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Abstract: SjD (Sjögren’s Disease) and SLE (Systemic Lupus Erythematosus) are similar diseases.
There is extensive overlap between the two in terms of both clinical features and pathobiologic
mechanisms. Shared genetic risk is a potential explanation of this overlap. In this study, we evaluated
whether these diseases share causal genetic risk factors. We compared the causal genetic risk for
SLE and SjD using three complementary approaches. First, we examined the published GWAS
results for these two diseases by analyzing the predicted causal gene protein–protein interaction
networks of both diseases. Since this method does not account for overlapping risk intervals, we
examined whether such intervals also overlap. Third, we used two-sample Mendelian randomization
(two sample MR) using GWAS summary statistics to determine whether risk variants for SLE are
causal for SjD and vice versa. We found that both the putative causal genes and the genomic risk
intervals for SLE and SjD overlap 28- and 130-times more than expected by chance (p < 1.1 × 10−24

and p < 1.1 × 10−41, respectively). Further, two sample MR analysis confirmed that alone or in
aggregate, SLE is likely causal for SjD and vice versa. [SjD variants predicting SLE: OR = 2.56; 95%
CI (1.98–3.30); p < 1.4 × 10−13, inverse-variance weighted; SLE variants predicting SjD: OR = 1.36;
95% CI (1.26–1.47); p < 1.6 × 10−11, inverse-variance weighted]. Notably, some variants have dis-
parate impact in terms of effect size across disease states. Overlapping causal genetic risk factors
were found for both diseases using complementary approaches. These observations support the
hypothesis that shared genetic factors drive the clinical and pathobiologic overlap between these
diseases. Our study has implications for both differential diagnosis and future genetic studies of
these two conditions.

Keywords: Systemic Lupus Erythematosus (SLE); Sjögren’s Disease (SjD); Sjögrens syndrome; overlap;
GWAS; Mendelian randomization; causal gene networks

1. Introduction

The advent of omics-based approaches to disease characterization has prompted
the reconsideration of traditional phenotype-based disease classification. SjD (Sjögren’s
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Disease) and SLE (Systemic Lupus Erythematosus) are two diseases worth considering for
reclassification. The observations that these diseases share many features [1–3] and overlap
substantially [4,5] are not new. A recent focus of the field has been to define a classification
criteria that distinguish between these two diseases [6,7]. The goal is to improve the
homogeneity of cohorts examined in clinical trials and thereby improve trial success [8].
Nonetheless, several important clinical features overlap. Maternal seropositivity for anti-
Ro/SS-A, the characteristic autoantibody for SjD, is the most common cause of neonatal
lupus [5]. Many patients share features of both diseases [9], and secondary SjD is found in
up to 52% of SLE patients [4,6,10,11]. The clinical diagnostic categories are blurry. Initial
diagnosis with another autoimmune disease, such as SLE that is then revised to SjD, is
common [12].

In addition to clinical overlap, several pathobiologic mechanisms are shared as well.
These shared mechanisms include complement [13], interferon signaling [14,15] and ex-
trafollicular B cell development [16]. Within both diseases, patients fit into stable molec-
ularly defined disease sub-clusters [14,17–20]. However, a study by the PRECISEADS
consortium performed longitudinal multi-omic profiling of persons with diverse systemic
autoimmune diseases, including SLE and SjD [21]. Analysis of these data defined four
stable clusters of multi-omic signatures for systemic autoimmune diseases that were stable
over time regardless of therapy. Importantly, these clusters do not align with traditional
disease classification. That is, persons diagnosed with either SjD or SLE were found in
similar proportions across all clusters with a preponderance for the interferon signature
cluster. Similarly, a persistent anti-Ro (or anti-SSA) + molecular signature of inflammatory
gene expression spanning systemic autoimmune diseases has been described [22].

There is also evidence of genetic overlap. Both in family-based studies and nation-wide
health records studies, the risk of SLE and SjD in first-degree relatives of patients with either
is 5–18× higher [23–25]. We previously described rs2431697, a risk variant that disrupts an
enhancer for microRNA-146A, as a shared causal risk factor for SLE and SjD [26]. Similarly,
SLE and SjD share X chromosome copy number as a major genetic contributor to disease
risk [27], and several of the genetic risk loci in SLE and SjD overlap [28,29].

In this paper, we sought to better understand the extent of genetic overlap between
these two disease phenotypes. To do so, we collated recent GWAS studies of SjD and
SLE. First, we analyzed predicted causal genes and found extensive overlap. Second, we
analyzed genomic risk intervals and found extensive overlap. Finally, Mendelian random-
ization analysis of variants from several published GWAS studies from each phenotype
revealed that SLE is likely causal for SjD and vice versa. To our knowledge, we are the
first to apply these analytic techniques to evaluate the overlap between SjD and SLE. Our
results reveal pervasive sharing of causal genetic risk factors between these two disease
phenotypes. They also suggest a revised nosology that either considers SjD as a form
fruste of SLE, SLE as a severe form of SjD or that both diseases exist together on a spec-
trum. This novel paradigm may prove useful as a conceptual approach to these commonly
overlapping diseases.

2. Results

To address the extent of genetic overlap between SjD and SLE, we applied three
methods to compare GWAS results from these diseases. Both detailed description of our
methods (putative causal gene network overlap, association interval overlap and Mendelian
randomization) and a schematic of our overall analysis are presented in the Section 4.

2.1. Sharing of GWAS Identified Genes and Loci between Sjögren’s Disease and Systemic
Lupus Erythematosus
2.1.1. SjD Putative Causal Gene Predicted Protein–Protein Interaction Networks

We used a published approach to annotate the predicted causal genes for SjD genetic risk
loci from the EBI GWAS catalog [30] (Table S1A). One SjD GWAS study, that of Khatri et al.,
has not yet been incorporated into the L2G Open Targets Genetics database [31,32]. There-



Int. J. Mol. Sci. 2023, 24, 14449 3 of 25

fore, we manually annotated these loci using proxies (Table S1B). We then queried the
STRING database [http://string-db.org, accessed on 11 April 2023] using this list to obtain
a predicted protein–protein interaction network for SjD (Figure 1 and Table S2).
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Figure 1. Sjögren’s Disease predicted causal genes for a distinct biological network. The predicted
protein–protein interaction network from the STRING database of Sjögren’s Disease GWAS-identified
putative causal genes is shown. (https://www.ndexbio.org/viewer/networks/99b77fa6-478b-11ee-
aa50-005056ae23aa, accessed on 3 June 2023).

Like the published causal gene networks for monogenic and polygenic SLE [33–35]
(Tables 1 and S2), the SjD genes are predicted to interact more significantly than would be
expected by chance (p < 5.5 × 10−16). The SjD genes also show a relatively high degree of
clustering. Taken together, this suggests that these genes regulate the common pathways
within a shared molecular network. This finding also supports the annotation of the
individual genes as putatively causal.

Table 1. Predicted causal gene network characteristics and explanations from the STRING user
documentation [https://version11.string-db.org/help/getting_started/, accessed on 22 May 2023].

Network 1 Nodes 2 Edges 3 Degree 4 Clustering 5 Exp. Edges 6 p 7

Monogenic SLE 54 169 6 0.65 33 1.0 × 10−16

Polygenic SLE 127 497 8 0.44 107 1.0 × 10−16

Sjögren’s Disease 23 29 3 0.68 4 5.5 × 10−16

1 Putative causal gene network. 2 Number of nodes in the network. 3 Number of edges in the network. 4 The
average node degree is a number of how many interactions (at the score threshold) that a protein has on average
in the network. 5 The expected number of edges indicates how many edges is to be expected if the nodes were
to be selected at random. The clustering coefficient is number between 0 and 1 that measures how connected
the nodes in the network are. Highly connected networks have high values. 6 The expected number of edges
indicates how many edges is to be expected if the nodes were to be selected at random. 7 A small PPI enrichment
p-value indicates that the nodes are not random and that the observed number of edges is significant.

2.1.2. Pathway Analysis of SjD Putative Causal Genes

We then performed pathway analysis to further characterize the list of putatively
causal genes responsible for SjD development. Links to pathway analyses can be found in
(Table S2). These analyses further validated the contribution of this gene network to known
SjD pathobiology. Specifically, these analyses found pathway enrichment for IFN signaling
(both type I and interferon-gamma), transcription by NF-kB and autoimmune diseases
where secondary SjD or overlap is common (systemic sclerosis, SLE, rheumatoid arthritis

http://string-db.org
https://www.ndexbio.org/viewer/networks/99b77fa6-478b-11ee-aa50-005056ae23aa
https://www.ndexbio.org/viewer/networks/99b77fa6-478b-11ee-aa50-005056ae23aa
https://version11.string-db.org/help/getting_started/
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and primary biliary cholangitis/primary biliary cirrhosis). One finding of particular interest
is the overrepresentation of the IL-35 signaling pathway in this network. This pathway has
been found to be dysregulated in several studies of patients with SjD [36–38].

2.1.3. Extensive Overlap between SLE and SjD Putative Causal Gene Networks

To determine the extent of overlap between our SjD risk network and SLE risk genes,
we compared the overlap between putative causal genes for SLE [33–35] (Table S2) and SjD
(Table S1). This analysis revealed extensive overlap between the predicted causal genes for
these two diseases (Figure 2).
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 Figure 2. The Sjögren’s Disease putative causal genes network exhibits substantial overlap with
that of Systemic Lupus Erythematosus. The predicted protein–protein interaction network from
the STRING database of Sjögren’s disease GWAS-identified putative causal genes (teal rounded
rectangles) is shown together with those of the polygenic human SLE (dark blue hexagons) and
monogenic human SLE (light blue diamonds). Overlaps of SjD with either of the SLE networks are
indicated with orange triangles and take priority over overlaps between monogenic and polygenic
SLE (yellow circles).

Indeed, this overlap was much greater than expected by chance (Table 2).
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Table 2. Overlaps of SLE putative causal gene networks and GWAS loci with SjD.

Network 1 Exp. Overlap 2 Fold Enriched 3 p 4

Monogenic SLE 0.06 46 3.6 × 10−05

Polygenic SLE 0.15 130 1.1 × 10−41

All SLE 0.21 96 7.6 × 10−39

Locus Overlap 0.63 28 1.1 × 10−24

1 Either putative causal gene network or genetic risk loci. 2 The number of expected overlapping nodes assuming
similar length lists were randomly selected from the genome (unassociated). 3 The fold over-represented compared
to expectation. 4 p-value for hypergeometric distribution.

2.1.4. Extensive Overlap between SLE and SjD GWAS Loci

To address the limitations of the putative causal gene network approach (see Section 3),
we also calculated the overlap between GWAS loci. We defined a locus as the 500,000 bp
window centered on a lead variant from the EBI/NHGRI GWAS catalog, similar to a
published approach [39]. We found extensive overlap of SjD GWAS loci with SLE GWAS
loci (Tables 2 and S1A). However, examining overlapping loci results in a more moderate
estimate of enrichment over expectation as compared to putative causal genes. This may
be due to, in part, the way we define regions. This definition results in four SJD-associated
regions within the extended MHC locus, of which none are within 500,000 bp of the MHC
signal for SLE (Table S1A). A prior study indicates that the major association of MHC with
SLE and SjD is the same and is driven by alleles determining the complement factor C4
copy number [13].

In sum, these analyses revealed extensive overlap at both the causal gene and locus
level between SjD and SLE.

2.2. Mendelian Randomization Analysis of Variants Associated with Sjögren’s Disease and
Systemic Lupus Erythematosus

The causal gene overlap, but interval overlap approaches do not necessarily im-
ply sharing of risk alleles. Thus, we also applied an analysis technique that evaluates
causal relationship between phenotypes with respect to shared risk alleles, Mendelian
randomization (MR).

2.2.1. Analysis 1: The Causal Effect of SjD Variants on SLE in European Ancestry GWAS

We started with lists of genome-wide significant (p < 5.0 × 10−8) SjD risk variants from
European ancestry GWAS studies (Table S3A–D). We used the ‘TwoSampleMR’ R package
to analyze the effect of these variants in the summary statistics of a publicly available SLE
GWAS in a cohort of persons with European ancestry [40]. Inverse-variance weighted
(IVW) MR analysis was the primary inference. We supplemented this with weighted
median, weighted mode, and MR Egger analyses. These additional analyses were used
to evaluate the robustness of the IVW results. These analyses revealed evidence for a
causal relationship between these two phenotypes mediated by these variants or linked
variants. Importantly, each of the four MR methods broadly agreed in terms of direction
and magnitude of effect size (Table 3). This agreement indicates a stable and robust causal
relationship between SjD and SLE in this population.

Table 3. MR results with SjD as exposure and SLE as outcome reveals a causal relationship in persons
with European Ancestry.

Method 1 #SNPs 2 β 3 se 4 p 5

Inverse-variance weight 12 0.94 0.13 1.4 × 10−13

Weighted median 12 0.91 0.11 2.4 × 10−15

Weighted mode 12 1.15 0.12 9.7 × 10−07

MR Egger 12 1.18 0.27 0.0014
1 MR analysis method. 2 Number of variants used in the analysis. 3 MR effect size, beta. 4 standard error of beta.
5 p-value for causal association.
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The forest plot of effect sizes (Figure 3A) shows this consistent effect of SjD on SLE esti-
mated using these risk variants. To ensure that the causal relationship between SjD and SLE
was not overly influenced by any single variant, we performed the leave-one-out sensitivity
analysis. This analysis did not show that removal of a single variant markedly changes the
effect size estimate (Supplementary Figure S1). In the scatter plot of SjD and SLE effect
estimates (Figure 3B), the slope of the regression line for each method indicates a consistent
estimate of overall effect size across methods (Figure 3B). The plot also revealed an MR
Egger regression intercept of −0.072 that does not significantly differ from zero (Figure 3B
and Table S4). This finding is consistent with the absence of directional pleiotropy [41]
and the InSIDE assumption. Taken together, there is a strong dose-dependent relationship
between the genetic associations for SjD and SLE.
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Figure 3. MR analysis reveals a robust and stable causal relationship between Sjögren’s Disease
and Systemic Lupus Erythematosus in a GWAS of persons with European ancestry. (A) Forest plot
of SjD effect estimate on SLE in the Bentham J. et al., GWAS [40] for individual risk variants. MR
Egger and inverse-variance weighted overall estimates are also shown. Data are MR effect sizes
(beta ± se). Black dots and black lines indicate MR effect estimates and confidence intervals for
individual variants. Red dots and red lines indicate aggregate MR effect estimates and confidence
intervals as indicated for MR Egger and Inverse variance weighted analyses. (B) scatter plot of MR
effect sizes (beta) ± standard error (se).

A funnel plot did not reveal marked asymmetry. This is consistent with the absence
of effect heterogeneity [42]. However, despite the consistency in estimated MR effect size
across variants and methods, there is evidence of significant effect heterogeneity for both
IVW and MR Egger analyses (Table S4 and Figure S1). We suspect that this heterogeneity
arises from the broad range of estimated odds ratios for the variants selected for both SjD
[1.13–2.08] and SLE [1.05–2.48]. Additional results and sensitivity analyses are presented in
(Table S4, and Figures S1 and S2).

Taken together, these analyses indicate a causal relationship between SjD and SLE in
these cohorts of persons with European ancestry.

2.2.2. Analysis 2: The Causal Effect of SLE Variants on SjD in European Ancestry GWAS

We next performed the reciprocal analysis by using SLE associated variants to evaluate
the causal relationship between SLE and SjD. To do this, we used the genome-wide signifi-
cant (p < 5.0 × 10−8) SLE risk variants from a large GWAS of SLE in a cohort of persons
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with European ancestry [40] (see Section 4 for details) (Table S5A). For the outcome pheno-
type, we used the GWAS summary statistics found by searching for “sjogren syndrome”
in the MR-Base platform [43]. These summary statistics are derived from the FinnGen
Biobank GWAS (M13_Sjogrens) [44]. MR analyses were carried out as in Section 2.2.3.
These analyses revealed evidence for a causal relationship between SjD and SLE mediated
by SLE variants as well. Importantly, each of the four MR methods broadly agreed in terms
of direction and magnitude of effect size (Table 4). This agreement indicates a stable and
robust causal relationship between SjD and SLE in this population.

Table 4. MR results with SLE as exposure and SjD as outcome reveals causal relationship in persons
with European Ancestry.

Method 1 #SNPs 2 β 3 se 4 p 5

Inverse-variance weight 32 0.31 0.04 1.6 × 10−11

Weighted median 32 0.28 0.05 2.4 × 10−08

Weighted mode 32 0.30 0.10 0.0034
MR Egger 32 0.554 0.08 2.7 × 10−07

1 MR analysis method. 2 Number of variants used in the analysis. 3 MR effect size, beta. 4 standard error of beta.
5 p-value for causal association.

The forest plot of MR effect sizes (Figure 4A) shows a more moderate effect of SLE
variants on SjD. This is consistent with the overall estimates (Table 4). This contrasts with
the estimated effect of SjD on SLE (Table 3). Notably, the Finnish population is something
of an outlier in comparison to other European populations [45]. This difference in effect
sizes may have to do with different LD patterns across populations. It may also be that the
SLE on SjD effects are, in fact, less than the effects of SjD on SLE. There was also evidence
of effect heterogeneity for both IVW and MR Egger analyses, but less significant than in the
reciprocal analysis (Section 2.2.3).

We performed sensitivity analysis as in the reciprocal analysis (Section 2.2.3). The
leave-one-out sensitivity analysis does not show that any single variant markedly changes
the overall effect size estimate (Figure S3). Like the previous analysis, in the scatter plot
of SjD and SLE effect estimates, the slope of the regression line for each method indicates
a consistent estimate of overall effect size across methods (Figure 4B). This analysis also
revealed an MR Egger regression intercept of −0.089. This intercept was of a similar size
to that seen in the reciprocal analysis (Section 2.2.3). Due to the larger number of SNPs
used in this analysis, the standard error of this intercept is smaller, leading to a nominally
significant p-value for directional pleiotropy (Table S5B). This finding is consistent with
the presence of directional pleiotropy or violation of the Instrument Strength Independent
of Direct Effect (InSIDE) assumption [41]. However, the deviation from zero is small in
absolute terms. Despite this, the MR Egger-derived effect estimate is significantly positive.
While there is evidence of directional pleiotropy, once it is accounted for, a significant causal
relationship remains. Taken together, there is a strong dose-dependent relationship that
holds for most of the genetic associations for SLE and SjD.

One variant merits separate consideration. The SNP, rs150180633, sticks out in the
scatter plot as it does not follow the rest of the variants. The effect direction comparing
SjD and SLE is opposite, and the standard error is relatively large (Figure 4B). This variant
represents a distant secondary effect in the extended HLA region from the GWAS of SLE
performed in a cohort of persons with European ancestry. It is nearly 1 megabase away
from the main HLA-region effect, rs389884 [46]. Thus, due to this long distance, this variant
may be particularly susceptible to differences in LD pattern between populations. Impor-
tantly, this variant is also uncommon in the Finnish population (minor allele frequency,
MAF < 1%). Additional supportive data and sensitivity analyses are presented in (Table S5,
and Figures S3 and S4). Consistent with the foregoing discussion, removal of this vari-
ant led to larger causal effect estimates of SLE for SjD, more significant association and
decreased heterogeneity.



Int. J. Mol. Sci. 2023, 24, 14449 8 of 25

Taken together, these results indicate a causal relationship between SjD and SLE in
these cohorts of persons with European ancestry.
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Figure 4. MR analysis reveals a robust and stable causal relationship between Systemic Lupus
Erythematosus and Sjögren’s Disease in a GWAS of persons with European ancestry. (A) Forest
plot of effect estimate of SLE on SjD (M13_Sjogrens) in the FinnGen GWAS [44] for individual risk
variants. MR Egger and inverse-variance weighted overall estimates are also shown. Data shown are
MR effect sizes (beta ± se). Black dots and black lines indicate MR effect estimates and confidence
intervals for individual variants. Red dots and red lines indicate aggregate MR effect estimates and
confidence intervals as indicated for MR Egger and Inverse variance weighted analyses. (B) scatter
plot of MR effect sizes (beta) ± standard error (se).

2.2.3. Analysis 3: The Causal Effect of SjD Variants on SLE in East Asian Ancestry GWAS

The results in Sections 2.2.3 and 2.2.4 point toward a causal relationship between SjD
and SLE mediated in European populations. The SjD GWAS studies published to date
in East Asian ancestry population have smaller sample sizes than European ancestry SjD
GWAS studies. As a result, the associated variants available for MR analysis are fewer and
have less precise estimates of effect size (Table S3B). In other words, for any given genetic
association, smaller sample size results in a larger standard error. In addition to smaller
sample size, the full, genome-wide summary statistics from East Asian ancestry GWAS of
SjD have not been made publicly available. This precludes examination of SLE effects in
SjD GWAS studies of persons with East Asian ancestry. Nonetheless, we wondered whether
the causal relationship between SjD and SLE that we identified could be independently
validated. We started with the list of genome-wide significant (p < 5.0 × 10−8) SjD risk
variants reported within the manuscripts reporting several East Asian ancestry SjD GWAS
studies (Table S3B). We again used the ‘TwoSampleMR’ R package to analyze the effect
of SjD on SLE using the summary statistics of a large, publicly available SLE GWAS in a
cohort of persons with East Asian ancestry [47]. MR analysis parameters were the same as
above. The analyses revealed inconsistent evidence for a causal relationship between these
two phenotypes estimated by these variants. Importantly, IVW and the outlier selection
and removal-based methods (weighted median and weighted mode) agreed broadly in
terms of direction and magnitude of effect size (Table 5). However, MR Egger did not
agree with the other methods. MR Egger resulted in a highly imprecise estimate of the MR
effect size that could not be distinguished from the null (Figure 5A). Therefore, this result
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was not significant. The purpose of MR Egger is to serve as a kind of sensitivity analysis
that was developed to model directional pleiotropy [48]. It applies Egger regression to the
estimation of the MR effect size. Egger regression was originally developed to detect small
study bias in meta-analysis. In the MR scenario, it detects bias toward either high or low
values from weaker genetic variants. To do so, it performs regression analysis of the variant
effects between the exposure and outcome phenotypes. In our case, this is depicted in the
scatter plots (Figure 5B). Thus, an MR Egger intercept term that significantly differs from 0
provides evidence of directional pleiotropy. Like the non-significant MR Egger estimate
(Table 5), the MR Egger intercept could not be distinguished from 0, as the standard error
was larger than the estimate by a considerable margin (Table S6). Visual inspection of the
scatterplot provides an explanation for this. First, there are few variants (n = 4) to fit a
regression line, as evident from the results of few SjD GWAS studies having been performed
with a large sample size. Thus, the regression is more likely to be influenced by outliers
or extreme values. Second, outliers are present: both the weighted median and weighted
mode MR methods provide lower estimates of MR effect size than IVW. Therefore, the
IVW estimate is being biased upwards by outliers. MR Egger tests for a dose–response
relationship between exposure effect size and outcome effect size. The precision of the
MR Egger estimate relies both on the proportion of variance in the exposure explained
by the genetic variants and on the variability between genetic associations with both the
exposure and the outcome [41]. For these four variants, the proportion of the variance of
SjD explained by each is small since they are the first loci identified as risk loci in cohorts
of persons with East Asian ancestry. Likewise, there is considerable variability in these
associations both with the exposure and the outcome. Thus, both the estimated MR effect
and the estimated intercept produced via MR Egger for these variants are highly imprecise.
Thus, the MR Egger analysis indicates either the presence of pleiotropy or a causal effect.
Together with the consistent estimates of a causal effect via the IVW, weighted median and
weighted mode methods, a causal effect seems more likely. Additional supportive data and
sensitivity analyses are presented in (Table S6, and Figures S5 and S6).

Table 5. MR results with SjD as exposure and SLE as outcome reveals either a causal relationship in
persons with East Asian Ancestry or pleiotropy.

Method 1 #SNPs 2 β 3 se 4 p 5

Inverse-variance weight 4 0.55 0.19 0.004
Weighted median 4 0.38 0.05 2.5 × 10−12

Weighted mode 4 0.35 0.05 0.003
MR Egger 4 −0.45 0.89 0.911

1 MR analysis method. 2 Number of variants used in the analysis. 3 MR effect size, beta. 4 standard error of beta.
5 p-value for causal association.

Taken together, our analyses suggest a causal relationship between SjD and SLE in
these cohorts of persons with East Asian ancestry. However, a scenario where each trait is
independently influenced by the same genetic factor cannot be excluded. This scenario is
termed as horizontal pleiotropy.

2.2.4. Analysis 4: The Causal Effect of SLE Variants from East Asian Ancestry GWAS on
SjD in European Ancestry GWAS

Next, we explored whether the causal relationship we found between SLE and SjD in
European ancestry populations was more generalizable. To do so, we evaluated the causal
relationship between SLE and SjD using GWAS of SLE in persons with East Asian ances-
try [47] and a GWAS of SjD in persons of European ancestry [44]. We again restricted the
variants in question to those that passed the genome-wide significance (p < 5.0 × 10−8) in
the exposure GWAS of SLE. We also applied clumping and pruning to remove LD between
variants using the ‘TwoSampleMR’ R package. Analysis parameters were the same as the
other analyses. This analysis revealed consistent evidence for a causal relationship between
these two phenotypes mediated by these variants (Table 6 and Figure 6). In single variant
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analysis, several of the SLE risk variants (rs16870693, rs3800387, rs55701306 and rs16869875)
show consistent evidence against a causal relationship between SLE and SjD (Table S8).
Notably, each of these variants is uncommon in the European ancestry population exam-
ined. The minor allele frequencies (MAFs) are all less than 3.5%. In contrast, the MAF for
these variants in East Asian ancestry samples (EAS) from the 1000 Genomes Project ranges
from 11.41 to 42.76% [49,50]. This suggests that these variants may be ill-suited to detect
casual relationships across populations. That is, they may be particularly susceptible to
differences in local LD structure varying across populations. As a result, the relevance
condition for instrumental variables may not hold. Despite the challenge with comparing
causal effects across populations, the general agreement of the four analyses presented in
this manuscript argues for a stable and robust causal relationship between SLE and SjD.
Additional supportive data and sensitivity analyses are presented in (Tables S7 and S8, and
Figures S7 and S8).
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Table 6. MR results with SLE in persons with East Asian Ancestry as exposure and SjD in persons
with European ancestry as outcome reveals a causal relationship.

Method 1 #SNPs 2 β 3 se 4 p 5

Inverse-variance weight 30 0.29 0.06 3.5 × 10−05

Weighted median 30 0.23 0.06 5.6 × 10−06

Weighted mode 30 0.23 0.08 0.006
MR Egger 30 0.42 0.17 0.019

1 MR analysis method. 2 Number of variants used in the analysis. 3 MR effect size, beta. 4 standard error of beta.
5 p-value for causal association.
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Figure 6. MR analysis reveals a causal relationship between Systemic Lupus Erythematosus in
persons of East Asian ancestry and Sjögren’s Disease in GWAS of persons with European ancestry.
(A) Forest plot of SLE from the Wang, Y.F. et al. GWAS [47] on SjD in FinnGen [44] for individual risk
variants. MR Egger and Inverse-variance weighted overall estimates are also shown. Data shown are
MR effect sizes (beta ± se). Black dots and black lines indicate MR effect estimates and confidence
intervals for individual variants. Red dots and red lines indicate aggregate MR effect estimates and
confidence intervals as indicated for MR Egger and Inverse variance weighted analyses. (B) scatter
plot of MR effect sizes (beta) ± standard error (se) across the two conditions/populations.

Taken together, our analyses suggest a causal relationship between SLE in persons
with East Asian ancestry and SjD in persons with European ancestry.

3. Discussion

The causal gene network and gene interval results provide strong support of a causal
relationship between SjD and SLE mediated by shared genetic risk factors. Prior studies
investigating the clinical, serologic, immunologic, and molecular overlap between these
two conditions also support this hypothesis. Thus, our conclusion may not be surprising.
However, the degree of overlap perhaps is. Only three predicted causal genes do not
overlap between SLE and SjD (Figure 2). One of the genes, TNPO3, is adjacent to the shared
gene, IRF5. While this region is shared, this gene was not algorithmically assigned as a
predicted causal gene for SLE. Notably, a prior study indicated that there are multiple
independent genetic associations with SLE in this region [51]. The other two genes that are
not shared reside in the same SjD-associated locus on chromosome 17. We did include the
variants at this locus in the SjD for SLE MR analysis. However, the variants at this locus
were excluded by the algorithm in the ‘TwoSampleMR’ R package from the final analysis
due to allele harmonization issues. Full analysis parameters and logs can be found at the
link in the Data Availability section. This SjD-associated locus has not been reported as
being associated with SLE and encodes the genes RPTOR and CHMP6. Understanding
how this risk locus confers risk for SjD will be important to comprehend how the etiology
of SjD is distinct from that of SLE.

The Mendelian randomization results also support a strong causal link between these
two disease phenotypes mediated by causal genetic variants. Two observations strengthen
this causal link. First, we observed that this relationship is reciprocal: SjD is causal for
SLE and vice versa. Second, this relationship is evident in both European and East Asian
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ancestry populations with caveats (discussed below). Despite these interpretive caveats,
the causal link between SjD and SLE revealed via MR is both stable and robust.

One general limitation of our study is that the common genetic contribution to SLE
has been more extensively studied than that of SjD. Thus, there are more putative causal
genes, associated intervals, and variants for SLE than for SjD. This could cause us to have
an under or overestimation of the true extent of overlap between SLE and SjD, depending
on what future GWAS of SjD reveal. In addition, there are limitations of the putative
causal gene and gene interval approaches. First, two drawbacks of the putative causal
gene network approach should be noted. One is that the causal gene at many risk loci
cannot be confidently assigned. If these loci are shared, this could cause the overlapping
causal gene network to underestimate the true extent of overlap. Another is that as the
number of potential overlaps in a population gets larger, so does the number of expected
overlaps. Applied to our situation, since 55 SLE risk loci cannot be confidently assigned a
putative causal gene, a gene-based approach likely over-estimates the true extent of overlap.
As for limitations of MR, one limitation is that there are only five genetic risk variants
identified to date for SjD in East Asian ancestry populations. Of these, four remained after
LD pruning (Table 5 and Figure 5). As a result, MR Egger cannot distinguish between
true causal association and directional pleiotropy. The second caveat is that we have not
been able to test whether SLE is directly causal for SjD in GWAS from East Asian ancestry
populations. This is because genome-wide summary statistics for SjD GWAS studies in East
Asian ancestry cohorts are not available within the MR-Base repository. Instead, we tested
whether SLE risk variants identified in a cohort of persons with East Asian ancestry were
causally linked to SjD in a cohort of persons with European (Finnish) ancestry (Figure 6).
Despite the application of MR across ancestries, our results generally reinforce MR analysis
of SjD and SLE in European ancestry populations. Importantly, our analyses of causal
links between SjD and SLE used complementary approaches (overlap of putative causal
gene networks, intervals and MR analysis), each of which addressed the limitations of the
others. Also important, they all led to the same broad conclusion: genetic risk factors are
extensively shared between SjD and SLE.

There are several interesting questions regarding the causal relationship between
SjD and SLE. Are the effect sizes the same? The MR analyses generate a wide range of
causal estimates. Most fell within the range [0.23–1.18]. In both analyses evaluating the
impact of SLE variants on SjD risk, the estimated effect sizes in SjD were lower [0.23–0.55]
(Tables 4 and 6). These analyses suggest that the causal effect of SjD variants on SLE is larger.
However, several points should be considered in their interpretation. First, the number of
GWAS-identified variants is smaller for SjD as compared to SLE. Second, in both instances
the comparison GWAS for SjD used to determine the effect of SLE on SjD is derived from
the FinnGen study. Amongst European ancestry populations, the Finnish population
does show some inter-population differences [45]. Third, the FinnGen study ascertains
disease status based on electronic health record (EHR) diagnosis codes. The cohort of
participants selected via these codes could include persons who do not, in fact, meet
classification criteria for SjD. If so, we would expect smaller effect size estimates for SjD in
the FinnGen population relative to a cohort composed exclusively of SjD patients who meet
the classification criteria. Other potential explanations include the impact of factors (genetic,
environmental, or stochastic immune response), or the so-called “Winner’s Curse”. That is,
by nature of their discovery, disease-associated variants tend to systematically overestimate
the effect size on a given phenotype relative to the true effect size in a population [52,53].
Thus, several factors may contribute to a downward bias of SjD effect size estimates. Future
investigation will be necessary to resolve these possibilities.

Another question is related to the portion of genetic risk for these diseases that is
shared. Is only a core network shared between SjD and SLE or is there a broader sharing of
causal risk variants? The genomic risk variant footprint for most common human genetic
phenotypes comprises two parts. The first part is composed of risk variants identified in
initial GWAS scans. These variants constitute a core network of disease risk alleles. The



Int. J. Mol. Sci. 2023, 24, 14449 13 of 25

second part is composed of the aggregate effects of thousands to millions of risk alleles
spanning the entire genome. Each of these variants add or subtract a small amount of
risk [54]. In some instances, gene–gene interactions will likely synergistically contribute to
this risk. Our study, by necessity, can only evaluate GWAS studies where there is publicly
available data. For SjD, this results in a relatively small number of risk loci. Thus, we may
have only addressed the core genetic risk network for SjD. Two methods that may be able
to address this, at least in part, are genetic correlation and polygenic risk score calculation.
These methods do not only evaluate the effect of the most strongly associated variants but
can also include the contribution or risk variants across the entire genome. The SjD GWAS
by Khatri et al. [29] did compare genetic correlation, rg, between GWAS of SLE and SjD in
cohorts of persons with European ancestry. This metric calculates the correlation between
effect size of variants spanning the entire genome and not just those that are strongly
associated with disease. Their analysis found a high degree of genomic correlation between
GWAS for these two phenotypes as compared to other disease phenotypes. Likewise, some
approaches to polygenic risk scores (PRS) calculation use the entire genome or include a
broader subset of weakly associated (i.e., p < 1.0 × 10−5) variants. Calculating cross-disease
PRS would be another approach to address shared causality between phenotypes. There
are tools that allow for the derivation of PRS from summary statistics [55]. However,
to our knowledge, current tools do not allow for the estimation of individual-level PRS
based on summary statistics. This question warrants further study with individual level
genotype data.

A related question also arises from the above consideration: is there a subtype or
subtypes of SjD and SLE that exhibit a greater degree of sharing? For example, do anti-
Ro/SS-A+ or anti-La/SS-B+ SLE patients exhibit a greater degree of shared genetic risk
to SjD patients that exhibit these seropositivities? It may be that loss of immune tolerance
to self within these autoantibody systems is under particular genetic control. Indeed,
this appears to be the case for anti-Sm autoimmunity, which is restrained by CD72 under
normal circumstances [56]. If this is generally true, then it may be that sharing of genetic
risk between SjD and SLE is more pronounced in genes that also affect this shared pathway.
Studies examining this question will require GWAS of large sample sizes to compensate
for the loss of power with substratification of these phenotypes. A related question is how
do other phenotypes associated with SjD compare in terms of causal risk variant sharing?
Secondary SjD is found with several other autoimmune disease phenotypes, including
primary biliary cholangitis, rheumatoid arthritis, systemic sclerosis, and autoimmune
thyroid disease. Future studies examining the causal links between SjD and these diseases
will be of interest.

The proponents of precision or personalized medicine envision a world where treat-
ment of disease is personalized to the characteristic features of an individual person’s
disease process. The hope is that with knowledge of the human genome and the advent of
other omics technologies, healthcare practitioners will be able to precisely stratify diseases
to smaller, molecularly defined subsets. Of course, delivering the correct therapy to the cor-
rect patient at the correct time is a worthy improvement goal for all of healthcare. However,
a reductionistic focus on precision, allowed by increasingly precise technical advancements
could carry costs in terms of accuracy of disease categorization. The history of revising
disease understanding when old paradigms were overturned by new technologies is in-
structive [57]. Whereas dropsy was once considered a single disease process, most medical
students can facilely review a differential diagnosis of common causes for this condition
(heart, kidneys, liver, etc.). This understanding of dropsy, comprising distinct entities, is
rooted in a mechanistic understanding of how hemodynamics and protein production
impact oncotic pressure [58,59]. Similarly, advances leading to the germ theory of disease
and molecular genetics led to the reclassification of diseases. For example, diverse clinical
presentations including variable presentation of a honey-colored skin rash, inflammatory
arthritis, frothy urine, sore throat and chorea could be reclassified as being related to group
A streptococcal infection [60]. In the same vein, Mendelian genetic syndromes could be
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reclassified as related based on action within a defined biochemical pathway. At first
glance, abnormally dark urine, liver failure, relative absence of skin pigmentation and
intellectual disability are not necessarily related symptoms. However, each of these cor-
responds to a genetic syndrome caused by loss of function in phenylalanine metabolism
(homogentisic acid oxidase, fumarylacetoacetate hydrolase, tyrosinase, and phenylalanine
hydroxylase, respectively) [61–64]. Thus, prior paradigm shifts leading to the reclassifi-
cation of disease entities improved our understanding and treatment of disease in both
directions. Lumping similar entities based on shared mechanisms and splitting based on
new mechanism-defined subphenotypes both led to improved disease understanding.

Our findings are consistent with a developing notion that targeting common pathways
shared across autoimmune diseases may lead to improved therapeutic responses. One ex-
ample is the recent application of low-dose IL-2 to expand T regulatory cells across multiple
autoimmune and inflammatory disease states [65]. This trial of persons diagnosed with 1 of
11 autoimmune was geared towards demonstrating the safety of this approach in terms of
effector T cell activation. However, these data also demonstrated significant improvement
in aggregate measures of disease activity from baseline. There is an increasingly precise
understanding of the shared pathobiology underlying the clinical overlap between SjD
and SLE. Accurately understanding the shared pathobiology of these diseases presents an
opportunity to advance therapeutically relevant understanding of both. Since SjD and SLE
are diseases with polygenic contributions to disease risk, we wondered what degree of
shared genetic risk might be present.

Finally, our findings have implications for future studies of SLE and SjD. They suggest
that application of meta-analysis methods to jointly model shared phenotypes may be a
way to increase power to detect genetic variants in both SjD and SLE [66–69]. Combining
summary statistics from individual disease GWAS or using individual level genotype data
to substratify individuals based on shared phenotype (i.e., combining persons with primary
SjD together with persons with SLE and secondary SjD) will increase the effective sample
size. In this way, discovery of genetic risk factors for SjD may be accelerated. There are also
potential implications impacting clinical care. Most trials in SjD (and SLE for that matter)
have not met their primary endpoint. Indeed, it is noteworthy when a trial of therapy
for SjD does meet its primary endpoint [70–72]. As we have noted, there is clinical and
pathobiologic similarity between SjD and other diseases, like SLE and RA. Similarly, some
persons are affected by SjD and another autoimmune disease, like SLE or RA (secondary
Sjögren’s Disease). Because of this overlap, clinical treatment guidelines of constitutional
and non-sicca organ-based manifestations of SjD rely on extrapolation from diseases like
SLE and RA [73,74]. Our finding that SLE and SjD are causally linked add credence to this
clinical practice. Future studies to better define shared pathways between SjD and other
diseases outlined above may further inform therapeutic selection for these manifestations
in SjD.

4. Materials and Methods
4.1. Overview of Analysis Scheme

A schematic of our analysis is presented below (Figure 7).

4.2. Determining the Overlap of GWAS-Associated Loci in SLE and SjD
4.2.1. Defining SLE and SjD Loci

We applied a previously described approach [30,75] to define disease-associated ge-
netic loci that have been identified in published genome-wide genetic association scan
(GWAS) with Sjögren’s Disease. To do this, we first searched the EBI/NHGRI GWAS
catalog [76] using search term “Sjogren syndrome” for all variants associated with Sjögren’s
syndrome p < 5.0 × 10−8. We also included a novel loci from a recently published GWAS
of SjD [29] that has not yet been incorporated into the GWAS catalog. A locus was defined
as any sequence of adjacent associated variants within 250,000 base pairs. We used the list
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of SLE-associated loci from a previously published paper that was derived using the same
method [30]. The SjD and corresponding SjD association intervals are listed in (Table S1A).
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likely violating the relevance condition as described in the methods. Created with BioRender.com 
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4.2.1. Defining SLE and SjD Loci 

We applied a previously described approach [30,75] to define disease-associated ge-
netic loci that have been identified in published genome-wide genetic association scan 
(GWAS) with Sjögren’s Disease. To do this, we first searched the EBI/NHGRI GWAS 

Figure 7. Analysis scheme. [EUR] indicates European ancestry GWAS. [EAS] indicates East Asian
ancestry GWAS. M13_Sjogren’s indicates the phenotype code from FinnGen used to define Sjögren’s
for that GWAS. [EUR–QC] indicates genome-wide significant variants after removal of variants likely
violating the relevance condition as described in the methods. Created with BioRender.com (accessed
on 6 June 2023).

4.2.2. Pathway Analysis of Putatively Causal SjD Risk Genes

We performed pathway analysis on the list of putatively causal genes for SjD using
the STRING database [77], Enrichr [78], ToppGene [79] and the Network Data Exchange at
NDEXBio.org (accessed on 6 June 2023) gene set enrichment analysis tools [80]. The links
to these queries can be found in (Table S2).

4.2.3. Calculating Locus-Level Overrepresentation between SLE and SjD

Using the two lists of disease-associated loci defined in this way, we then calculated
whether the overlaps between these sets of loci in terms of genomic interval was greater
than expected by chance. To do this, we wrote a python script that counts the number of
overlapping loci and between these diseases (https://github.com/harleyi/sjd_sle_overlap,
accessed on 24 May 2023). We then used these overlaps to calculate the fold overrepresen-
tation between these two lists across the genome. The total number of base pairs in the
genome was derived from the genome reference consortium, Human Genome Assembly
GRCh38.p14 (https://www.ncbi.nlm.nih.gov/grc/human/data, accessed on 3 June 2023).
This indicates that there are 3,298,912,062 bases in the human genome. When it is divided
by 500,000 bp blocks, this yields 6598 such loci. We then used the hypergeometric calcula-
tor from the Graeber lab (https://systems.crump.ucla.edu/hypergeometric/index.php,
accessed on 3 June 2023) to calculate the fold overrepresentation of these genomic intervals.

4.3. Predicted Causal Polygenic Risk Gene Annotation, Network Construction and Overlap
4.3.1. Calculating Locus-Level Overrepresentation between SLE and SjD

To build the list of predicted causal SjD risk genes, we applied the same approach that
we previously used with modification [30]. Once the list of genomic loci was defined, we
annotated this list of SjD-associated loci using the output form of the Locus2Gene (L2G)
algorithm [31] from Open Targets Genetics [32] as previously described. However, two loci
were clearly misannotated using this approach based on published data, NCF1 [81] and
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C4A, C4B [13]. Therefore, they were manually reassigned. In addition, one large GWAS
study of Sjögren’s Disease, that of Khatri et al. [29], has not been incorporated into either
of these data sources. Therefore, we manually reviewed the unannotated variants from
this study. We then assigned a predicted causal gene for each locus. To do so, we used
a combination of manual annotation from the literature and selected a proxy from the
list of SLE loci. We then assigned the predicted causal gene as the likely causal gene for
SjD. Details of proxy selection are in (Table S1B). Detailed instructions can be found in the
Supplementary Materials (Supplementary Note). These instructions include step-by-step
instructions on navigating the EBI GWAS Catalog [76]. They also include links to: resources
to interpret EBI GWAS Catalog data tables [82]; documentation for the L2G algorithm [83];
and documentation for the open targets genetics database [84].

4.3.2. Building the Predicted Causal Gene Network for SjD

To build the predicted protein–protein interaction network of causal SjD risk genes,
we used the STRING database version 11.5 (http://string-db.org, accessed on 22 May
2023) [77]. We entered the list of SjD-predicted causal genes, ensured correct identifier
mapping and then exported this network to Cytoscape v3.10.0 for further annotation and
analysis. Default settings were used to generate the predicted protein–protein interaction
network. The predicted causal genes for SjD can be found in Table S1A. Detailed instruc-
tions can be found in the Supplementary Materials (Supplementary Note). They include
links to resources to interpret STRING networks [85] and various tutorials and guides for
navigating and using Cytoscape [86–91].

4.3.3. Calculating Overlap

As above (Section 4.2.3), the Graeber lab hypergeometric calculator was used to
calculate the degree of overlap in terms of risk genes with the following parameters:
19 genes overlapping networks, 23 predicted causal SjD genes, 131 predicted causal SLE
genes and 19,303 genes in the STRING v11.5 network for Homo sapiens (https://string-
db.org/organism_overview.html, accessed on 22 May 2023). Detailed instructions can be
found in the Supplementary Materials (Supplementary Note) and includes a link to the
Graeber lab hypergeometric calculator [92].

4.4. Mendelian Randomization Analysis
4.4.1. Overview of Mendelian Randomization and Application of Instrumental Variable
Analysis to Genetic Studies

Mendelian randomization (MR) is a causal inference method that has been developed
to estimate and test causal effects between phenotypes [93]. MR applies instrumental
variable analysis techniques, using genetic variants as the instrumental variables. In the
example of two-sample MR, causality between an exposure phenotype and an outcome
phenotype is assessed by evaluating the effect of the variants associated with the exposure
phenotype on the outcome phenotype. Mendel’s laws of segregation and independent
assortment ensure that non-linked variants (that is, independent variants not in linkage
disequilibrium with one another) are a source variation potentially impacting the outcome
phenotype. Inheritance of independent variants is a source of random variation unrelated
to confounding factors. Furthermore, germline genetic variants are not susceptible to issues
with reverse causality [94,95]. Therefore, the effect of variants on the exposure and the
outcome phenotypes can be used to determine causality of the exposure on the outcome if
certain conditions are met (Figure 8).

The main three conditions of MR are those of (1) relevance, (2) independence, and
(3) exclusion restriction [96,97]. The relevance condition requires that a variant needs to be
robustly associated with the exposure of interest. When MR is applied to GWAS studies,
this often results in limiting variants under examination to those that pass the commonly
accepted threshold for genome-wide significance, p < 5.0 × 10−8. The independence
condition holds that variants are not associated with confounding factors impacting the

http://string-db.org
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association between the exposure phenotype and the outcome phenotype. The exclusion
restriction condition holds that each variant is associated with the outcome only through
the exposure of interest. In sum, MR is a powerful method to determine causal relationships
between phenotypes that rely on specific conditions to be met regarding the relationship of
genetic variants, confounding factors, and exposure/outcome phenotypes.
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Figure 8. Mendelian randomization causal graph and conditions. In our study, the most likely
scenario is that the chosen variant, Gk, is in linkage disequilibrium with a causal variant, Gj. In the
event that this LD is perfect (r2 = 1) and the conditions of MR are met, then the association between
Gj and the outcome is fully mediated by the exposure. Therefore, the ratio of marginal effects of Gj on
X and Gj on Y is equal to βXY. Effects of the variant Gj through any confounder, C, or on Y are both
ruled out through the Independence and Exclusion Restriction conditions. The relevance condition
is that Gj (through Gk in this case) is truly associated with the effect, X. In situations of comparison
across populations with different fine-scale LD patterns, the relevance assumption is likely to not be
met. CreatedwithBioRender.com (accessed on 6 June 2023).

The putative causal gene-level overlap between SjD and SLE suggests that both phe-
notypes are mediated by genetic factors that impact the same unmeasured, intermediate
phenotype. We posit that persistent loss of tolerance to nuclear autoantigens is a likely
intermediate. With this framework, which one of the instrumental variable conditions is
most important to attend to in our study of whether SjD and SLE are causally related? We
have ensured that condition 1 (relevance) is met by setting a threshold for robust association
of variants. Condition 2 (independence) seems unlikely as this would invoke a confounding
factor that impacts both the genotype at these variants and the outcome phenotype. In
the Introduction, we briefly reviewed the extensive body of literature supporting shared
phenotypic, clinical, and molecular features of SjD and SLE. Considering these data, viola-
tion of the independence condition, seems less plausible. If independence were violated,
a genetic risk factor impacts a confounding phenotype, C, that in turn impacts both SjD
and SLE byinvoking them. While the extensive phenotypic sharing makes violation of the
independence condition somewhat less likely, correlated pleiotropy remains possible in
any MR analysis evaluating causal relationships between phenotypes [98]. Thus, of these
three conditions, the most relevant to our study is that of exclusion restriction. When this
condition is violated, the genetic variant impacts the outcome phenotype independently of
the exposure phenotype or the unmeasured phenotype that causes it.

Importantly, there are several MR analysis methods that relax the exclusion restriction
condition/assumption [93,97]. The basic approach to MR is similar to inverse-variance
weighted meta-analysis. It involves weighting the ratio of the effect size in the exposure and
the outcome by their associated uncertainty (inverse-variance weighted). This approach is
valid under the assumption of balanced pleiotropy, where pleiotropic effects are equally
as likely to be positive as negative. One method that allows for balanced pleiotropy in

Created with BioRender.com
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summary statistic MR analyses is the weighted median approach that selects and removes
outliers. This approach assumes that the majority of the variants tested are valid [99].
Another approach, weighted mode, also selects and removes outliers. This approach
remains valid even if a majority of the variants are valid but is overly conservative and
sensitive to the addition/removal of variants [100]. Importantly, the weighted mode allows
for directional pleiotropy. Another method that allows for directional pleiotropy is MR
Egger, which also puts constraints on the pleiotropy. MR Egger assumes that the magnitude
of pleiotropy across all variants is unrelated to the strength of association between the
variant and the phenotype of interest. This assumption is termed the Instrument Strength
Independent of Direct Effect or InSIDE assumption. The InSIDE assumption requires that
the association between the genetic variant and the exposure is not correlated with a path
from the variant to the outcome that is independent of the exposure of interest. When this
assumption is violated and unbalanced pleiotropy is present, this will bias the MR Egger
estimate of causal effect. This will occur when genetic variants influence the outcome via
pleiotropy or through confounder impact on both the exposure and outcome [41,101]. While
the outlier selection and removal methods attempt to limit the degree of heterogeneity
between variants, the premise of MR Egger is for a set of relevant variants; the causal effects
average out to a reasonable estimate of the true causal effect between the exposure and
outcome phenotypes [41]. We refer the interested reader to five recent publications further
explaining these methods [93,96,97,99].

4.4.2. Evaluating the Causal Relationship between SjD and SLE

To evaluate if SjD and SLE are causally related through individual causal risk variants,
we performed Mendelian randomization analysis. Because each of the four methods
discussed above (Section 4.2.1) has different sensitivity and conditions, we applied all of
them separately. With genetic variant data, a common mode of violation of instrumental
variable conditions/assumptions is that the variant in question is not causal but is in linkage
disequilibrium with a causal variant. The fine-scale linkage disequilibrium patterns differ
between continental ancestral populations [49]. Therefore, wherever possible, we restricted
our initial analyses to comparisons between SjD and SLE GWAS studies carried out within
the same continental ancestral population. Specifically, we performed trans-ancestral MR
in Analysis 4. Several GWAS of SjD have been carried out in cohorts of persons with East
Asian ancestry. The most significant findings were reported in the respective publications,
and we were able to use these data to select instrumental variables for Analysis 3. However,
summary statistics for these studies are not currently available in a harmonized form in
the 2-sample MR R library/MRC IEU open GWAS catalog. Thus, given this limitation, we
performed trans-ancestral MR in Analysis 4. Our analysis scheme is shown (Figure 7).

4.4.3. Selection of Instrumental Variables for SLE and SjD

We used lists of variants associated with SjD or SLE by GWAS. For SjD, these variants
and links to the GWAS studies are listed in (Table S3B). For SLE, we used harmonized
GWAS data sets from Bentham et al. [40] and Wang et al. [47] as well as from FinnGen [44].
All of these were accessed through the MR-Base web app v1.4.3 [43,102] interface for the
‘TwoSampleMR’ v0.5.5 R package [43,103]. A full listing of the GWAS studies used for
the putative causal gene network and mendelian randomization analyses is listed below
(Table 7).

In terms of summary statistics or the primary study, there was a great deal of variability.
Some studies reported odds ratio and 95% confidence interval. Some studies reported
the natural log of the odds ratio and its standard error. Other studies did not consistently
indicate the effect allele for the odds ratio. We used the following equations to convert
between odds ratio and beta/effect size scale.

Z = β/se (1)
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Z is the Z score of a normal distribution, β is the natural logarithm of the odds ratio,
and ln(OR) and se is the standard error of β.

[lower 95% CI of OR-upper 95% CI of OR] = [e(β−1.96 se) − e(β+1.96 se)] (2)

where the upper and lower CI are the limits of the 95% confidence interval of the OR and e
is Euler’s number, the sum of the reciprocals of n! for all numbers, n, between 0 and infinity.

P = 2 F(|−Z|) (3)

where P is the p-value and F is the cumulative distribution function for a standard normal
distribution.

Table 7. GWAS or other studies used in analysis or referenced in Supplementary Materials.

1st Author [Ref] 1 Ncase:Nctl
2 PMID 3 Other IDs 4 Note 5

Lessard [104] 1638:6754 24097067 EUR SjD GWAS
Li [105] 1845:3757 24097066 EAS SjD GWAS

Khatri [29] 3851:23652 35896530 phs002723.v1.p1 EUR SjD GWAS
Song [106] 420:15876 27503288 EAS SjD GWAS
Qu [107] 665:863 28552951 EAS SjD GWAS

Kurki [44] 2735:416383 36653562 M13_Sjogren
finn-b-M13_SJOGREN

EUR SjD GWAS
URL in ST3A

Sakaue [108] 303:175599 34594039 Sjogren_Syndrome EAS SjD GWAS
URL in ST3A

Bentham [40] 5201:9066 26502338 GCST003156
ebi-a-GCST003156 EUR SLE GWAS

Wang [47] 4222:8431 33536424 GCST90011866
ebi-a-GCST90011866 EAS SLE GWAS

1 1st Author [Ref]—Name of first author as well as reference within this report. 2 Ncase:Nctl, number of persons
with disease (cases) and persons without disease or population controls, separated by “:”. 3 The pubmed identifier
for the primary publication. 4 Other study identifiers from dbGAP, Finngen, Biobank Japan, or the EBI GWAS
Catalog. 5 Notes on the individual study.

4.4.4. Quality Control of Instrumental Variables for SLE and SjD

One of the three assumptions of Mendelian randomization is that the instrumental
variables are robustly associated with the exposure. To ensure this was the case for SjD,
we used the conservative cutoff for genetic association at the genome-wide significance
threshold of p < 5.0 × 10−8 in any single study (Table S3B). We sought to ensure that this was
the case for the instrumental variables from SLE GWAS studies through MRBase. To do so,
we visually inspected the regional association plots from GWAS in LocusZoom (https://my.
locuszoom.org/, accessed on 30 May 2023) [109]. There were numerous variants that were
robustly associated with SLE in Bentham et al. GWAS summary statistics [40] but looked
suspicious for artefacts. These variants are in strong linkage disequilibrium (according to
1000 genomes project data) with one or more nearby variants that do not exhibit robust
evidence for association. Review of the primary publication [40] revealed that these
association signals were not replicated. Therefore, these variants were removed from our
list of instrumental variables, as we deemed them to likely violate the relevance condition.
Importantly, this problem of quality control has also been noted for Bentham et al. GWAS
summary statistics available on dbGAP [110]. We used the same procedure to ensure that
Wang et al. GWAS summary statistics [47] available in the EBI GWAS catalog did not harbor
similar potential artifacts. We did not find any variants of this nature with this procedure.

4.4.5. General Analysis Approach

Fine-scale linkage disequilibrium patterns differ between continental ancestral popula-
tions [49]. If the associated variants are not in linkage disequilibrium in a different ancestral
population, this could represent a violation of the MR instrumental variable assumptions.
So, where data were available, we compared variants within the ancestral population
where the original GWAS was performed. This allows for the possibility that the variants

https://my.locuszoom.org/
https://my.locuszoom.org/


Int. J. Mol. Sci. 2023, 24, 14449 20 of 25

identified are not bona fide disease causal variants but are in linkage disequilibrium with
bona fide disease causal variants.

4.4.6. MR Analysis Parameters

Linkage disequilibrium between variants is one of the ways in which MR condi-
tions/assumptions can be violated for some MR analysis methods. Therefore, for each MR
analysis presented, we used LD-based clumping to prune variants in LD with one another.
Since our comparisons were against variants where we were confident regarding strand
and effect allele as detailed in the Supplementary Tables, we did allow for palindromic
LD-based proxies to be used. We set a minor allele frequency cutoff for assigning palin-
dromic variants of 0.3. The GWAS studies in ‘TwoSampleMR’ and MRBase.org underwent
automated harmonization to a particular strand of the reference genome. Since the inaccu-
rate assignment of palindromic variants could change the direction of an MR result, we
excluded palindromic variants. For each analysis, we used the four MR analysis methods
described: inverse-variance weighted, weighted median, weighted mode and MR Egger.

5. Conclusions

Our complementary analyses revealed pervasive sharing of causal genetic risk factors
between Systemic Lupus Erythematosus and Sjögren’s Disease. This shared causal genetic
risk may partly explain the clinical, immunologic, and molecular overlap between these
diseases. Our study has implications for future genetic studies. Jointly modeling these two
disease phenotypes as a single phenotype will likely increase power to detect shared and
divergent risk factors. Likewise, there are also implications for clinical care that include
the differential diagnosis of these two disease phenotypes and therapeutic selection where
features of more than one disease are present.
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