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Abstract: The transmission of insect-borne viruses involves sophisticated interactions between
viruses, host plants, and vectors. Chemical compounds play an important role in these interactions.
Several studies reported that the plant virus tomato spotted wilt orthotospovirus (TSWV) increases
host plant quality for its vector and benefits the vector thrips Frankliniella occidentalis. However,
few studies have investigated the chemical ecology of thrips vectors, TSWV, and host plants. Here,
we demonstrated that in TSWV-infected host plant Datura stramonium, (1) F. occidentalis were more
attracted to feeding on TSWV-infected D. stramonium; (2) atropine and scopolamine, the main tropane
alkaloids in D. stramonium, which are toxic to animals, were down-regulated by TSWV infection of
the plant; and (3) F. occidentalis had better biological performance (prolonged adult longevity and
increased fecundity, resulting in accelerated population growth) on TSWV-infected D. stramonium than
on TSWV non-infected plants. These findings provide in-depth information about the physiological
mechanisms responsible for the virus’s benefits to its vector by virus infection of plant regulating
alkaloid accumulation in the plant.

Keywords: western flower thrips; Frankliniella ocidentalis; tomato spotted wilt orthotospovirus; Datura
stramonium; alkaloids; tropane

1. Introduction

Many plant viruses exclusively rely on insect vectors for their transmission. These
vector-borne plant viruses can change their host plant’s traits, thereby influencing the inter-
actions between host plants and vectors [1–7]. However, the virus’s impact on the trophic
system does not halt there. Previous studies have demonstrated that the virus-induced
changes in host plant traits affect the competition among vector species [8,9] as well as the
natural enemies of these vectors [10–12]. Infection by plant viruses typically leads to signifi-
cant modifications in plant metabolism [13,14]. These alterations affect the primary metabo-
lites [13–16] and the activation of defense responses, adjustments in the profiles of volatile
secondary metabolites emitted by plants [3,17,18]. Consequently, these changes influence
the performance of insect vectors and their ability to colonize host plants. The changes en-
compass not only volatile compounds used by foraging insects to locate suitable host plants
but also the overall quality of the plant as a resource, involving variations in nutritional and
defensive secondary compounds [3,5–7,15,17–19]. Such shifts in behavior and performance
of insect vectors ultimately influence the transmission and epidemiology of the viruses they
vectored [5,17,20–23]. While it is known that plant virus infections can lead to altering the
profiles of non-volatile secondary metabolites in host plants [24–26], limited research has
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investigated the ecological significance of these non-volatile secondary metabolites within
the interactions of this complex multitrophic system [27].

The western flower thrips (WFT), F. occidentalis, has emerged as a global invasive pest
with far-reaching consequences, inflicting direct harm to plants through its feeding activities
and indirect damage by serving as a vector for crop-infecting viral diseases like tomato
spotted wilt orthotospovirus (TSWV) [28]. TSWV belongs to the Orthotospovirus genus, in
the Tospoviridae family [29]. Thrips are exclusive vectors of orthotospoviruses. Although
about 15 thrips species have been identified as vectors of orthotospoviruses, F. occidentalis
is the most competent vector [29]. TSWV is transmitted by F. occidentalis in a persistent and
propagative manner [30,31]. TSWV has become one of the most destructive plant viruses
worldwide due to the vector, F. occidentalis, rapidly spreading across the world [32,33].

The weed D. stramonium plays an important role in the ecology and epidemiology
of TSWV [34]. F. occidentalis adeptly acquires TSWV from D. stramonium and then trans-
mits it to cultivated crops [34]. This facilitates a continuous cycle of disease transmission
between D. stramonium and cultivated crops. Notably, it has been demonstrated that TSWV-
infected plants remarkably expedite thrips development, making them more alluring to
thrips for feeding and egg-laying compared to TSWV non-infected plants [35]. Specif-
ically, F. occidentalis performs better on TSWV-infected plants than TSWV non-infected
ones [1,22,36]. Within the host plants, the presence of TSWV triggers the activation of sali-
cylic acid (SA) defense mechanisms, which in turn suppress the jasmonic acid (JA) defense
response elicited by F. occidentalis [37]. The JA defense negatively influences F. occidentalis
performance [38–40], as it governs the release of volatile compounds and acts as a deterrent
to thrips feeding [18,40]. Nevertheless, the intricate molecular mechanisms and biochemical
processes that underlie the positive impact of TSWV on F. occidentalis performance remain
largely unexplored on the non-volatile metabolic level.

F. occidentalis derives advantages from the infection of host plants by TSWV, primarily
because of the virus’s ability to trigger the SA response, which hampers the JA defense
reaction. Nevertheless, within this intricate interplay, a diverse range of non-volatile sec-
ondary metabolites, such as alkaloids, hold significant nutritional value for the prosperity
of various herbivorous insects, including thrips [41–47]. D. stramonium is rich in secondary
metabolites, particularly tropane alkaloids like atropine (the racemic form of hyoscyamine)
and scopolamine, which exhibit insecticidal properties [48,49]. We hypothesize that TSWV
alters the non-volatile secondary metabolites, specifically alkaloids, to benefit its vector,
F. occidentalis. This, in turn, results in an enhanced performance of F. occidentalis when it
interacts with the TSWV-infected host plant. We thoroughly assessed the effects of TSWV
infection on the host plant to fully understand how TSWV influences the performance of
its vector by affecting the host plant, D. stramonium. These included the preference and
population growth of F. occidentalis, along with identifying relevant changes in secondary
metabolites (specifically alkaloids) induced by TSWV infection in D. stramonium. Further-
more, we conducted experiments on feeding behavior and survival with pure alkaloid
compounds and identified alkaloid cues used by F. occidentalis to evaluate the plant quality.

2. Results
2.1. F. occidentalis Shows a Feeding Preference for TSWV-Infected D. stramonium

We investigated the indirect effect of TSWV infection on the feeding behavioral re-
sponses of the vector F. occidentalis using a two-choice assay involving TSWV-infected and
TSWV non-infected leaves of D. stramonium, as well as entire TSWV-infected and TSWV
non-infected D. stramonium plants. When thrips larvae were allowed to choose between
TSWV-infected and TSWV non-infected leaves, approximately 60% of the larvae signifi-
cantly preferred to feed on TSWV-infected leaves (t = 9.798, df = 4, p < 0.01, Figure 1A). In
trials involving the TSWV-infected and TSWV non-infected whole plants and adult thrips,
over 70% of the thrips were observed on the TSWV-infected plants (t = 7.317, df = 4, p < 0.01,
Figure 1B). These results indicated that the vector F. occidentalis significantly prefers feeding
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on TSWV-infected D. stramonium over TSWV non-infected D. stramonium in both larval and
adult stages.
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Figure 1. F. occidentalis feeding preference for TSWV-infected D. stramonium. (A) F. occidentalis larvae
feeding choice using leaves and (B) F. occidentalis adult feeding choice using whole plants. Values are
percentage of thrips that made a choice after 24 h where TSWV infected = D. stramonium treated and in-
fected with TSWV, TSWV non-infected = D. stramonium with no treatment, and mock = D. stramonium
treated with virus inoculation buffer but no virus. (Note: *** represents significant difference by the
independent-sample t test at p < 0.01, NS = not significant.)

2.2. TSWV Infection Reduces the Accumulation of Alkaloids in D. stramonium

Non-volatile tropane alkaloids, such as scopolamine and atropine, present in D. stramo-
nium, act as toxins against herbivores, often triggering a repellent effect [48,50–52]. We investi-
gated the alterations of tropane alkaloids (scopolamine and atropine) levels in TSWV-infected
D. stramonium. The concentrations of scopolamine were 0.304 µg/mg and 0.191 µg/mg in
TSWV-inoculated D. stramonium after 10 d and 15 d, respectively. These values were notably
lower than those in TSWV non-infected samples, which exhibited scopolamine concentrations
of 0.548 µg/mg and 0.442 µg/mg after 10 d (t = 5.181, df = 4, p < 0.01) and 15 d (t = 17.664,
df = 4, p < 0.0001), respectively (Figure 2A). Atropine concentrations followed a similar trend,
at 0.023 µg/mg and 0.011 µg/mg in TSWV-inoculated D. stramonium after 10 d and 15 d,
respectively. In contrast, significantly higher concentrations of 0.079 µg/mg (t = 9.790, df = 4,
p < 0.001) and 0.070µg/mg (t = 13.420, df = 4, p < 0.0001) were observed in TSWV non-infected
D. stramonium at 10 d and 15 d, respectively (Figure 2B).
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Figure 2. TSWV infection reduces the accumulation of tropane alkaloids in D. stramonium.
(A) Level of scopolamine in mock (TSWV non-infected) D. stramonium (black) and TSWV-infected
D. stramonium (gray); (B) level of atropine in mock (TSWV non-infected) D. stramonium (black) and
TSWV-infected D. stramonium (gray). 10 d = 10 days after TSWV inoculation; 15 d = 15 days after
TSWV inoculation. (Note: **, ***, **** represent significant difference by the independent-sample
t-test at p < 0.01, p < 0.001, p < 0.0001, respectively.)

2.3. Alkaloid Interactions with F. occidentalis: Repellence and Toxicity
2.3.1. Repellent Effect of Scopolamine and Atropine on F. occidentalis

In our investigation of tropane alkaloid effects on F. occidentalis feeding choice, we con-
ducted choice experiments utilizing scopolamine and atropine-principal tropane alkaloids
found in both TSWV-infected and TSWV non-infected D. stramonium. Adult F. occidentalis
were offered the option of feeding on a 30 mg/g sucrose solution containing tropane (treat-
ment) and devoid of it (only 30 mg/g sucrose) through a Y-tube setup. Notably, our findings
revealed that the solutions containing tropane alkaloids (scopolamine and atropine) had
a repellent effect on thrips feeding, except observed at 0.07 mg/g atropine concentration
(Figure 3). These findings supported our hypothesis that tropane alkaloid, scopolamine,
serve as deterrents for F. occidentalis, potentially contributing to the F. occidentalis preference
for TSWV-infected D. stramonium over their TSWV non-infected counterparts.
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Figure 3. Effect of tropane alkaloids on F. occidentalis feeding choice in a Y-tube. F. occidentalis
were presented with feeding solution (30 mg/g sucrose) on one arm containing tropane alkaloids
(A) scopolamine or (B) atropine at 7, 0.7, or 0.07 mg/g, respectively. The other arm contained the
30 mg/g sucrose solution without tropanes (control) accordingly. Values are mean number of thrips
following three replicates ±SEM, n = 3. (Note: *, **, *** represent significant difference by the
independent-sample t test at p < 0.05, p < 0.01, p < 0.001, NS = not significant, respectively.)

2.3.2. Toxicity of Scopolamine and Atropine to F. occidentalis

The validity of scopolamine and atropine toxic to the F. occidentalis was established
through an in vitro bioassay conducted at 7 mg/g, 0.7 mg/g, and 0.07 mg/g concentration.
Our findings indicated a significant mortality elevation across all concentrations when com-
pared to the negative control 30 mg/g sucrose concentration (Table 1). The mortality of thrips
attributed to scopolamine and atropine exhibited a positive correlation with the concentration
of these two metabolites. Furthermore, a collective analysis revealed a noteworthy reduction
in thrips mortality as the concentration of the two metabolites decreased.
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Table 1. The mortality of F. occidentalis exposed to different concentrations of tropane alkaloids.

Treatment (mg/g) Atropine (%) Scopolamine (%) Atropine + Scopolamine (%)

CK 16.04 ± 1.09 a
0.07 35.18 ± 2.73 b 36.79 ± 2.43 b 42.05 ± 2.54 b
0.7 40.63 ± 4.65 b 44.79 ± 3.91 b 43.75 ± 2.88 b
7 64.06 ± 5.99 c 66.07 ± 3.54 c 62.50 ± 5.55 c

Negative 77.08 ± 4.31 c
Positive 94.79 ± 2.41 d

Note: Values are mean percentage of thrips dead caused by exposure to different treatments. Mean values
within the same column followed by different letters are significantly different by a one-way analysis of variance
(ANOVA) Tukey’s multiple test (p ≤ 0.05). CK represents 30 mg/g sucrose solution without tropanes; 0.07, 0.7,
and 7 represents 30 mg/g sucrose solution contained tropanes 0.07 mg/g, 0.7 mg/g, and 7 mg/g, respectively;
Negative represents only water; Positive represents only water containing the insecticide abamectin (0.001 mg/g).

2.4. Performance of F. occidentalis on TSWV-Infected or TSWV Non-Infected D. stramonium

The longevity of both male and female F. occidentalis on TSWV-infected D. stramonium
was significantly extended compared to those on TSWV non-infected D. stramonium plants.
Collectively, the average adult longevity on TSWV-infected D. stramonium (7.30 d) exhibited
a significant increase over that on TSWV non-infected D. stramonium (5.98 d) (Table S1).
Moreover, the mean total oviposition period of F. occidentalis on TSWV-infected D. stramo-
nium plants (4.39 d) surpassed that on TSWV non-infected D. stramonium plants (3.31 d).
Additionally, the mean fecundity of females, recorded at 17.47 larvae per female, was
significantly elevated on TSWV-infected D. stramonium, in contrast to the mean fecundity
of 5.40 larvae per female on TSWV non-infected D. stramonium (Table S2).

The female age-specific fecundity (fxj, where x represents age, and j represents stage)
and the total-population age-specific maternity (mx) of F. occidentalis on TSWV-infected D.
stramonium plants were significantly higher than those on TSWV non-infected D. stramonium
(Figure S1). TSWV infection of D. stramonium significantly impacted on the life table
parameters of the F. occidentalis feeding on TSWV-infected D. stramonium. Specifically,
TSWV infection influenced the intrinsic rate of increase (rm), the finite rate of increase (λ),
and the net reproductive rate R0 of F. occidentalis feeding on TSWV-infected D. stramonium,
which were significantly higher than those of F. occidentalis feeding on TSWV non-infected
D. stramonium. When feeding on TSWV-infected D. stramonium, the rm, λ, and R0 values for
F. occidentalis were 0.178, 1.58, and 40.32, respectively. However, the rm, λ, and R0 values
for F. occidentalis were 0.013, 1.09, and 11.11, respectively (Table 2), when feeding on TSWV
non-infected D. stramonium.

Table 2. Life table parameters of F. occidentalis on TSWV-infected and non-infected D. stramonium leaves.

Treatment N Intrinsic Rate of
Increase rm (/d−1)

Finite Rate of Increase
λ (/d−1)

Net Reproduction Rate R0
(Offspring/Individual)

Mean Generation
Time T (d)

TSWV
non-infected 107 0.013 ± 0.017 b 1.09 ± 0.018 b 11.11 ± 0.33 b 18.24 ± 2.06 a

TSWV-infected 93 0.178 ± 0.013 a 1.58 ± 0.014 a 40.32 ± 0.96 a 18.39 ± 0.17 a

Note: mean values within the same column followed by different letters are significantly different determined by
the paired bootstrap test with 100,000 resampling (p ≤ 0.05).

Population projections indicated that F. occidentalis would experience more rapid
growth on TSWV-infected D. stramonium compared to TSWV non-infected plants. Starting
with 100 eggs, the projected population size on TSWV-infected D. stramonium would exceed
5000 individuals after 60 days, in contrast, the population size of F. occidentalis on TSWV
non-infected D. stramonium would only reach around 300 individuals within the same time
frame (Figure 4).
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3. Discussion

Our study highlights the crucial role of alkaloids in mediating interactions between
vectors and viruses. To our knowledge, this is the first instance where virus infection has
been demonstrated to enhance the performance and expedite the population growth of its
insect vector by reducing alkaloid accumulation in the host plant. Previous studies have
indicated that TSWV benefits F. occidentalis by activating the host plant’s SA signal pathway
and inhibiting the JA signal pathway, resulting in decreased volatile terpene [18], which
has a negative effect on F. occidentalis [37–39,53]. The induction of the JA signal pathway
contributes to the production of alkaloids and other secondary metabolites in plants [18,50].
TSWV infection in D. stramonium may hinder the biosynthesis of these alkaloids (scopo-
lamine and atropine) by promoting the SA pathway, which opposes the JA signal pathway.
Further exploration is required to unveil the precise underlying mechanisms. An analogous
interaction is observed in Ageratum enation virus (AEV), where AEV down-regulates the
biosynthesis of morphine alkaloids in its host, the opium poppy (Papaver somniferum L.) [26].
This phenomenon also influences the defense response of host plants to plant viruses [14],
potentially enhancing transmission at both the virus and vector levels. These findings imply
that TSWV infection of the host plant impacts the vector F. occidentalis beyond modulating
plant signaling pathways. It also has the potential to alter plant secondary metabolism.

Previous studies have revealed the function of specific alkaloids against thrips [42,44–46,54,55].
These plant-derived alkaloids serve as potent toxins or repellents against thrips, demonstrating
constitutive and inductive properties within host plants that help plants withstand pest at-
tacks [45,46,56]. Notably, in the case of tomatoes, a solanaceous species similar to D. stramonium,
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non-volatile alkaloids have demonstrated their efficacy in repelling thrips [51,57]. The non-volatile
tropane alkaloids prevalent in D. stramonium, including scopolamine and atropine, have also
demonstrated toxicity against various herbivores [48–50,52]. Consequently, it is reasonable to infer
that scopolamine and atropine, synthesized by D. stramonium, are likely to exhibit repellent or
toxic properties when faced with thrips. Furthermore, our study highlighted that scopolamine and
atropine alkaloids exhibited heightened concentrations in TSWV non-infected D. stramonium but
experienced a significant decrease in TSWV-infected counterparts (Figure 2). These compounds
at the most experimental concentration exhibited a deterrent effect or exerted direct toxicity to
thrips during feeding (Figure 3, Table 1). While the atropine at low concentration (0.07 mg/g) did
not significantly enhance thrips’ feeding preference, the effects of the atropine on thrips’ feeding
preference at lower concentrations need to be further determined. Notably, TSWV infection de-
creased tropane alkaloid levels, which likely explains the observed improvements in F. occidentalis
performance during their development on TSWV-infected plants (Table 2).

The AEV infection of the host plant down-regulates the morphine alkaloid biosyn-
thesis pathway [26], grapevine red-blotch-associated virus (GRBaV) infection inhibits the
phenylpropanoids pathway [24]. However, the exact mechanisms by which plant virus
infection reduces the synthesis of alkaloids and other secondary metabolites remains
unknown. Tropane alkaloid, scopolamine and hyoscyamine, biosynthetic pathways are
involved in polyamine metabolism in the early steps. Putrescine is a common precursor of
both polyamines, such as spermidine and spermine, and tropane alkaloids [58]. Tropane
alkaloid biosynthesis begins with the methylation of putrescine to N-methyl-putrescine by
putrescine N-methyltransferase (PMT), followed by the oxidative deamination of N-methyl-
putrescine to 4-methylaminobutanal with N-methyl-putrescine oxidase (MPO). The central
intermediate N-methyl-1-pyrrolium cation for tropane alkaloid biosynthesis results from
the spontaneous cyclization of 4-methylaminobutanal. The condensation of N-methyl-1-
pyrrolium cations with acetoacetic acid results in hygrine converted to tropinone. The
reduction of tropinone catalyzed by tropinone reductase 1 (TR 1) forms tropine, and the
tropine condenses with the phenylalanine-derived (R)-phenyl-lactate by littorine synthase
(LS) to yield littorine. Littorine undergoes rearrangement to hyoscyamine aldehyde by a
cytochrome P450 (Cyp80F1). The hyoscyamine aldehyde is converted to hyoscyamine follow-
ing an unknown process. After that, hyoscyamine is epoxidated and yields the end product,
scopolamine, via a two-step reaction: 6β-hydroxylation of the tropane ring followed by
intra-molecular epoxide formation that is catalyzed by a 2-oxoglutarate-dependent dioxy-
genase, hyoscyamine 6β-hydroxylase (H6H) [59–61]. The PMT and H6H are the rate-limiting
upstream and downstream enzymes in the biosynthesis of tropane alkaloids (hyoscyamine
and scopolamine), which catalyze the first and last steps of the process, respectively [58].
How does TSWV infection affect the production of tropane alkaloids? Further research is
required to determine the relationship between the signal or transcriptional regulation of
the tropane alkaloid biosynthesis pathway and the TSWV-induced inhibition of tropane
alkaloid biosynthesis.

4. Materials and Methods
4.1. Plants, Virus Isolates, and Insect Populations

Plants, virus isolates, and insect populations were maintained according to a previous
study [62]. D. stramonium plants were grown and maintained in thrips-proof screen-
cages under greenhouse conditions. To achieve systemic virus infection, plants at the
three-true-leaf stage were mechanically inoculated with TSWV-YN isolates that were orig-
inally collected in Yuxi County, Yunnan Province, China [63], and maintained by thrips-
mediated passage on potted D. stramonium. Only plants with obvious symptoms (chlorotic,
curling, and spotted leaves) were selected, and infection was confirmed by molecular
detection using reverse transcription–polymerase chain reaction (RT-PCR) approximately
7 days and 10 days after inoculation (Figure 5). The control D. stramonium plants were
mock-inoculated with a buffer having no virus at the same time. The F. occidentalis colony
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was collected in Beijing, China, in 2003 and grown on fresh green bean (Phaseolus vulgaris)
pods in a climate-controlled chamber (27 ± 1 ◦C, 16L:8D) [64].
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Figure 5. The symptom of tomato spotted wilt orthotospovirus (TSWV)-infected D. stramonium
((A) right; (B) right) and F. occidentalis feeding on mock and TSWV infected D. stramonium (C).
Note: Infected leaves were ground in 0.05 M phosphate buffer (pH 7.0) and applied to the
host plant using a soft finger-rubbing technique. Infected plants were tested at 7 ((A) left) and
10 ((B) left) dpi by RT-PCR. Object band size 273 bp from N protein of TSWV, primers. PTSW-
F: GGGTCAGGCTTGTTGAGGAAAC; PTSW-R: TTCCCTAAGGCTTCCCTGGTG. NV = mocked;
V = TSWV-infected; H2O = negative; + = positive. The number of feeding scars (red arrow) on the
plant represents F. occidentalis feeding preference (C).

4.2. Thrips’ Preference for TSWV-Infected and TSWV Non-Infected Plants
4.2.1. Preference of Larvae Thrips

According to previously described methods [55] with some modifications, the
second-stage larvae of F. occidentalis were offered a choice between two detached leaves:
one from TSWV-infected D. stramonium and the other from TSWV non-infected D. stra-
monium. The two leaves were placed on opposite sides of a Petri dish (15 cm diameter)
and covered with moist filter paper approximately 5 cm apart from each other. The
position of the leaves was alternated between replicates. Forty second-stage larvae of
F. occidentalis were transferred into each dish in the gap between the two leaves and were
allowed to feed overnight. After 24 h, the number of larvae on each leaf was counted.

4.2.2. Preferences of Adult Thrips

Adult F. occidentalis were offered a choice between a TSWV-infected and an TSWV
non-infected D. stramonium plant in thrips-proof screen-cages (50 cm × 50 cm × 50 cm).
The two plants were placed opposite each other in the cage, approximately 20 cm apart.
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The position of the plants was rotated between replicates. Fifty adult F. occidentalis were
transferred to each cage in the gap between the two plants and allowed to feed overnight.
After 24 h, the number of adults on each plant was counted.

4.3. Analysis of Alkaloids Scopolamine and Atropine

Leaf tissue for alkaloid analysis was collected from TSWV-infected D. stramonium and
TSWV non-infected D. stramonium. Plant samples were ground under liquid N2 using
a cold mortar and pestle, and dried by lyophilization, then stored in paper bags until
analysis. The alkaloids scopolamine and atropine were extracted and analyzed according
to previously described methods [65]. Plant powder (100 mg) was weighed into volumetric
flasks. Extraction was ensured after 30 min. Ultrasonication was conducted after adding
50 mL of solvent mixture (CH3OH: H2O = 3:2 (v/v)) to each sample. The extracts were
purified by centrifugation (15 min at 10,000 min−1) and filtration through a 0.22 µm pore
size syringel-free filter (Agela). Samples were stored in the dark at 4 ◦C until the LC-MS
analysis was carried out.

The LC–MS system consisted of a liquid chromatograph (Surveyor Autosampler
Plus and Accela Pump) and an MS detector with electrospray ion source and quadrupole
analyzer (TSQ Quantum Ultra, Thermo, Waltham, MA, USA). LabSolutions software
TargetQuan 3 (Thermo) was used to control the LC–MS system and for data processing.
Chromatographic separations were performed on a 00D-4462-E0 Kinetex C18 column
(100 mm × 4.6 mm, 2.6 µm, Phenomenex, Torrance, CA, USA). A gradient of mobile phase
A (methanol) and mobile phase B (5 mmol/L ammonium acetate and 0.1% (v/v) formic
acid in methanol) was used for the separations. The gradient profile was set as follows:
0.00 min 5% A eluent, 1.00 min 5% A eluent, 3.00 min 95% A eluent, 5.00 min 95% A eluent,
5.01 min 5% A eluent, and 7.00 min 5% A eluent. The flow rate was 0.6 mL min−1, and
the column temperature was 35 ◦C. The injection volume was 20 µL for D. stramonium
extracts and standard mixtures. The ions of the compounds and their retention times were
as follows: m/z 304.2 and 2.42 min for scopolamine and m/z 290.0 and 2.62 min for atropine.
The electrospray source was operated in positive mode, and the interface conditions were
as follows: a capillary voltage of 3.5 kV, a capillary temperature of 350 ◦C, and a vaporizer
temperature of 200 ◦C.

The quantification of atropine and scopolamine was performed using standard solu-
tions. From the methanolic stock solutions of atropine and scopolamine (1 mg mL−1 each),
calibration solutions were prepared in the concentration range of 10−6 to 10−2 mg mL−1

by dilution of the stock solution with solvent mixture (1% (v/v) formic acid in methanol:
water = 7:93). The solutions were stored at 4 ◦C and used for one week.

4.4. Effects of the Alkaloids Scopolamine and Atropine on Thrips’ Preference and Survival
4.4.1. F. occidentalis Choice between Feeding Solutions

According to previously described methods [55], 40 adults of F. occidentalis were placed
in a glass Y-tube closed at the lower end. Both upper arms were covered with a Parafilm
membrane, and 125 µL of 30 mg/g sucrose solution was applied to one side and covered
with a second Parafilm layer as a control. The 125 µL of sucrose solution (30 mg/g) used to
cover the other side contained 7 mg/g, 0.7 mg/g, or 0.07 mg/g scopolamine or atropine that
was added to the feeding solution. F. occidentalis can pierce through the Parafilm membrane
and ingest the feeding solution by sucking, similar to their feeding habits on natural sources.
After 24 h, F. occidentalis residing on both sides of the Parafilm membrane were counted. The
experiment was repeated three times for each concentration of scopolamine and atropine.

4.4.2. F. occidentalis Survival on Feeding Solutions

Second-instar F. occidentalis were obtained from the lab population. The bioassay
was performed according to the methods of a previous study [44]. Wells of 96-well plates
were filled with 50 µL of test solution. The dilution was a 30 mg/g sucrose solution (in
distilled water). The blank control was a 30 mg/g sugar solution in water. There was
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one negative/positive controls for each group: wells containing water to verify that western
flower thrips larvae could not survive without eating food and a solution containing the
insecticide abamectin (1 mg/kg) to have an absolute positive control to compare to the
effect of alkaloids. All treatments (i.e., one blank control, six treatments with three different
alkaloid concentrations of a single scopolamine and atropine, and one negative/positive
controls) were placed in 96-well plates. Each treatment consisted of four columns of 96-well
plates, and each column contained 8 wells as a replicate. Each treatment contained 32 thrips.
The second-instar F. occidentalis was individually transferred to each cup of an 8-cup strip.
The cup was sealed with Parafilm and placed on top of the 96-well plates and then turned
upside down. F. occidentalis were then allowed to feed on the test solutions provided. The
plates were randomly placed in a growth chamber with standard F. occidentalis rearing
conditions (L:D, 16:8, 27 ± 1 ◦C). After five days, the number of surviving larvae was
counted under a stereomicroscope. Mortality was calculated as the number of dead larvae
in each replicate of the four replicates. In single-alkaloid experiments, scopolamine and
atropine were tested at the following concentrations: 7 mg/g, 0.7 mg/g, and 0.07 mg/g.

4.5. Thrips Performance Experiments
4.5.1. Development and Juvenile Survival

Eggs were collected by placing fresh leaves of TSWV-infected and TSWV non-infected
D. stramonium (with moist cotton wool wrapped around the leaf stalk) in F. occidentalis
rearing glass jars containing hundreds of adults. Female adults were allowed to oviposit
on the leaves for 12 h. The adults were removed, and the leaves with eggs were transferred
into two different Petri dishes (15 cm diameter), which were then placed in a cabinet set at
27 ± 1 ◦C and with a 16:8 (L:D) photoperiod until the eggs hatched. For developmental
investigations, leaves were collected from TSWV-infected and TSWV non-infected plants,
and leaf discs (1.5 cm diameter) were removed from the leaves using a cork borer. Each
disc was placed in a plastic Petri dish (4 cm diameter) filled with moist filter paper. About
100 newly hatched larvae in each treatment were individually transferred to the Petri dishes
(4 cm diameter, each Petri dish with one individual constituted a replicate) using a fine
hairbrush when the egg hatched. Each Petri dish was sealed with a Parafilm membrane to
prevent the escape of F. occidentalis. Leaf discs were changed daily. The development and
survival of each juvenile were assessed daily until the larvae died or matured.

Four developmental stages of the insect were assessed. Since the eggs were laid inside
the leaf and were not visible, the duration of the egg stage was recorded as the time when
the leaves with newly laid eggs were placed in the jars until the time when larvae emerged
on the leaf surface [66]. The first- and second-instar larval stages were combined, because
there are no obvious morphological differences between the two stages except for size.
The prepupa is recognized by the short wing sheaths and erect antennae; the pupa has
long wing sheaths that almost reach the end of the abdomen, and the antennae are bent
backwards along the head. Although there are obvious morphological differences between
the prepupal and pupal stages, the prepupal and the pupal stages were also combined
into one stage, because both stages share the same characteristics of not eating or moving
unless they are disturbed. In addition, the duration of the prepupal stage was not more
than one day. Adults were identified by the emergence of wings.

4.5.2. Adult Survival and Oviposition

At adult emergence, about 30 pairs of newly emerged female and male adults from
each treatment were placed in a glass cylinder (30 mm diameter × 40 mm height, one pair
per glass cylinder constituting one replicate) containing a fresh D. stramonium leaf disc as
described in “Development and juvenile survival”. The two ends of the glass cylinders
were sealed with a Parafilm membrane. The leaf discs were replaced daily, and the replaced
discs were individually transferred to Petri dishes (4 cm diameter), and the lids were sealed
with Parafilm. The live adults of each sex were recorded until the adults died. The number
of the first instars was counted and used to represent the fecundity of females [64], as thrips
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eggs were laid below the leaf surface and could not be easily observed [67]. The number
of first instars per female per day, first instars per female per lifetime, and adult longevity
were recorded.

4.6. Data Analysis

The analysis of raw thrips performance data adhered to established methodologies [68].
The key population growth parameters, encompassing the intrinsic rate of age-specific
survival rate (lx), age-specific maternity (mx), the age-specific fecundity (fxj), intrinsic rate
of increase (rm), net reproductive rate (R0), finite rate of increase (λ), mean generation
time (T), life expectancy (exj), and reproductive value (vxj) were examined using age-
stage, two-sex life table method by TWOSEX-MSChart program [69–71]. For enhanced
precision in estimations, means and standard errors of life table parameters were obtained
through a bootstrap procedure involving 100,000 replicates (m = 100,000). The paired
bootstrap test [72] was used to compare the differences of developmental time, adult
longevity, adult pre-oviposition period, total pre-oviposition period, oviposition days, and
fecundity of F. occidentalis between TSWV-infected and TSWV non-infected D. stramonium.
Comparisons of population parameters (rm λ, R0, and T) between the two treatments
were executed using the paired bootstrap test [73,74], leveraging the confidence interval of
differences [72]. Survival rates and fecundity data were utilized for projecting population
growth using TIMING-MSChart program [75], following established methodologies [76].
Thrips’ preference for TSWV-infected and TSWV non-infected D. stramonium, the effects
of alkaloids (scopolamine and atropine) in D. stramonium on thrips’ preference, and the
distinction in alkaloid (scopolamine and atropine) concentrations between TSWV-infected
and TSWV non-infected D. stramonium were analyzed through a t-test conducted using
the SPSS software package (ver.17, SPSS Inc., Chicago, IL, USA). The mortality of thrips
exposed to different tropane alkaloid treatments was analyzed by a one-way analysis
of variance (ANOVA) Tukey’s multiple test. The resulting data were visualized using
GraphPad Prism version 7.00 and Sigma plot 10.0.

5. Conclusions

The present study demonstrated that TSWV infection of D. stramonium causes sig-
nificant reduction of repellent and toxic tropane alkaloids in D. stramonium, the common
host plant of TSWV, and its thrips vector F. occidentalis. The thrips vector F. occidentalis
can prefer and perform better on TSWV-infected plants than on TSWV non-infected ones,
which should increase the number of vectors and the success of virus transmission. To
our knowledge, this is the first time that the virus benefitting itself and its vector by mod-
ulating alkaloids metabolism in the common host plant has been demonstrated. This
study provides an insight into the mechanism by which TSWV benefits its vector, western
flower thrips. Moreover, these findings provide in-depth information to understand the
interactions among plant viruses, vectors, and their host plants.
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