a deeper understanding
of patient-specific drug responsiveness. Our goal is to provide foundational information for
developing valuable co-culture models of tumor organoids and T cells and to demonstrate
their potential utility in exploring critical questions related to cancer biology. By proposing
these models, we aim to address the limitations of current approaches and highlight the
importance of investigating the TME for effective precision cancer therapy. We believe that,
as co-culture models become more widely available, comprehensive genomic analyses of
the TME will quickly follow suit, leading to valuable discoveries and advancements in
cancer research.
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