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Abstract: The human quest for sustainable habitation of extraterrestrial environments necessitates a
robust understanding of life’s adaptability to the unique conditions of spaceflight. This study pro-
vides a comprehensive proteomic dissection of the Arabidopsis plant’s responses to the spaceflight
environment through a meta-analysis of proteomics data from four separate spaceflight experiments
conducted on the International Space Station (ISS) in different hardware configurations. Raw pro-
teomics LC/MS spectra were analyzed for differential expression in MaxQuant and Perseus software.
The analysis of dissimilarities among the datasets reveals the multidimensional nature of plant
proteomic responses to spaceflight, impacted by variables such as spaceflight hardware, seedling age,
lighting conditions, and proteomic quantification techniques. By contrasting datasets that varied in
light exposure, we elucidated proteins involved in photomorphogenesis and skotomorphogenesis
in plant spaceflight responses. Additionally, with data from an onboard 1 g control experiment, we
isolated proteins that specifically respond to the microgravity environment and those that respond to
other spaceflight conditions. This study identified proteins and associated metabolic pathways that
are consistently impacted across the datasets. Notably, these shared proteins were associated with
critical metabolic functions, including carbon metabolism, glycolysis, gluconeogenesis, and amino
acid biosynthesis, underscoring their potential significance in Arabidopsis’ spaceflight adaptation
mechanisms and informing strategies for successful space farming.

Keywords: spaceflight; gravitropism; Arabidopsis; proteomics; meta-analysis; TMT; BRIC hardware;
International Space Station

1. Introduction

The spaceflight environment is highly unique and challenging for terrestrial life, being
radically different from Earth due to multiple factors such as microgravity, cosmic radia-
tion, and the absence of a conventional diurnal cycle. Moreover, the constraints imposed
by spacecraft or the space station, such as limited space, isolation, and specific growth
systems, further contribute to the environmental peculiarities [1,2]. These spaceflight
environmental conditions dramatically influence plants’ growth, development, and physio-
logical responses, which are essential for life support systems in space. On Earth, gravity
is a constant, directional cue that affects various plant physiological processes, including
gravitropism, phototropism, and mechanical resistance. However, in the microgravity
environment of spaceflight, these cues are disrupted, necessitating adaptation [3]. Stud-
ies have revealed altered growth patterns, with root and shoot orientations significantly
differing from those observed under Earth’s gravity [4,5]. Spaceflight also exposes plants
to cosmic radiation, primarily composed of highly energetic particles. While Earth’s mag-
netic field and atmosphere protect terrestrial life from the harmful effects of this radiation,
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such protection is absent in space. Cosmic radiation can induce DNA damage, oxidative
stress, and other cellular damage, necessitating robust repair and defense mechanisms
in space-faring plants. Notwithstanding these challenges, plants, being highly plastic
organisms, have demonstrated remarkable resilience and adaptability to the spaceflight
environment [6–8]. Key to these adaptations are changes at the molecular level, including
genomic, transcriptomic, proteomic, and metabolomic modifications.

The need to understand how plants adapt to the spaceflight environment is driven
by the expanding horizons of human space exploration and the prospect of establishing
permanent human colonies on other planets. As we venture farther into the cosmos,
plants will play a critical role in providing food and recycling air and waste [6]. This
necessity puts forth an imperative for comprehensive studies on how the spaceflight
environment impacts plant biology at various levels, from the cellular to the organism.
Most of our current understanding of plant responses to the spaceflight environment has
been gleaned from genetic and transcriptomic studies, which have shed light on various
plant adaptation mechanisms. However, these studies provide a predominantly gene-
centric view and do not fully capture the complexity of biological responses to spaceflight
conditions. Proteins, however, being the effectors of most life processes, offer an additional
layer of complexity beyond genes and transcripts. Proteins catalyze biochemical reactions,
provide structural support, participate in cellular signaling, and perform a multitude of
other roles. As such, proteins represent a higher level of life organization than transcripts,
more accurately reflecting the functional state of a cell or an organism. Notably, gene and
transcript levels do not necessarily predict protein abundance due to multiple regulatory
steps, including translation efficiency and protein degradation [9,10]. Kruse et al. [11]
identified this discordance and low correlation between RNA transcripts and proteins in
their spaceflight Arabidopsis experiment. Paul et al. [12] and Ferl et al. [13] also noted
this discordance and an organ-specific (leaf and root) response of Arabidopsis proteome to
the spaceflight environment. Therefore, examining the proteomic responses of plants in
spaceflight is fundamental to gaining a comprehensive understanding of biological systems,
including plants under spaceflight conditions.

Despite the clear significance of proteomics to plant space biology, investigations into
the proteomic responses of plants to spaceflight are surprisingly limited, with only three
studies being published so far and a fourth in the publication process [13,14]. Each of these
studies has provided valuable insights into how the Arabidopsis plant responds at the
proteome level to spaceflight conditions. However, each of these studies is constrained
by their relatively small sample size, limiting their statistical power and leaving room for
further investigation. Furthermore, these studies, conducted independently, have used
different methodologies and spaceflight hardware. Such variations could lead to differences
in the observed proteomic responses, further complicating the interpretation of individual
studies. Here, a meta-analysis approach is particularly valuable. It allows for the synthesis
of data across studies, increasing the statistical power, and providing a more robust under-
standing of the overall proteomic responses to spaceflight. By aggregating these existing
plant proteomic data from spaceflight experiments, we aim to identify consistent patterns
of proteomic responses in Arabidopsis under spaceflight environmental conditions.

While transcriptomic studies of plant responses to spaceflight have significantly ad-
vanced our understanding, proteomic analyses remain comparatively underdeveloped in
this unique area of research. The logistical complexities and high costs associated with
spaceflight experiments have often limited the repeatability of such studies, leading to
substantial variability across available datasets. Moreover, the scarcity of publicly accessible
proteomic metadata further hampers direct comparisons and comprehensive meta-analyses.
In light of this, our study aims to answer a pivotal question: ‘How can we leverage the
limited existing proteomic data to provide a more robust and comprehensive understand-
ing of the proteomic adaptations of Arabidopsis to spaceflight conditions?’ By conducting
a meta-analysis of the limited but invaluable proteomic datasets that are currently avail-
able, this study aims to identify the key proteins and pathways implicated in Arabidopsis’
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response to spaceflight. We hypothesize that the meta-analysis of the four existing pro-
teomic datasets will reveal consistent patterns of proteomic adaptations in Arabidopsis
under spaceflight conditions, identifying key proteins and pathways that are differentially
regulated in response to the space environment. This endeavor not only aims to bridge
the current gap between transcriptomic and proteomic studies in spaceflight plant biology
but also to set the stage for future experiments that could have broader implications for
long-term human space missions.

2. Results
2.1. Curating the Proteome of Different Arabidopsis Spaceflight Experiments

Unlike transcriptomics studies of plants in spaceflight, which had over 15 datasets
curated in the NASA GeneLab data repository [15], only four comprehensive proteomics
studies have so far been conducted on plants in spaceflight aboard the International Space
Station (ISS) in four different hardware. These are the European Modular Cultivation
System (EMCS) [14], the Advanced Biological Research System (ABRS) [13], the Biological
Research In Canister–Petri Dish Fixation Unit (BRIC PDFU) [11], and the Biological Research
In Canister–Light-Emitting Diode (BRIC LED) hardware. Raw proteomics datasets (.RAW)
for BRIC PDFU (also known as BRIC 20) and BRIC LED spaceflight experiments were
accessed from the NASA GeneLab data depository with accession numbers GLDS 38 (https:
//osdr.nasa.gov/bio/repo/data/studies/OSD-38, accessed on 9 April 2023) and OSD
522 (https://osdr.nasa.gov/bio/repo/data/studies/OSD-522/preview/w5Q5ElZE-Wy6
DDS1ZFzeRjBAPuKss-x0, accessed on 16 July 2023), while the ABRS dataset was accessed
from the PRIDE Archive proteomics data repository with the accession number PXD001179
(https://www.ebi.ac.uk/pride/archive/projects/PXD001179, accessed on 16 July 2023).
The EMCS experiment dataset was not deposited in any accessible data repository, but
the ready-analyzed peptide and protein count data were attached as a Supplementary
Materials to the primary publication [14]. The environmental conditions were similar for all
the experiments, with exposure to Low Earth Orbit (LEO) microgravity aboard the ISS and
cosmic radiation (0.2 to 0.5 mGy) [16]. The light exposure for non-etiolating experiments
was around 75 Wm−2 of photosynthetically active radiation (PAR), with variation in the
illumination cycles, plant age, seed lines, tissue examined, protein type, and peptide
labeling methods (Figure 1).

The experimental parameters, unlike the environmental conditions, varied signifi-
cantly among the four datasets and are responsible for significant variability between
the datasets. Except for the BRIC PDFU dataset, whose seedlings were 3 days old post-
germination (PG), the duration of the other spaceflight experiments (from seed to seedlings)
was within a similar range (10–12 days PG). BRIC PDFU had no light exposure with the
seedlings grown in the absence of light and gravitational cues, while the other datasets
had varying illumination cycles—BRIC LED (4 h of light/2 h of dark), ABRS, and EMCS
(16 h of light/8 h of dark). The ABRS experiment worked on three Arabidopsis green
fluorescent protein (GFP) reporter gene lines, which are the alcohol dehydrogenase pro-
moter (Adh::GFP), the synthetic auxin response element composed of five AuxRE elements
(DR5r::GFP), and the CaMV35s promoter (35s::GFP) [13], while the other experiments
were on the wild-type Columbia (Col-0) seed lines. Both ABRS and BRIC PDFU datasets
examined the proteome of the whole Arabidopsis seedling while the EMCS and BRIC LED
datasets examined the organ-specific proteome. The quantitative proteomics for the EMCS
proteomics dataset had no isotopic label; both ABRS and BRIC PDFU utilized the Isobaric
tag for relative and absolute quantitation (iTRAQ), and the BRIC LED utilized the Tandem
Mass Tag (TMT).

2.2. Principal Component Analysis

To identify the degree of similarity and variations introduced by the different experi-
mental parameters to the four proteomics datasets, we conducted a transposed principal
component analysis (Figure 2A–C), which provided insights into how the individual

https://osdr.nasa.gov/bio/repo/data/studies/OSD-38
https://osdr.nasa.gov/bio/repo/data/studies/OSD-38
https://osdr.nasa.gov/bio/repo/data/studies/OSD-522/preview/w5Q5ElZE-Wy6DDS1ZFzeRjBAPuKss-x0
https://osdr.nasa.gov/bio/repo/data/studies/OSD-522/preview/w5Q5ElZE-Wy6DDS1ZFzeRjBAPuKss-x0
https://www.ebi.ac.uk/pride/archive/projects/PXD001179


Int. J. Mol. Sci. 2023, 24, 14425 4 of 18

proteins co-vary across samples. The scree analysis identified four significant (>15%)
explainable variations between the datasets (Figure 2D).
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Figure 1. Experimental parameters for the 4 Arabidopsis spaceflight proteomics studies. Each vertical
set of bubbles represents experimental parameters identified above the bubble cascade. The colored
threads pass through bubbles that correspond to the dataset’s experimental parameters. Blue bubbles
and thread represent the EMCS dataset; green represents the ABRS dataset; purple represents the
BRIC PDFU dataset; and red represents the BRIC LED dataset.

The principal components 1–4 explained just 26.76%, 21.85%, 20.15%, and 16.58%,
respectively, of the variability noted among the four datasets, and this indicates that the
determinant of the proteome response of the Arabidopsis plant to the spaceflight envi-
ronment is multi-dimensional and the data do not have a single dominant direction of
variability. In other words, there is no single PC that significantly captures most of the
variance in the data, but instead, the variability is spread out over several different orthog-
onal (independent) directions. However, the PC1 indicates that 26.76% of the variability is
introduced by the different spaceflight hardware (Figure 2A). Both the ABRS leaf and root
datasets are clustered together and are far away from the rest of the datasets. Similarly, the
BRIC LED root and shoot datasets are also clustered near each other and distinctly from
the other datasets. PC2 indicates that the seedling age and hardware lighting conditions
contributed about 21.85% of the variability among the four datasets (Figure 2A), with the
BRIC PDFU experiment pattern of protein expression being segregated away from the
rest. The BRIC PDFU dataset was conducted in the absence of light and on 3-day-old
Arabidopsis seedlings [14]. PC3 seems to indicate that the quantitative proteomics label
techniques account for 20.15% of the noticed variability (Figure 2B). The EMCS dataset,
which had no isotopic label, was clustered away from the rest of the dataset, which had
either the iTRAQ or the TMT labels. However, PC3 also distinguished the BRIC LED root
dataset from the rest, which might be an indicator of additional contributing factors to
the explained variance by PC3. Likewise, the PC4, which accounted for 16.58% of the
variability among the dataset, does not appear to have a definite pattern of distribution
along the experimental parameters (Figure 2C). The scree plot (Figure 2D) indicates that
14.66% of the variability is accounted for by other dimensional factors. The Euclidean
hierarchical clustering of the log2 fold change in each protein within each dataset indicates
that the BRIC PDFU dataset was the most diverged (Figure 2E). All the differential analysis
datasets are available in Supplementary File S1.



Int. J. Mol. Sci. 2023, 24, 14425 5 of 18Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 20 
 

 

 

Figure 2. Variability and dissimilarity of the 4 proteomic datasets. (A) Principal component analy-

sis depicting the percentage of explained variance by principal components 1 and 2. Each point on 

the graph represents each Arabidopsis spaceflight proteomics dataset. (B) Principal component 

analysis depicting the percentage of explained variance by principal components 2 and 3. (C) Prin-

cipal component analysis depicting the percentage of explained variance by principal components 

2 and 3. (D) Scree plot depicting the principal factor analysis of the PCA. (E) Euclidean hierar-

chical clustering measure of dissimilarity between the 4 datasets. Each point on the heat map rep-

resents individual proteins in the dataset. The color gradient represents log2 fold change 

(L2FCprotein), with red depicting more abundant proteins in spaceflight than on Earth and blue de-

picting less abundant protein in spaceflight than on Earth. 

Figure 2. Variability and dissimilarity of the 4 proteomic datasets. (A) Principal component analysis
depicting the percentage of explained variance by principal components 1 and 2. Each point on the
graph represents each Arabidopsis spaceflight proteomics dataset. (B) Principal component analysis
depicting the percentage of explained variance by principal components 2 and 3. (C) Principal
component analysis depicting the percentage of explained variance by principal components 2
and 3. (D) Scree plot depicting the principal factor analysis of the PCA. (E) Euclidean hierarchical
clustering measure of dissimilarity between the 4 datasets. Each point on the heat map represents
individual proteins in the dataset. The color gradient represents log2 fold change (L2FCprotein), with
red depicting more abundant proteins in spaceflight than on Earth and blue depicting less abundant
protein in spaceflight than on Earth.
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2.3. The Direct Intersection of the Four Proteomics Datasets

A direct intersect analysis of the four datasets enables us to conduct subgroup clas-
sifications and identify proteins that are common to particular datasets, hence hinting
at the relevance of the protein to Arabidopsis response to the spaceflight environment.
Intersection analysis also enables us to assess the generalizability of the results for fur-
ther probing and identifying high-priority target proteins. Common to the four datasets
are the GLYCINE-RICH PROTEIN and the GLYCINE DECARBOXYLASE P-PROTEIN 1
(GLDP1) located in the chloroplast and involved in mRNA binding, PATELLIN-1 (PATL),
which is a member of the family of regulators of auxin-mediated PIN1 relocation and
plant development [17], the PLASMA-MEMBRANE-ASSOCIATED CALCIUM-BINDING
PROTEIN 1 (PCAP1) involved in damage-associated molecular patterns (DAMPs) that act
as endogenous signals to activate the plant immune response [18], and a LEUCINE-RICH
REPEAT RECEPTOR-LIKE KINASE 1, a key membrane-bound regulator of abscisic acid
early signaling in Arabidopsis [19] (Table 1).

Table 1. Proteins identified in all four Arabidopsis spaceflight proteomics datasets.

Gene ID Symbol Name ABRS EMCS BRIC
PDFU BRIC LED

Proteins shared by all the datasets Log 2 Fold Change (L2FC)

AT1G27090 Glycine-rich protein −0.66 0.29 0.23 −0.37
AT1G72150 PATL1 Patellin-1 0.71 −1.318 −0.17 0.57

AT4G20260 PCAP1 Plasma-membrane-associated
cation-binding protein 1 0.73 −0.79 −0.44 0.49

AT4G33010 GLDP1 Glycine decarboxylase P-protein 1 −0.96 −1.27 −0.35 −0.47
AT5G26260 Leucine-rich repeat receptor-like kinase1 0.59 0.56 −0.414 0.8

Proteins shared by EMCS, BRIC PDFU, and BRIC LED but not ABRS

AT1G74470 CHLP Geranylgeranyl diphosphate reductase 0.37 0.54 −0.54
AT3G16470 JAL35 Jacalin-related lectin 35 −1.53 −0.46 −0.35
AT3G22640 PAP85 Vicilin-like seed storage protein −0.901 0.02 3.31
AT5G19550 ASP2 Aspartate aminotransferase 1.13 −0.14 0.31
AT5G37600 GLN1-1 Glutamine synthetase cytosolic isozyme 1-1 0.82 −0.06 0.23

A protein–protein network analysis indicates that these proteins interact with each
other. The interacting pathways are major protein modifications via lipidation and myristy-
lation, regulation of microtubule polymerization, and unidimensional growth (Figure 3A).
The intersect analysis of the four datasets also revealed that despite the limited overlap be-
tween differentially abundant proteins present in the datasets (Figure 3B), the four datasets
shared substantial involvement in similar Arabidopsis metabolic pathways (Figure 3C),
such as the carbon metabolism pathway, the glycolysis and gluconeogenesis pathway, the
biosynthesis of amino acids, and the glyoxylate and dicarboxylate metabolism pathway
(Figure 3D).

Excluding the ABRS dataset based on the mutant Arabidopsis seed lines used in
the experiment, an intersect analysis of the EMCS, BRIC PDFU, and BRIC LED datasets
indicated ten common proteins among the three datasets (Table 1). Protein–protein network
analysis of the shared proteins indicated that they are involved in metabolic pathways such
as the biosynthesis and metabolism of several amino acids, carbon, and secondary metabo-
lites. The molecular functionality of the 10 proteins indicates highly enriched involvement
in phosphatidylinositol-3,4,5-triphosphate binding, L-aspartate: 2-oxoglutarate amino-
transferase activity (a glutamate dumper), ammonia ligase activity, and copper binding
(Figure 4). The GO biological processes analysis was like those observed in the intersection
of all four datasets, with the proteins highly enriched in the protein myristoylation pathway
and regulation of microtubule polymerization.
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Figure 3. Differentially abundant proteins in spaceflight across the four datasets. (A) Protein–protein
network interaction analysis of the five proteins common to all the datasets. Bigger nodes with
deeper colors indicate pathways that are highly significant, while the thickness of the connecting
lines indicates the strength of the overlap. Analysis was performed using the ShinyGO 0.76 [20].
(B) Overlap between the four datasets only at the individual protein expression level, where purple
curves link identical proteins. (C) Overlap between the four datasets including the shared term
level, where blue curves link proteins that belong to the same enriched ontology term. The inner
circle represents protein lists, where hits are arranged along the arc. Proteins that hit multiple
lists are colored in dark orange, and proteins unique to a list are shown in light orange. Analysis
was performed using Metascape [21]. (D) Heat map of the enriched ontology term shared by the
four datasets. The colored gradient indicates the significant expression of proteins involved in the
GO term.
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Figure 4. Protein–protein network interaction analysis of the 10 proteins common to the EMCS, BRIC
PDFU, and BRIC LED datasets. The protein–protein interaction analysis was viewed from the KEGG
analysis (left), molecular functionality (middle), and biological functionality perspectives (right).
Nodes with deeper colors indicate pathways that are highly significant, while the thickness of the
connecting lines indicates the strength of the overlap. Analysis was performed using the ShinyGO
0.76 [20].

2.4. Comparing BRIC PDFU and BRIC LED Datasets: Impact of Light Conditions

Both the BRIC PDFU and the BRIC LED spaceflight experiments were conducted by the
same research groups, and both datasets integrated transcriptomics and proteomics studies.
The major difference between these two datasets is the incorporation of LED illumination
into the BRIC LED hardware, which provided the Arabidopsis seedlings grown in the BRIC
LED hardware with light cues. The BRIC PDFU seedlings were etiolated, being completely
grown in the absence of light cues in spaceflight. Another difference is the age of the
seedlings analyzed and the quantitative proteomics label used for the protein analysis
(Figure 1). Despite the absence of light in the BRIC PDFU hardware, light-related genes were
expressed in its transcriptomics dataset [11]. Hence, to investigate how Arabidopsis plants
integrate light signaling with other spaceflight environmental conditions, we evaluated
the intersections of proteins expressed in the BRIC PDFU and BRIC LED datasets and
identified 109 common proteins (Figure 5A, Supplementary File S2). The BRIC LED
dataset is significantly larger than the BRIC PDFU dataset, and this might be due to the
incorporation of the high-field asymmetric waveform ion mobility spectrometry (FAIMS) to
the LC-MS/MS analysis of BRIC LED proteomics and the use of the TMT label instead of the
ITRAQ. The addition of FAIMS and the usage of TMT over the ITRAQ labeling technique
have been reported to significantly increase targeted proteomics’ sensitivity [22–24]. Hence,
we believe that while the proteins at the intersection of both datasets and those unique to
the BRIC PDFU dataset are true representatives of their inferences, proteins unique to the
BRIC LED may contain some artifacts (Figure 5A). Despite having proteins that are unique
to the BRIC PDFU, the GO enrichment terms of these proteins are not unique to BRIC
PDFU; they are common to both datasets. An application of Metascape’s protein–protein
interaction enrichment analysis and Molecular Complex Detection (MCode) to the proteins
at the intersection of both datasets revealed that they are enriched in pathways involved
in Ribosomal activities, S-adenosylmethionine biosynthetic process, carbon fixation in
photosynthetic organisms, glyoxylate and dicarboxylate metabolism, starch and sucrose
metabolism, and in response to toxic substance (Figure 5B). Proteins at the intersection of
the BRIC PDFU and BRIC LED datasets are predominantly expected to be responses to the
spaceflight environment and devoid of hardware interference (Figure 5A).
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Figure 5. Differentially abundant proteins in the BRIC PDFU and BRIC LED datasets. (A) Venn
diagram of the intersection of the two datasets. Arrows indicate our interpretation of the protein
distributions. Venn diagram is generated by InteractiVenn (http://www.interactivenn.net/) accessed
on 15 July 2023. [25]. (B) Protein–protein interaction network and MCODE components identified in
the intersection of both datasets. The module that is labeled “No annotation” had no modular name
generated by Metascape. Analysis was performed using Metascape [21].

The enrichment ontology of the unique proteins in the BRIC LED datasets (Figure 5A)
revealed that the proteins are significantly enriched in the ribosome, carbon metabolism,
establishment of cellular localization, photosynthesis, and plastid organization (Figure 6A).
The protein–protein network interaction analysis also indicated that the proteins are clus-
tered into six KEGG pathways, which are photosynthesis, cellular component biogenesis,
translation, protein transport, organic acid metabolism, and response to inorganic sub-
stances (Figure 6A). Proteins unique to the BRIC LED are suggested to be involved in
photomorphogenesis. Contrary to this, proteins unique to the BRIC PDFU are suggested to
be involved in skotomorphogenesis, and an enrichment ontology of these proteins revealed
that they are significantly enriched in pathways involved in amino sugar and nucleotide
metabolism, peroxisome, and plant cell wall organization (Figure 6B). The protein–protein
interaction network analysis revealed that they are clustered into 3—the organophosphate
metabolic process, the regulation of tryptophan metabolic process, and an unidentified
cluster (Figure 6B). See Supplementary File S2 for the list of the unique proteins.

2.5. Eliminating Microgravity from the Comparison

Mazars et al. [15] in their EMCS experiment also generated a 1 g spaceflight control
dataset, which eliminated microgravity from the spaceflight environment using a centrifuge
running at 1 g aboard the ISS. We compared this dataset (referred to as EMCS 1 g/1 g) to
the BRIC LED and BRIC PDFU intersection datasets in an attempt to isolate the effects of
spaceflight microgravity from the comparison (Figure 7A). The six proteins found at this
intersection are the SUCROSE TRANSPORT PROTEIN (SUC1), CYSTEINE SYNTHASE
(OASA1), PCAP1, BGLU21, which is a scopoline-hydrolyzing beta-glucosidases, MLP
34, and the RIBOSOMAL PROTEIN L5 (ATL5) (Supplementary File S2). Protein–protein
network analysis of the biological functionality of these six proteins revealed a single clus-
ter of interrelated biological processes pathways’ highly enriched in metabolic pathways
involved in cellular response to extracellular stimuli such as salt stress, potassium ion, nu-
trient level, and starvation (Figure 7B). An analysis of the molecular functionality revealed
the enrichment of pathways such as 5S rRNA binding, carbohydrate–cation symporter
activity, cysteine synthase activity, and phosphatidylinositol-3,4,5-triphosphate binding
(Figure 7B).

http://www.interactivenn.net/
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Figure 6. GO term enrichment of proteins unique to BRIC PDFU and BRIC LED. (A) Heatmap (left)
and protein–protein interaction map (right) of the most significantly enriched pathways of proteins
unique to BRIC LED. (B) Heatmap (left) and protein–protein interaction map (right) of the most
significantly enriched pathways of proteins unique to BRIC PDFU. The color gradient of the heat
map indicates the p-value of the proteins in the enriched pathway. Analysis was performed using
ShinyGO v0.76 and Metascape.
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the protein distributions. (B) Protein–protein interaction network analysis of the biological (top) and
molecular (bottom) GO term enrichments of the intersection proteins. These proteins are suggested
to reflect the response to spaceflight environmental conditions other than microgravity. (C) Protein–
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protein interaction network analysis of the molecular GO term enrichments of the proteins unique to
the BRIC intercept dataset. These proteins are suggested to reflect Arabidopsis response to spaceflight
microgravity alone. Node sizes and colors indicate pathways significance while the thickness of the
connecting lines indicates the strength of the overlap. Analysis was performed using ShinyGO 0.76
and Metascape.

Unique to the BRIC intercept dataset are 103 proteins, which are clustered into three
and are highly enriched in pathways involved in carbon metabolism, the pentose phosphate
pathway, glycolysis, glutathione, ascorbate, and aldarate metabolisms, and the biosynthesis
of amino acids (Figure 7C). These proteins are listed in Supplementary File S2.

3. Discussion
3.1. The Determinant of the Arabidopsis Proteomic Response to the Spaceflight Environment
Is Multidimensional

The overarching goal of this meta-analysis is to assess the degree of dissimilarity and
identify the significant sources of variability between the four proteomic datasets, thereby
discerning the key influences on the plant’s proteomic responses to the unique environment
of space. Our analysis indicated that the experimental conditions, namely, the spaceflight
hardware, seedling age (experimental duration), hardware lighting conditions, and peptide
labeling methods, were substantial contributors to the observed variability, reaffirming
the multifaceted nature of spaceflight effects on plants [15]. The experimental hardware’s
impact on the proteomic responses accounted for 26.76% of the total variance, suggesting its
crucial role in modulating the spaceflight-induced proteomic changes. This result resonates
with previous studies such as that of Basu et al. [26] and Paul et al. [27], which suggested that
spaceflight hardware could significantly influence plant physiology due to the variations
in the microenvironments it creates. The influence of seedling age and light conditions
on the proteomic responses (21.85% of the variability) is noteworthy, emphasizing the
significance of these parameters in the context of space biology. This is especially evident
with the distinct segregation of the BRIC PDFU experiment conducted on younger seedlings
(3 days old) and in the absence of light, which is in line with known influences of light and
developmental stage on plant physiology and gene expression [28,29].

Interestingly, the label techniques used for quantitative proteomics also emerged as
a key factor influencing the data variance (20.15%). This underlines the potential effects
that different physicochemical properties and labeling efficiencies of labels (iTRAQ and
TMT) could have on peptide detection and quantification [30]. The unaccounted variance
(16.58% in PC4 and 14.66% from the scree plot) indicates that other, yet unidentified,
factors contribute to the observed proteomic variations. These factors could include,
but are not limited to, genetic variation, subtle differences in plant handling, and latent
differences in the growth environment. Unlike in the transcriptomics meta-analysis by
Barker et al. [15], where hardware accounted for a lesser source of variation, the effects
of hardware were amplified at the proteomics level. This resonates with the fact that
mRNA expressions are usually transient with a pulse-like pattern in biological systems as
a reactional response to environmental stimuli, unlike protein abundance, which usually
establishes a new steady state in response to external stimuli, hence a stable adaptive
response [10,31]. So far, limited attention has been placed on the molecular effects of
hardware on plant spaceflight experiment outcomes, with choices of hardware usually
dependent on funding agency specifications or research teams’ specific needs. This affects
the reproducibility of spaceflight experimental data and reduces their overall confidence.
Hence, we recommend that ground-based multiomics (transcriptomics, translatomics, and
proteomics) research be conducted to assess the effects of existing spaceflight hardware on
plants, leading to the establishment of operative guidelines on the choice of hardware for
spaceflight experiments.
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3.2. Protein Intersections and Functional Implications

Our analysis identified key proteins that are common across the four datasets, sug-
gesting their potential role in Arabidopsis adaptation to spaceflight conditions. One such
protein, the GLYCINE-RICH PROTEIN 1, which is involved in mRNA binding within
the chloroplast [32], was found in all datasets, indicating its role might be pivotal in the
response to spaceflight. Glycine-rich proteins are known to contribute to plant stress re-
sponses by regulating several RNA processes, such as alternative splicing, mRNA export,
and RNA editing [33]. They have also been implicated in the acceleration of seed ger-
mination and seedling sprouting in low-temperature conditions [34]. Another common
protein, the GLYCINE DECARBOXYLASE P-PROTEIN 1 (GLDP1), has a primary role in
the mitochondrial glycine decarboxylase complex, which is crucial for photorespiratory
metabolism in C3 plants [35]. The prominence of GLDP1 across all datasets could indicate
an elevated photorespiratory metabolism in the spaceflight environment. This hypothesis
aligns with previous findings that photorespiration is an essential component of the plant
stress response and is tightly linked with photosynthesis, particularly under fluctuating
light conditions [36]. Unlike the GLYCINE-RICH PROTEIN 1, which was upregulated
in spaceflight in some of the datasets and downregulated in some others (Table 1), the
GLYCINE DECARBOXYLASE P-PROTEIN 1 (GLDP1) was downregulated across the four
datasets (Table 1). The glycine cleavage system is particularly important for cellular energy
production and detoxification processes. The GLDP1 enzyme complex converts glycine
into serine while producing one molecule of CO2 and also transferring a methyl group
to tetrahydrofolate (THF), forming 5,10-methylene-THF. This reaction is an essential part
of the photorespiratory cycle, and it contributes significantly to one-carbon metabolism.
Engel et al. [37] reported that the gld1 Arabidopsis mutant had an incomplete lipoylation
of H protein caused by defective mitochondrial lipoate biosynthesis. Lipoylation of the
H protein is a crucial post-translational modification required for the function of sev-
eral multi-enzyme complexes involved in energy metabolism, most notably the pyruvate
dehydrogenase (PDH) complex and the glycine cleavage system. Consequences of the in-
complete lipoylation of the H protein include disruption of cellular nitrogen balance due to
the accumulation of glycine, impacting nucleotide synthesis, and cellular processes requir-
ing methylation reactions. Downregulation of this protein across all four datasets may also
indicate a reduced photorespiratory efficiency by the Arabidopsis plant in spaceflight. If
energy is lost at a huge rate in spaceflight via photorespiration, the plants will require more
energy input, which may result in the activation of pentose-phosphate shunt pathways as
a faster source of NADPH to provide the cell with energy for reductive biosynthesis and
detoxification of free radicals [38].

Several studies have noted a regulatory shift in Arabidopsis light-harvesting and
photosynthetic genes [7,12,14], with Jie et al. [39] also reporting a significant decline in
the capacity of plants to photosynthesize after exposing the seeds to the spaceflight envi-
ronment. A major recommendation is to conduct an experiment to assess photosynthetic
efficiency, yield, and shift in core regulatory proteins under different spaceflight conditions,
starting with various simulated gravity and radiation dosages. This is essential due to the
advent of new spaceflight hardware and as we prepare for exploration beyond the lower
earth orbit. Future space missions should consider exploring the impact of spaceflight
conditions on nucleotide production and one-carbon metabolic pathways in Arabidopsis
mutants lacking functional GLDP1.

PATELLIN-1 (PATL1), a known regulator of auxin-mediated PIN1 relocation and plant
development [17], was also shared across all datasets. Auxin signaling is a fundamental
aspect of plant growth and development, and its role in gravity sensing and response is
well documented [40,41]. The presence of PATL1 across all datasets suggests a possible
alteration in auxin dynamics under spaceflight conditions, which is consistent with prior
spaceflight studies that reported changes in auxin distribution and signaling [42–44]. The
expression of auxin-related proteins in all four datasets is not novel; however, construct-
ing the dynamics and modulators of auxin movement in plants in spaceflight has been a
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challenge. Future studies should consider the dynamics of auxin in PATL1 mutants under
both simulated and real-spaceflight environmental conditions. PCAP1, also known as the
MICROTUBULE DESTABILIZING PROTEIN, which is an oligogalacturonide-dependent
phosphorylated protein, was also common to the datasets. PCAP1 is known for its role in
the plant immune response through the activation of damage-associated molecular patterns
(DAMPs) [18]. The fact that PCAP1 was shared across all datasets could suggest an altered
immune response in Arabidopsis under spaceflight conditions. Several molecular studies
have reported enrichment terms involved in pathogenesis, response to disease, fungi, and
bacteria in plant spaceflight datasets [15,45]. The filament-severing ability of PCAP1, which
is anchored to the plasma membrane, might also be indicative of disrupted intracellu-
lar transport via the vesicular transport route. The protein–protein interaction network
analysis (Figure 3A) highlighted potential interactions among these proteins. Notably,
the interactions between these proteins might underlie a broader coordinated response to
the spaceflight environment, involving shared pathways such as protein modifications,
microtubule polymerization regulation, and unidimensional growth.

The involvement of central carbon metabolism and amino acid biosynthesis pathways
across the four datasets is expected given their fundamental roles in plant growth and
development (Figure 3C). Under spaceflight conditions, these pathways might experience
alterations due to changes in energy demand, stress response, and growth patterns. The
glyoxylate cycle, which bypasses the decarboxylation steps of the citric acid cycle to
convert lipids into carbohydrates, is known to be crucial under stress conditions when
carbohydrate availability is limited [46]. The involvement of this pathway across all
datasets could indicate a metabolic shift in Arabidopsis under spaceflight conditions,
possibly due to altered resource availability or energy requirements. Gluconeogenesis,
the process of generating glucose from non-carbohydrate precursors, is another stress-
related pathway. Its role could be associated with maintaining glucose homeostasis in the
spaceflight environment, which might pose significant energetic challenges. A limited
effort has been dedicated to studying the energetics of plants in response to the spaceflight
environment. This might be due to the inherent inaccessibility of space stations to scientists.
We recommend that photosynthetic studies of plants under simulated spaceflight conditions
be coupled with studies on the dynamics of energetics using mutants deficient in genes in
energetic metabolic pathways.

3.3. Integration of Light Signals in Spaceflight Leads to Altered Metabolism

The 109 proteins identified at the intersection of the BRIC LED and BRIC PDFU
datasets (Figure 5A) are indicative of the baseline response to spaceflight conditions,
irrespective of light availability. The functional enrichment of shared proteins to pathways
associated with ribosomal activities, the S-adenosylmethionine (SAM) biosynthetic process,
carbon fixation, glyoxylate, and dicarboxylate metabolism, and response to toxic substances
could provide key insights into the adaptation strategies employed by Arabidopsis under
the unique stress conditions presented by spaceflight. SAM is a universal methyl group
donor involved in a myriad of methylation reactions that affect nucleic acids, proteins,
lipids, and secondary metabolites [47]. Methylation processes play crucial roles in plant
stress responses, affecting gene expression, protein function, and signal transduction. The
enrichment of this pathway suggests that changes in methylation patterns might be part
of the Arabidopsis response to spaceflight stress. This is consistent with the epigenomic
analysis of Paul et al. [48] and Mingqi et al. [49], which identified DNA methylation and the
roles of methyl transferases as important plant adaptation mechanisms in spaceflight. The
enriched pathways of the intersection proteins, to which we alluded solely to the influence
of the spaceflight environment, highlight the multifaceted strategies that Arabidopsis
might employ to cope with the unique spaceflight environment, involving not just specific
stress-response mechanisms but also fundamental metabolic and cellular processes. We
recommend that wet laboratory experiments be conducted on proteins observed in this
intersection to confirm their roles and dynamics in Arabidopsis spaceflight response.
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The incorporation of light in the BRIC LED experiment elicited a distinct proteomic
signature, enriched in photosynthesis-related pathways (Figure 6A), underscoring the
indispensable role of light in driving photosynthesis, a pivotal process for energy pro-
vision and carbon fixation in plants. On the other hand, proteins unique to the BRIC
PDFU dataset were notably enriched in amino sugar and nucleotide sugar metabolism
pathways (Figure 6B). These pathways are key contributors to the biosynthesis of structural
polysaccharides, glycoproteins, and glycolipids, essential components of the plant cell
wall and membrane [50]. The enrichment of these pathways might imply an adaptive
restructuring of the cell wall and membrane in the absence of light. Etiolated seedlings
have been reported to have thinner cell walls with low calcium and pectin content [51].

3.4. Disentangling Microgravity from Other Plant Spaceflight Responses

By contrasting the EMCS 1 g/1 g dataset, where microgravity effects are nullified,
with the proteomes of the intersection of BRIC LED and BRIC PDFU experiments, we
isolated proteins potentially related to the response to microgravity and those due to other
factors in the spaceflight environment. The intersection of this comparison is believed to
be proteins expressed in response to spaceflight factors other than microgravity. SUC1,
one of the six proteins at this intersection, is integral to carbohydrate translocation, a
process that is central to the plant’s energy management and metabolic regulation and
could be crucial in handling the energy-demanding stress conditions in spaceflight. The
presence of CYSTEINE SYNTHASE 1, a regulator of redox homeostasis and the synthesis of
glutathione, also suggests that not only microgravity is responsible for the oxidative damage
experienced by plants in space. The glycolysis and pentose phosphate pathways enriched
solely due to microgravity (Figure 7C) are central to energy production and the generation
of reduced power in the form of NADPH, respectively. An increased emphasis on these
pathways might imply a heightened demand for energy and reducing equivalents under
microgravity conditions. Similarly, the enrichment of proteins involved in glutathione,
ascorbate, and aldarate metabolism suggests an elevated role for antioxidant mechanisms
in microgravity. These had been confirmed by simulated microgravity studies [52,53].

Our exploration of proteomics datasets from Arabidopsis spaceflight experiments
provides novel insights into the complexity of plant proteomic responses to the spaceflight
environment. The multifaceted adaptations implicated involve fundamental cellular pro-
cesses such as protein synthesis, methylation, carbon fixation, and detoxification. This
shows the extent of molecular rearrangements that Arabidopsis plants undergo when
faced with the unprecedented challenges of spaceflight, such as microgravity and cosmic
radiation. While our study provides a significant step forward in understanding plant
responses to spaceflight, it also underscores the need for further research. Each of the
revealed adaptations, whether it is the enhanced ribosomal activities, alterations in carbon
metabolism, or augmentation of stress-response mechanisms, warrants wet-lab investiga-
tions. The combination of such experimental data with advanced computational modeling
could help elucidate the full scope of plant responses to spaceflight and inform strategies
for successful space farming.

4. Materials and Methods
Accessing and Analyzing Individual Proteomics Datasets

To ensure the greatest degree of comparability between the datasets, raw LC/MS
spectra peak representing the spaceflight and ground control proteomics datasets (.RAW
format) for BRIC PDFU and BRIC LED spaceflight experiments were accessed from the
NASA GeneLab data depository with accession numbers GLDS 38 (https://osdr.nasa.gov/
bio/repo/data/studies/OSD-38, accessed on 9 April 2023) and OSD 522 (https://osdr.nasa.
gov/bio/repo/data/studies/OSD-522/preview/w5Q5ElZE-Wy6DDS1ZFzeRjBAPuKss-x0,
accessed on 16 July 2023), while the ABRS dataset was accessed from the PRIDE Archive
proteomics data repository with accession number PXD001179 (https://www.ebi.ac.uk/
pride/archive/projects/PXD001179, accessed on 16 July 2023). The EMCS experiment
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datasets (0 g/1 g and 1 g/1 g) were not deposited in any accessible data repository, but
the ready-analyzed peptide and protein count data was attached as a Supplementary Ma-
terials to the primary publication.. The description of the experimental setup for each
of the datasets obtained is accessible from their individual repository. The raw LC/MS
spectra peak from BRIC LED, BRIC PDFU, and ABRS experiments were fed into MaxQuant
v2.4.2.0 (downloaded April 2023) [54], a quantitative proteomics software package for
analyzing large mass spectrometric data sets. MaxQuant supports label-free quantification
and all main labeling techniques, including SILAC, Di-methyl, TMT, and iTRAQ. The
peak intensity (counts) for each spaceflight and ground control replicates per dataset were
analyzed using Perseus v4.0 (downloaded April 2023) [55] for differential expression and
estimation of the p-value and the Benjamini-Hochberg [56] adjusted p-value to control for
false discovery rate. In our proteomics analysis pipeline, we generated adjusted p-values,
commonly referred to as q-values, that account for the false discovery rate (FDR) associated
with multiple testing. It’s worth noting that our FDR is maintained at <0.01 to ensure high
statistical stringency. However, to maintain an inclusive analysis, we have chosen not to
apply high fold-change cutoffs. This approach ensures that we capture the broadest range
of differentially expressed proteins, allowing for a more comprehensive understanding of
proteomic alterations. The adjusted p-value and our FDR of 0.01 were quite strict, and we
are careful not to lose biologically significant proteins. Some proteomics studies [57,58] also
advised a lower fold change threshold when comparing labeled and non-labeled datasets.
The four datasets consist of both labeled and unlabeled samples. The labels used were also
different across the labeled samples. Hence, we prioritized FDR and adjusted the p-value
over the log fold change.

Perseus v4.0 Differential Expression (DE) analysis plugins for EdgeR and Limma
R/Bioconductor packages were installed for Rstudio v4.2.3. R codes for the downstream
analysis are available as Supplementary File S3. The log2 fold change was calculated for
the EMCS dataset counts (Supplementary File S1). Protein annotations for each dataset
were assigned using the org.At.tair.db (v3.8.2), STRINGdb (v1.24.0), and PANTHER.db
(v1.0.4) packages from the Perseus v4.0 platform. A threshold of adj p-value ≤ 0.05 was
established for significantly expressed proteins, with a false discovery rate (FDR) ≤ 0.01.

Online analytical tools such as ShinyGO v0.76 [20], Metascape v3.5.20230501 [21],
and InteractiVenn [25] employed in the data analysis are noted in the text and figure
legends. The analysis of the dissimilarity index, multidimensional scaling analysis (MDS),
principal component analysis (PCA), and hierarchical clustering were performed with the
R programming language (https://www.r-project.org/about.html, accessed on 1 April
2023) within the commercially available Rstudio v4.2.3 IDE. The Rstudio analytic packages
and codes used are available in Supplementary Materials.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms241914425/s1.
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Archive proteomics data repository with accession number PXD001179 (https://www.ebi.ac.uk/
pride/archive/projects/PXD001179).
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