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Abstract: Pore-forming toxins (PFTs) exert physiological effects by rearrangement of the host cell
cytoskeleton. Staphylococcus aureus-secreted PFTs play an important role in bovine mastitis. In the
study, we examined the effects of recombinant Panton–Valentine leukocidin (rPVL) on cytoskeleton
rearrangement, and identified the signaling pathways involved in regulating the process in bovine
mammary epithelial cells (BMECs) in vitro. Meanwhile, the underlying regulatory mechanism of
baicalin for this process was investigated. The results showed that S. aureus induced cytoskeleton
rearrangement in BMECs mainly through PVL. S. aureus and rPVL caused alterations in the cell
morphology and layer integrity due to microfilament and microtubule rearrangement and focal
contact inability. rPVL strongly induced the phosphorylation of cofilin at Ser3 mediating by the
activation of the RhoA/ROCK/LIMK pathway, and resulted in the activation of loss of actin stress
fibers, or the hyperphosphorylation of Tau at Ser396 inducing by the inhibition of the PI3K/AKT/GSK-
3β pathways, and decreased the microtubule assembly. Baicalin significantly attenuated rPVL-
stimulated cytoskeleton rearrangement in BMECs. Baicalin inhibited cofilin phosphorylation or Tau
hyperphosphorylation via regulating the activation of RhoA/ROCK/LIMK and PI3K/AKT/GSK-
3β signaling pathways. These findings provide new insights into the pathogenesis and potential
treatment in S. aureus causing bovine mastitis.

Keywords: rPVL; cytoskeleton rearrangement; baicalin; RhoA/ROCK/LIMK; PI3K/AKT/GSK-3β;
bovine mastitis

1. Introduction

S. aureus is a facultative intracellular bacterium causing a variety of severe diseases.
In dairy cows, S. aureus causes clinical mastitis and subclinical mastitis with great eco-
nomic loss and serious animal health problems [1]. Toxins play a preeminent role in S.
aureus virulence, and mostly aim to lysate cells and evade elimination by host defenses [2].
The pore-forming toxins (PFTs) secreted by S. aureus are a class of exotoxins including
α-hemolysin (Hla), β-hemolysin (Hlb), leukocidin, phenolsoluble modulins (PSMs), and
epidermal cell differentiation inhibitor (EDIN) [3,4]. S. aureus PFTs such as Hla, Hlb, and
leukocidin LukMF’ are intimately involved in intramammary infections by altering the
plasma membrane permeability, leading to cell death [5–8]. In vitro studies showed that S.
aureus infection of bovine mammary epithelial cells (BMECs) involves actin cytoskeleton
rearrangement [9,10]. Hla, PSMs, and EDIN can also exert physiological effects by rear-
rangement of the host cell cytoskeleton [11–13]. However, the role of cytoskeletal disruption
due to PFTs in S. aureus-induced bovine mastitis remains unknown.
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The mammalian cell cytoskeleton is crucial for many diverse cellular functions, such
as cell structure and motility, cell division, and phagocytosis [14,15]. The abnormal as-
sembly of the cytoskeleton of BMECs causes the inhibition of bacterial adherence and
invasion [16–18]. Mammalian cells respond to toxins by rearranging the cytoskeleton
through intracellular signaling systems. As primary regulators of the actin cytoskeleton,
Rho GTPases are important targets for bacterial protein toxins. Rho GTPases, including
Rho, Rac, and Cdc42, are activated/inactivated by toxins and regulated downstream effec-
tors of ROCK, thus inducing the phosphorylation of cofilin (an actin-severing protein) at
ser3, and resulting in actin polymerization or depolymerization [19,20]. Previous studies
showed that S. aureus infection induced BMECs actin cytoskeleton rearrangement through
Rho GTPase (RhoA) regulated pathway modulation [9]. Hence, it may be that PFTs are
involved in the destruction of BMECs by activating the RhoA pathway. The PI3K/AKT
signaling pathway plays an important role in a variety of cellular processes, the activa-
tion of PI3K/AKT signaling influences cytoskeletal changes in various cells types [21].
The PI3K/AKT signaling pathway dysfunction causes Tau hyperphosphorylation, and
decreases its microtubule assembly and stabilization activity [22,23]. Pathogens such as
K. pneumoniae [24], L. monocytogenes [25], E. coli K1 [26], and P. aeruginosa [27] have been
shown to activate PI3K/Akt signaling to promote internalization to cells.

Panton-Valentine leukocidin (PVL) is another PFT, and it has been associated with pri-
mary S. aureus skin infections and pneumonia [28]. Recently, methicillin-resistant S. aureus
(MRSA) has been shown to cause bovine mastitis (prevalence is 4.30%) [29], and MRSA with
the pvl gene has been increasingly detected in the milk of bovine mastitis worldwide [30,31].
Our previous study showed that both PVL-produced S. aureus and recombinant PVL (rPVL)
induce apoptosis and necrosis in BMECs in vitro [32]. As the main bioactive components
extracted from Chinese herbal medicine Scutellaria radix, baicalin displays various pharma-
cological activities, including antitumor, antimicrobial, and antioxidant activities, and has
wide clinical applications [33]. We have shown that baicalin can attenuate rPVL-induced
BMECs damage [32]. Given that S. aureus PFTs-induced actomyosin rearrangements are
closely linked to cell functions such as cell migration or apoptosis induction, and the actin
cytoskeleton regulation role of baicalin [34,35], we assessed the BMECs cytoskeletal re-
sponses to rPVL, and investigated the effects and molecular mechanisms of baicalin in this
pathological process. The study may provide a reference for the pathogenesis and potential
treatment of S. aureus -induced mastitis in dairy cows.

2. Results
2.1. rPVL Caused the Rearrangement of the Microfilaments and Microtubules in BMECs

We proved that PVL-treated BMECs showed cytoplasmic vacuolization, nuclei chro-
matin condensation, and vacuolated DNA fragmentation [32]. To further explore the
damaging effects of rPVL on BMECs, the effects of rPVL on the cytoskeleton of BMECs
were investigated. Immunofluorescence staining revealed that BMECs in the control group
exhibited an epithelioid shape with polygonal extensions; numerous cells actin stress fibers
(red fluorescence) and microtubules (green fluorescence) passed through the entire cell
width with a scattered arrangement; focal contact-rich lamellipodia distributed at the cell
layer border. In contrast, the treatment of BMECs with 100 ng/mL rPVL showed cell
rounding and dissociation, cytoplasmic vacuolization, and retraction of plasma membrane
protrusions. Exposure of rPVL for 3 h obviously diminished the levels of actin filaments and
polymerized microtubules compared to control cells (with decreased fluorescence intensity,
p < 0.05, Figure 1A). Moreover, strong peripheral actin filaments were accumulated in the
marginal zone of the cytoplasm at 6 h (Figure 1A). Western blot showed that 100 ng/mL
rPVL-induced F-actin abundance was significantly increased (p < 0.01, Figure 1B), and the
ratio of Ace-tubulin/α-tubulin was decreased after treatment (p < 0.05, Figure 1B). These
results suggest that rPVL reduces the stability of microfilaments and microtubules, as well
as improper realignment of the cytoskeleton in BMECs.
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Figure 1. Rearrangement of the microfilaments and microtubules in BMECs treated with rPVL. (A) 
Damage on the microfilaments and microtubules morphology in the rPVL-stimulated BMECs as 
observed by immunofluorescence. Labeled with Rhodamine–Phalloidin (red), anti-α-tubulin anti-
body (green) and DAPI (blue). Scale bars are 50 µm in all figures. (B) Effects of rPVL on the abun-
dance of F-actin, Ace-tubulin, and α-tubulin in BMECs. Western blot was used to determine the 
relative levels of F-actin, Ace-tubulin and α-tubulin; GAPDH was used as a control. rPVL was used 
at a concentration of 100 ng/mL. Data are expressed as mean ± standard deviation of three inde-
pendent experiments, * 0.01 < p < 0.05, ** p < 0.01 (one-way ANOVA with Dunnett’s multiple com-
parison tests), ns: not significant. 
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plemented mutant strain C-Δpvl49775 induced cytoskeleton damage; we found that mi-
crofilament and microtubule remodeling induced by S. aureus Δpvl 49775 was significantly 
attenuated compared with that in S. aureus ATCC49775 at 3 h (with increased fluorescence 
intensity, p < 0.05, Figure 2A), cell morphology partially restored. It was shown that S. 
aureus C-Δpvl 49775 restored the ability to induce microfilament and microtubule remod-
eling. Thus, PVL is responsible for the ability of S. aureus to induce cytoskeleton remodel-
ing in BMECs. We also examined the abundance of protein make-up microfilaments and 
microtubules infected with S. aureus. Compared with S. aureus 49775 and C-Δpvl 49775, 
Δpvl 49775-induced abundance of F-actin was significantly downregulated (p < 0.01, Fig-
ure 2B). No difference in the Ace-tubulin/α-tubulin ratio between Δpvl 49775, S. aureus 
49775, and C-Δpvl 49775 (Figure 2B) was observed. 

Figure 1. Rearrangement of the microfilaments and microtubules in BMECs treated with rPVL.
(A) Damage on the microfilaments and microtubules morphology in the rPVL-stimulated BMECs
as observed by immunofluorescence. Labeled with Rhodamine–Phalloidin (red), anti-α-tubulin
antibody (green) and DAPI (blue). Scale bars are 50 µm in all figures. (B) Effects of rPVL on the
abundance of F-actin, Ace-tubulin, and α-tubulin in BMECs. Western blot was used to determine
the relative levels of F-actin, Ace-tubulin and α-tubulin; GAPDH was used as a control. rPVL was
used at a concentration of 100 ng/mL. Data are expressed as mean ± standard deviation of three
independent experiments, * 0.01 < p < 0.05, ** p < 0.01 (one-way ANOVA with Dunnett’s multiple
comparison tests), ns: not significant.

2.2. S. aureus Infection-Induced Microfilament and Microtubule Rearrangement Mainly
through PVL

We observed that 100 ng/mL rPVL induced cytoskeleton damage in BMECs, similar to
what was observed for intact S. aureus ATCC49775 (Figure 2A), suggesting that PVL secreted
by S. aureus is responsible for the induction of cytoskeleton damage by this bacterium. To
confirm this, we investigated a pvl-deficient S. aureus strain ∆pvl 49775; its complemented
mutant strain C-∆pvl49775 induced cytoskeleton damage; we found that microfilament
and microtubule remodeling induced by S. aureus ∆pvl 49775 was significantly attenuated
compared with that in S. aureus ATCC49775 at 3 h (with increased fluorescence intensity,
p < 0.05, Figure 2A), cell morphology partially restored. It was shown that S. aureus C-∆pvl
49775 restored the ability to induce microfilament and microtubule remodeling. Thus,
PVL is responsible for the ability of S. aureus to induce cytoskeleton remodeling in BMECs.
We also examined the abundance of protein make-up microfilaments and microtubules
infected with S. aureus. Compared with S. aureus 49775 and C-∆pvl 49775, ∆pvl 49775-
induced abundance of F-actin was significantly downregulated (p < 0.01, Figure 2B). No
difference in the Ace-tubulin/α-tubulin ratio between ∆pvl 49775, S. aureus 49775, and
C-∆pvl 49775 (Figure 2B) was observed.
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abundance of F-actin, Ace-tubulin, and α-tubulin in BMECs. Western blot was used to determine 
the expression levels of F-actin, Ace-tubulin, and α-tubulin; GAPDH was used as a control. The MOI 
of bacteria counted in the experimental group was 30. Data are expressed as mean ± standard devi-
ation of three independent experiments. * 0.01 < p < 0.05, ** p < 0.01 compared to the control, unless 
indicated with brackets (one-way ANOVA with Tukey’s multiple comparison tests). 
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tion of the cytoskeleton. Additionally, the PI3K/AKT signaling pathway that induces 
phosphorylation of GSK-3β is also involved in cytoskeletal rearrangement. Therefore, we 
investigated whether the above pathways are involved in the rPVL-induced BMECs struc-
tural disorder. Western blot showed that the protein level of p-ROCK2(Tyr722)/ROCK2, 
p-LIMK1/2(Thr508/Thr505)/LIMK1/2, p-cofilin (Ser3)/cofilin (p < 0.05), and RhoA (p < 0.05) 
was significantly upregulated in the 100 ng/mL rPVL group compared to that of the con-
trols at different points in time (Figure 3A). Moreover, the protein level of p-
PI3K(Tyr458/Tyr199)/PI3K, p-AKT(Ser473)/AKT, and GSK-3β(Ser9)/GSK-3β was signifi-
cantly downregulated (p < 0.05, Figure 3B), and p-tau (Ser396)/tau was significantly 

Figure 2. Rearrangement of the microfilaments and microtubules in BMECs treated with S. aureus.
(A) Damage caused by S. aureus on the morphology of microfilaments and microtubules in BMECs
by immunofluorescence. Labeled with Rhodamine–Phalloidin (red), anti-α-tubulin antibody (green),
and DAPI (blue). Scale bars are 50 µm in all figures. (B) Effects of S. aureus on the relative abundance
of F-actin, Ace-tubulin, and α-tubulin in BMECs. Western blot was used to determine the expression
levels of F-actin, Ace-tubulin, and α-tubulin; GAPDH was used as a control. The MOI of bacteria
counted in the experimental group was 30. Data are expressed as mean ± standard deviation of three
independent experiments. * 0.01 < p < 0.05, ** p < 0.01 compared to the control, unless indicated with
brackets (one-way ANOVA with Tukey’s multiple comparison tests).

2.3. rPVL Activated the RhoA/ROCK/LIMK and Inhibited PI3K/AKT/GSK-3β Pathways
in BMECs

RhoA/ROCK/LIMK is a key signaling pathway for regulating the structure and
function of the cytoskeleton. Additionally, the PI3K/AKT signaling pathway that induces
phosphorylation of GSK-3β is also involved in cytoskeletal rearrangement. Therefore, we
investigated whether the above pathways are involved in the rPVL-induced BMECs struc-
tural disorder. Western blot showed that the protein level of p-ROCK2(Tyr722)/ROCK2, p-
LIMK1/2(Thr508/Thr505)/LIMK1/2, p-cofilin (Ser3)/cofilin (p < 0.05), and RhoA (p < 0.05)
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was significantly upregulated in the 100 ng/mL rPVL group compared to that of the controls
at different points in time (Figure 3A). Moreover, the protein level of p-PI3K(Tyr458/Tyr199)/
PI3K, p-AKT(Ser473)/AKT, and GSK-3β(Ser9)/GSK-3β was significantly downregulated
(p < 0.05, Figure 3B), and p-tau (Ser396)/tau was significantly upregulated (p < 0.05,
Figure 3B). These results indicated that the effects of rPVL on BMECs cytoskeleton re-
modeling depend on the RhoA/ROCK/LIMK and PI3K/AKT/GSK-3β pathway.
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Figure 3. Effects of rPVL on the regulation of RhoA/ROCK/LIMK/Cofilin and PI3K/AKT/GSK-
3β signaling pathways and phosphorylation of cofilin and tau hyperphosphorylation in the
rPVL-treated BMECs. Representative immunoblot bands for RhoA, p-ROCK2(Tyr722), ROCK2,
p-LIMK1/2(Thr508/Thr505), p-cofilin (Ser3), and cofilin (A); p-PI3K (Tyr458/Tyr199), PI3K, p-
AKT(Ser473), AKT, GSK-3β(Ser9), GSK-3β, p-tau (Ser396), and tau (B); GAPDH was used as a
control. rPVL was used at a 100 ng/mL concentration. Data are expressed as mean ± standard
deviation of three independent experiments. * 0.01 < p < 0.05, ** p < 0.01 (one-way ANOVA with
Dunnett’s multiple comparison tests), ns: not significant.
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2.4. Baicalin Attenuated rPVL-Induced Rearrangement of Microfilaments and Microtubules
in BMECs

Some studies have shown the actin cytoskeleton regulation role of baicalin [34,35].
Therefore, we tested the role of baicalin on rPVL-induced BMEC rearrangement of micro-
filaments and microtubules. Laser confocal microscopy showed that pretreatment with
baicalin was less rounded, and it restored microfilament (baicalin: 2.5 and 5 µg/mL) and
microtubule fiber (baicalin: 5 and 10 µg/mL) structures in the PVL-treated BMECs com-
pared to controls (with increased fluorescence intensity, p < 0.05, Figure 4A). Pretreatment
with baicalin restored the protein abundance ratio of Ace-tubulin/α-tubulin (p < 0.05) and
reduced the level of F-actin (p < 0.05, Figure 4B) in the PVL-treated BMECs. Thus, rPVL-
induced damage to the cytoskeleton could be inhibited by baicalin treatment in BMECs.
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Figure 4. Effect of baicalin on the rearrangement of microfilaments and microtubules in rPVL-infected
BMECs. (A) Effects of baicalin on the microfilaments and microtubules morphological damage in
the rPVL-stimulated BMECs. Labeled with Rhodamine–Phalloidin (red), anti-α-tubulin antibody
(green) and DAPI (blue). Scale bars are 50 µm in all figures. (B) Effects of baicalin on the abundance
of F-actin, Ace-tubulin, and α-tubulin in rPVL-infected BMECs. Western blot was used to determine
the relative F-actin, Ace-tubulin, and α-tubulin levels. GAPDH was used as a control. rPVL was used
at a concentration of 100 ng/mL. Baicalin was used at 2.5, 5, and 10 µg/mL concentrations. Data
are expressed as mean ± standard deviation of three independent experiments. * 0.01 < p < 0.05,
** p < 0.01 compared to the control, unless indicated with brackets (one-way ANOVA with Tukey’s
multiple comparison tests), ns: not significant.
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2.5. Baicalin Attenuated the rPVL-Induced Rearrangement of Microfilaments and Microtubules in
BMECs via the RhoA/ROCK/LIMK and PI3K/AKT/GSK-3β Signaling Pathways

We investigated the underlying regulatory mechanism of baicalin in the rPVL-induced
rearrangement of microfilaments and microtubules. Pretreatment with baicalin reduced the
protein level of p-ROCK2(Tyr722)/ROCK2 (baicalin: 5 µg/mL), p-LIMK1/2(Thr508/Thr505)/
LIMK1/2 (baicalin: 2.5 µg/mL), p-cofilin (Ser3)/cofilin (baicalin: 10 µg/mL) (p < 0.05) and
RhoA (baicalin: 2.5 and 5 µg/mL) (p < 0.05) compared with those that were PVL-stimulated
(Figure 5A). Pretreatment with baicalin restored the protein level of p-PI3K(Tyr458/Tyr199)/
PI3K (baicalin: 10 µg/mL), p-AKT(Ser473)/AKT (baicalin: 5 µg/mL), and GSK-3β(Ser9)/
GSK-3β (baicalin: 2.5, 5, and 10 µg/mL) (p < 0.05, Figure 3B). p-tau (Ser396)/tau (baicalin:
2.5, 5, and 10 µg/mL) was significantly downregulated (p < 0.05, Figure 5B).
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Figure 5. Baicalin attenuates rPVL-induced rearrangement of microfilaments and microtubules
in BMECs via the RhoA/ROCK/LIMK and PI3K/AKT/GSK-3β pathways. Representative im-
munoblot bands for RhoA, p-ROCK(Tyr722), ROCK2, p-LIMK1/2(Thr508/Thr505), p-cofilin (Ser3),
and cofilin (A); p-PI3K (Tyr458/Tyr199), PI3K, p-AKT(Ser473), AKT, GSK-3β(Ser9), GSK-3β, p-tau
(Ser396), and tau (B); GAPDH was used as a control. rPVL was used at 100 ng/mL. Baicalin was used
at concentrations of 2.5, 5, and 10 µg/mL. Data are expressed as mean ± standard deviation of three
independent experiments. * 0.01 < p < 0.05, ** p < 0.01 compared to the control, unless indicated with
brackets (one-way ANOVA with Tukey’s multiple comparison tests), ns: not significant.
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3. Discussion

In this study, the pathogen (toxin)/host cell co-culture model we constructed using S.
aureus and rPVL treatment validated that S. aureus induced cytoskeleton rearrangement
mainly through PVL. rPVL exerted its cytoskeletal cytotoxicity via RhoA/ROCK/LIMK
and PI3K/AKT/GSK-3β signaling activation, which caused phosphorylation of the cofilin
and tau hyperphosphorylation, resulting in impairment of BMEC morphology and cell
layer integrity. Baicalin attenuated cell shape alterations induced by PVL through regula-
tion of the RhoA/ROCK/LIMK and of PI3K/AKT/GSK-3β pathways (Figure 6). These
findings provide new insights into the pathogenesis and treatment of S. aureus infection in
bovine mastitis.
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Figure 6. The schematic drawing illustrating the action mechanisms underlying the effects of baicalin
on cytoskeleton rearrangement induced by PVL in BMECs. Baicalin inhibited cofilin phosphorylation
and tau hyperphosphorylation by modulating the RhoA/ROCK/LIMK and PI3K/AKT/GSK-3β
signaling pathways, reversing the destroying dynamic balance of actin and microtubule and recover-
ing cellular structure. The purple arrows represent increased (upwards) or decreased (downwards)
protein expression level in signaling pathway.

Many bacterial pathogen product toxins rearrange the host cell cytoskeleton to pro-
mote infection [36]; bacterial toxins can directly affect structural proteins of the cytoskeleton
(for example, the V. cholerae MARTX toxin and the binary actin-ADP-ribosylating toxins) or
alter functions of cytoskeleton regulators (for example, the Rho-activating/inactivating bac-
terial toxins) [37,38]. The PFTs effects of S. aureus-derived Hla and EDIN on the cytoskeletal
structures and its signal regulation have been investigated in different cell types [11–13].
One study demonstrated that PVL-induced neutrophil extracellular traps (NETs) are more
enriched in cytoskeleton proteins such as actin, myosin, and tubulin than phorbol 12-
myristate 13-acetate-induced NETs at the proteomic level [39], implying that PVL can
induce neutrophil degradation of the cytoskeleton. In this study, a laser confocal micro-
scope showed that treatment of BMECs with 100 ng/mL rPVL induced the instability and



Int. J. Mol. Sci. 2023, 24, 14520 9 of 14

rearrangements of F-actin and tubulin cytoskeleton, and altered cell morphology. These
phenomena are similar to the changes observed in intact S. aureus, suggesting PVL is
responsible for the ability of S. aureus to induce cytoskeleton remodeling in BMECs. Such
processes in early states of infection might limit the barrier function and might contribute
to S. aureus invasion of BMECs.

Transition of actin cytoskeleton is tightly regulated in space and time by large quanti-
ties of signaling, scaffolding and actin-binding proteins [40]. The RhoA/ROCK/LIMK and
PI3K/AKT/GSK-3β signaling pathway plays a crucial role in modulating actin assembly in
various cellular types in response to extracellular stimuli [41]. Previous studies showed that
S. aureus [9] and S. agalactiae [42] infection induced BMEC actin–cytoskeleton rearrange-
ment through Rho GTPase (RhoA) regulated pathway modulation. The internalization of S.
aureus and phosphorylation of GSK-3α (Ser21),and GSK-3β (Ser9) are associated with the
PI3K/Akt signaling pathway in bovine endothelial cells [43]. In this study, Western blot re-
vealed that PVL-mediated changes in cofilin phosphorylation at Ser3 require the activation
of the RhoA/ROCK/LIMK signaling pathway in BMECs. PVL also triggered tau hyper-
phosphorylation at Ser396 and decreased the ratios of p-PI3K (Tyr458/Tyr199)/PI3K, p-Akt
(Ser473)/Akt and p-GSK-3β (Ser9)/GSK-3β in BMECs, suggesting that both pathways
induced the microfilament reorganization to change cell morphology.

Several recent studies have revealed that baicalin regulates cell functions via inhibi-
tion/activation of RhoA/ROCK [44–46] and PI3K/AKT/GSK-3β signaling pathways [47–49].
This study showed that 2.5, 5, and 10 µg/mL baicalin obviously ameliorates PVL-induced
morphological changes in BMECs. The possible mechanism is that baicalin reduces cofilin
phosphorylation at Ser3 and tau hyperphosphorylation at Ser396 by inhibiting the activa-
tion of RhoA/ROCK/LIMK and PI3K/AKT/GSK-3β signaling pathways. Toxin-induced
apoptosis could be linked to cytoskeletal modifications [50,51], and baicalin could ame-
liorate PVL-induced BMECs apoptosis in vitro [32]. We suggest that baicalin inhibits
rPVL-induced apoptosis by attenuating cytoskeletal rearrangements in BMECs. The effects
of baicalin show positive results on pathogens causing mastitis and do not induce resistance
after prolonged exposure [52–54]. Host cytoskeletal components are essential for bacterial
lifecycles and evasion of host immune responses. Targeting bacteria/bacteria toxin–host
cytoskeleton interactions by baicalin may provide novel approaches to S. aureus-induced
bovine mastitis antibacterial treatment.

There are some limitations to this study. Bacteria toxins can activate RhoA through
post-translational modification such as ADP-ribosylation, glucosylation, and proteolysis.
These blocked interactions with ROCK can prevent the formation of actin stress fibers. In
our study, the molecular mechanism of PVL-induced RhoA activation is not verified. The
receptor for PVL on the surface of neutrophils is the C5a receptor; there is currently no
evidence for the presence of C5aR on BMECs. Therefore, it is not clear whether rPVL causes
cytoskeletal damage in BMECs by binding to cell surface receptors or by internalization
via endocytosis. In addition, only in vitro test results were obtained here; they should be
necessarily translated into in vivo settings and validate the effect of PVL-induced mammary
gland injury and the dosage sufficiency or safety of baicalin.

4. Materials and Methods
4.1. Bacterial Strains and Cell Culture

S. aureus ATCC49775 producing PVL was purchased from the American Type Cul-
ture Collection (ATCC). The pvl gene knockout S. aureus strain ∆pvl 49775 and pvl gene-
complemented S. aureus strain C-∆pvl 49775 was gifted by Professor Wanjiang Zhang
(Harbin Veterinary Research Institute, Harbin, China). The construction and growth char-
acteristics of strains can be found in [55]. Bacteria were prepared by shaking (120 rpm)
in tryptic soy agar (Haibo Ltd., Qingdao, China) broth overnight at 37 ◦C. For infections,
S. aureus was grown to a mid-log phase and then collected by centrifugation, washed
with sterile phosphate-buffered saline (PBS), and diluted to the required concentration
(MOI = 30:1). BMECs stored by our laboratory were cultured in Dulbecco’s Modified
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Eagle’s Medium (DMEM) (Biological Industries, (BI), Kibbutz Beit-Haemek, Israel) sup-
plemented with 10% fetal bovine serum (v/v) (Gibco, Waltham, MA, USA) and 100 U/mL
penicillin–streptomycin (Sigma-Aldrich, St. Louis, MO, USA), and cultured at 37 ◦C in a
humidified atmosphere with 5% CO2. Cells were cultured until they reached 80–90%.

4.2. Antibodies and Other Reagents

GSK-3β (Cat. No. bs-0023M) and F-actin antibodies (Cat. No. bs-1572R) were
purchased from BIOSS (Beijing, China). The α-tubulin antibody (Cat. No. 66031-1-lg)
was purchased from Proteintech (Rosemont, IL, USA). GAPDH (Cat. No. T0004), p-
ROCK2(Tyr722, Cat. No. AF3028), acetyl-α-tubulin (Cat. No. AF4351), PI3K (Cat. No.
AF5112), p-PI3K (Tyr458/Tyr199, Cat. No. AF3242), AKT (Cat. No. AF6259), p-AKT
(Ser473, Cat. No. AF0016), p-GSK-3β (Ser9, Cat. No. AF2016), tau (Cat. No. AF6141),
p-tau (Ser396, Cat. No. AF3148), RhoA (Cat. No. AF6352), ROCK2 (Cat. No. DF7466),
LIMK1/2 (Cat. No. AF6344), p-LIMK1/2(Thr508/Thr505, Cat. No. AF3344), cofilin (Cat.
No. AF6232), and p-cofilin (Ser3, Cat. No. AF3232) antibodies were purchased from
Affinity (Liyang, China). Goat anti-rabbit IgG (ZB-2301) and goat anti-mouse IgG (SNP-
9002) antibodies were purchased from Beijing Zhongshan Golden Bridge Biotechnology Co.
Ltd. (Beijing, China). YF488 goat anti-mouse/rabbit IgG (Y6104), Rhodamine–Phalloidin
(YP0063S) and 4′,6-diamidino-2-phenylindole (DAPI; D4080) were purchased from Suzhou
Yuheng Biotechnology Co. Ltd. (Beijing, China). Baicalin standard substances (SB8020) and
lysostaphin (L9070) were purchased from Beijing Solarbio Science and Technology Co., Ltd.
(Beijing, China). Bicinchoninic acid protein quantitation assay (KGPBCA) and whole cell
lysis assay (KGP2100) kits were purchased from Keygen Biotech (Nanjing, China).

4.3. rPVL Preparation

Expression and purification of rPVL have been described by Ma. et al. [56]. In
summary, the E. coli BL21 strain was transformed with the pET28a-LukS-PV and pET28a-
LukF-PV plasmids. LukS-PV and LukF-PV expressed by the transformed bacteria (LukS-
PV+, LukF-PV+) strain were purified according to the His-Bind Purification Kit (Novagen,
Darmstadt, Germany), and aliquoted into one-time-use stocks frozen at −80 ◦C.

4.4. Lysostaphin Protection Assays and In Vitro Inhibitor Treatment

BMECs were cultured at an initial density of 2 × 105 cells per 6-well plates. For cell
stimulation, BMECs were infected with S. aureus at an MOI of 30 or treated with 100 ng/mL
rPVL according to [32]. At 3 h post infection, cells infected with S. aureus were washed
three times with PBS, and incubated in a DMEM medium containing 10 µg/mL lysostaphin
(Sigma-Aldrich, St. Louis, MO, USA) for 12 min. Subsequently, the medium was replaced
with the DMEM medium to continue incubation. For baicalin intervention tests, BMECs
were pretreated with 2.5, 5, and 10 µg/mL baicalin for 3 h, consecutively, and the cells
were incubated with 100 ng/mL rPVL. At the indicated time points, the cell lysates were
collected, purified, and analyzed using Western blot assays.

4.5. Immunofluorescence

Cells were cultured in a complete medium and treated at the indicated time as de-
scribed above. The cells were washed thrice with PBS and fixed with 4% formaldehyde at
25 ◦C for 15 min. After permeabilization with 0.5% Triton X-100 for 10 min, and blocking
with 5% bovine serum albumin for 1 h, cells were incubated with Rhodamine–Phalloidin
for 15 min and an α-tubulin antibody for 2 h at 37 ◦C. Cells were then incubated with
YF488 goat anti-rabbit IgG for 1 h at room temperature and stained with 4′,6-diamidino-2-
phenylindole (DAPI) (5 µg/mL) for 10 min at room temperature. Finally, the specimens
were mounted by anti-fluorescence quenching sealing tablets (Beijing, China) and ob-
served using a laser confocal microscope (Leica, Wetzlar, Germany). ImageLab 6.1 software
(BioRad, Hercules, CA, USA) was used for quantitation of fluorescence intensity values.
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4.6. Western Blot Analysis

BMECs were washed thrice with PBS and lysed in cold radioimmunoprecipitation
assay lysis buffer containing a protease inhibitor cocktail (P8340, Sigma-Aldrich, St. Louis,
MO, USA) on ice for 30 min. Lysates were centrifuged at 12,000× g for 15 min. Protein
concentration in the supernatant was measured by the Bradford assay method. Proteins
were then boiled for 10 min and analyzed by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE). For gel electrophoresis, 15 µg of total protein extracts was
separated on 12.5% SDS-PAGE gel and then transferred to an Immuno-Blot polyvinyli-
dene fluoride (Millipore, Temecula, CA, USA) membrane through wet transfer apparatus
(BioRad, Hercules, CA, USA) for 1.5 h, at a 300 mA constant current. The membrane was
incubated for 1 h with 5% non-fat dairy milk, washed thrice for 10 min, and the primary
antibodies were probed overnight at 4 ◦C. The membranes were washed and probed with
horseradish peroxidase (HRP) goat anti-rabbit IgG antibody and HRP goat anti-mouse IgG
antibody for 1 h at 25 ◦C. Thereafter, chromogenic-enhanced chemiluminescence was per-
formed. An AI600RGB imager (GE, Fairfield, CT, USA) and ImageLab 6.1 software (BioRad,
Hercules, CA, USA) were used to reveal and analyze the chemiluminescence signal.

4.7. Statistical Analysis

Data were analyzed and graphed using GraphPad Prism 8.0 (GraphPad Software, San
Diego, CA, USA). Statistical data are presented as means ± standard deviations of three
independent experiments. One-way ANOVA with Dunnett’s multiple comparison tests
was used to compare means from experimental groups against control group mean, or the
data among subgroups were compared in pairs using StudentNewmanKeuls (SNK) tests.
Significance levels were set at * p < 0.05 and ** p < 0.01, ns: not significant.

5. Conclusions

This study indicated that PVL activity of S. aureus is related with cytoskeleton rear-
rangement in BMECs. rPVL regulates the RhoA/ROCK/LIMK and PI3K/AKT/GSK-3β
signaling pathways, thus effecting BMECs morphology, microfilament and the microtubule
rearrangement. Baicalin attenuates cytoskeleton rearrangement in BMECs via modulating
the activation of the RhoA/ROCK/LIMK and PI3K/AKT/GSK-3β signaling pathway.
These findings provide new insights into the mechanisms and potential treatment of S.
aureus causing bovine mastitis.
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