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Abstract: Cold exposure influences liver metabolism, thereby affecting energy homeostasis. However,
the gene regulatory network of the liver after cold exposure remains poorly understood. In this
study, we found that 24 h cold exposure (COLD, 6 ◦C) increased plasma glucose (GLU) levels,
while reducing plasma non-esterified fatty acid (NEFA) and triglyceride (TG) levels compared to
the room temperature (RT, 25 ◦C) group. Cold exposure increased hepatic glycogen content and
decreased hepatic lipid content in the livers of newborn goats. We conducted RNA-seq analysis
on the livers of newborn goats in both the RT and cold exposure groups. A total of 1600 genes
were identified as differentially expressed genes (DEGs), of which 555 genes were up-regulated and
1045 genes were down-regulated in the cold exposure group compared with the RT group. Cold
exposure increased the expression of genes involved in glycolysis, glycogen synthesis, and fatty
acid degradation pathways. These results can provide a reference for hepatic lipid and glycogen
metabolism in newborn goats after cold exposure.
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1. Introduction

Livestock and poultry suffer from cold stress caused by low temperatures, resulting
in slow growth, disease, and even death [1]. Cold exposure is a common stressor for
newborn livestock. Newborn lambs are particularly susceptible to hypothermia-induced
mortality, which accounts for the majority of sheep production losses [2]. A previous study
reported that hypothermia induced by cold stress can lead to hypoxia, hypoglycaemia,
and metabolic acidosis in lambs [3]. Additionally, the cold environment affects the growth
performance, antioxidant status, immune function and expression of related genes in
lambs [4]. Based on the various adverse effects of cold stress on newborn goats, this study
aims to explore the regulatory effect of cold exposure on hepatic metabolism in newborn
goats. During cold stress, aminophylline is shown to increase the metabolic rate in lambs
at doses of 16 and 32 mg/kg, and to be a potential therapy for hypothermia or to aid
recovery from hypothermia [5]. It has been reported that oxidative damage, disorder, and
protein synthesis inhibition can be caused by cold exposure in rats [6]. Cold stress in rats
disrupts the balance between oxidative/antioxidant systems in the liver and decreases
antioxidant enzyme activity [7]. In addition, cold exposure induces oxidative metabolism
and heat production, along with the elevated production of oxidative stress and reactive
oxygen species (ROS) in the livers of rats [8]. Cold stress also enhances specific high-density
lipoprotein (HDL) activity and alters lipid composition in plasma of mice and humans [9].

The liver is an important organ in mammals, involved in various physiological
functions, such as detoxification, protein synthesis, glucose homeostasis, and nutrient
utilization [10]. In the liver, the excess glucose in the circulation is used to make fatty acids,
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while the liver can utilize the stored glycogen or the production of glucose from precursors
such as alanine, lactic acid, and glycerol [11]. In mice, cold exposure enhances the mito-
chondrial tricarboxylic acid cycle and retinol metabolism pathways in the liver but has no
significant effect on oxidative phosphorylation [12]. In piglets, the O-GlcNAcylation and
apoptosis of the liver are increased after cold exposure. Further results indicate that cold
stress regulates liver glucose metabolism and cell apoptosis through the O-GlcNAc/Akt
pathway to counter the effects of cold stress [13].

Our previous study has shown that cold exposure increases lipolysis and fatty acid
metabolism, and increases the expression of thermogenesis genes in goat brown adi-
pose tissue, suggesting that cold exposure induces glycerolipid and glycerophospholipid
metabolism in newborn goats [14]. However, the molecular mechanism underlying the
regulation in the liver of newborn goats by cold exposure remains unclear. The aim of the
present study was to assess the effects of cold exposure on plasma biochemical indexes
and hepatic gene expression profiles, as well as hepatic glycogen and lipid metabolism, in
newborn goats. This study provides insight into the understanding of cold exposure on
liver metabolism of newborn goats.

2. Results
2.1. Effects of Cold Exposure on Plasma Biochemical of Newborn Goats

The aim of this study was to explore the effect of cold exposure on glucose/glycogen
metabolism and lipid metabolism in the liver of newborn goats. We maintained newborn
goats at either room temperature (RT, 25 ◦C) or in a cold environment (COLD, 6 ◦C) for
24 h (Figure 1A). The plasma of goats from the RT and the cold groups was collected for
biochemical analysis. The results showed that there were no significant differences in
the levels of albumin (ALB), alanine aminotransferase (ALT), and aspartate transaminase
(AST) between the two groups. In addition, the concentrations of high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol
(TC) in the plasma of newborn goats were not affected by cold exposure (Figure 1B,
Supplementary Table S1). Interestingly, cold exposure increased the level of glucose (GLU)
but decreased the level of non-esterified fatty acids (NEFA) and triglycerides (TG) compared
with the RT group (Figure 1B, p < 0.05). In addition, H&E staining results revealed no
significant difference in the morphological analysis of the livers (Figure 1C). The results
suggest that cold exposure may impact the glucose and lipid metabolism of newborn goats.
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Figure 1. Cold exposure results in increased levels of glucose but decreased levels of NEFA and TG 
in plasma. (A) Experimental design for cold exposure. Livers were isolated from newborn goats 
maintained at room temperature (RT, 25 °C) or in a cold environment (COLD, 6 °C) for 24 h (n = 4). 
(B) Glucose, non-esterified fatty acids (NEFA), triglycerides (TG), and total cholesterol (TC) levels in 
plasma (n = 4). (C) H&E staining in liver of the RT and COLD groups newborn goats. p-values were 
calculated using Student’s t-test; * p < 0.05, ** p < 0.01. 
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A total of 61.58 gigabases (Gb) of clean data were generated from eight cDNA 

libraries, and the percentage of Q30 bases was greater than 95.27%. The proportion of 
reads mapped to the goat reference genome ranged from 96.39% to 96.98%, indicating that 
the quality of the sequences is sufficient for use as reference data for further analyses. To 
investigate differences in gene expression profiles between the RT and cold exposure 
groups, we performed hierarchical clustering analysis on eight samples. Cluster analysis 
divided the samples for the RT and cold exposure groups into two major clusters (Figure 
2A), indicating the overall expression profile of genes of the liver tissues was significantly 
altered after cold exposure. To further clarify the details of the gene expression profiles 
between the RT and cold exposure groups, the DESeq2 R package was used to identify 
differentially expressed genes (DEGs). A total of 1600 DEGs were identified, of which 555 
genes were up-regulated, and 1045 genes were down-regulated in the cold group 
compared with the RT group (Figure 2B, Supplementary Table S2). KEGG pathway 
analysis of the up-regulated genes by cold exposure revealed significant enrichment in 
several major metabolic pathways, including the HIF-1 signaling pathway, 
glycolysis/gluconeogenesis, glucagon signaling pathway, carbon metabolism, fructose 
and mannose metabolism, FoxO signaling pathway, and AMPK signaling pathway 
(Figure 2C). These results indicate that cold exposure caused dramatic changes in the gene 
expression profiles. 

Figure 1. Cold exposure results in increased levels of glucose but decreased levels of NEFA and TG
in plasma. (A) Experimental design for cold exposure. Livers were isolated from newborn goats
maintained at room temperature (RT, 25 ◦C) or in a cold environment (COLD, 6 ◦C) for 24 h (n = 4).
(B) Glucose, non-esterified fatty acids (NEFA), triglycerides (TG), and total cholesterol (TC) levels in
plasma (n = 4). (C) H&E staining in liver of the RT and COLD groups newborn goats. p-values were
calculated using Student’s t-test; * p < 0.05, ** p < 0.01.
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2.2. Cold Exposure Changed the Gene Expression Pattern in Liver of Newborn Goats

A total of 61.58 gigabases (Gb) of clean data were generated from eight cDNA libraries,
and the percentage of Q30 bases was greater than 95.27%. The proportion of reads mapped
to the goat reference genome ranged from 96.39% to 96.98%, indicating that the quality
of the sequences is sufficient for use as reference data for further analyses. To investigate
differences in gene expression profiles between the RT and cold exposure groups, we
performed hierarchical clustering analysis on eight samples. Cluster analysis divided the
samples for the RT and cold exposure groups into two major clusters (Figure 2A), indicating
the overall expression profile of genes of the liver tissues was significantly altered after cold
exposure. To further clarify the details of the gene expression profiles between the RT and
cold exposure groups, the DESeq2 R package was used to identify differentially expressed
genes (DEGs). A total of 1600 DEGs were identified, of which 555 genes were up-regulated,
and 1045 genes were down-regulated in the cold group compared with the RT group
(Figure 2B, Supplementary Table S2). KEGG pathway analysis of the up-regulated genes
by cold exposure revealed significant enrichment in several major metabolic pathways,
including the HIF-1 signaling pathway, glycolysis/gluconeogenesis, glucagon signaling
pathway, carbon metabolism, fructose and mannose metabolism, FoxO signaling pathway,
and AMPK signaling pathway (Figure 2C). These results indicate that cold exposure caused
dramatic changes in the gene expression profiles.
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Figure 2. RNA-seq analysis revealed the altered gene expression pattern in livers of newborn goats. 
(A) Heatmap showing hierarchical clustering of gene expression. (B) Volcano plot showing DEGs 
between RT and COLD groups. The red dots represent significantly up-regulated genes, the green 
dots represent significantly down-regulated genes, and the gray dots represent no difference change 
genes. (C) KEGG pathway analysis showing the enrichment of functional categories (n = 4). 
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was a higher hepatic glycogen content after cold exposure (Figure 3A). Further detection 
results found that the glycogen content was significantly increased in the livers of 
newborn goats after cold exposure compared to the RT group (Figure 3B, p < 0.01). These 
findings suggest that cold exposure promotes the deposition of glycogen in the livers of 
newborn goats, indicating a potential influence on glucose metabolism. Furthermore, 
RNA-seq results revealed that cold exposure significantly activated the glycolysis and 
glycogen synthesis pathways in the liver, such as PGAM1, PDHA1, PFKM, ALDOA, 
PFKFB3, HK2, HKDC1, GYG1, and GYS2. Notably, HKDC1 and PFKM are two key rate-
limiting enzymes in the glycolytic pathway, while GYS2 is a major enzyme for glycogen 
synthesis in the liver (Figure 3C, p < 0.05). In contrast, cold exposure significantly 
decreased the expression of the glycogenolysis pathway-related gene PYGL (PYGL is the 
main rate-limiting enzyme in glycogenolysis) and the gluconeogenesis pathway-related 
gene PCK1 was also down-regulated under cold exposure (Figure 3C, p < 0.05). The qPCR 
results provide robust evidence that cold exposure significantly up-regulated the 
expression of glycolysis and glycogen synthesis pathway-related genes, while down-
regulated the expression of glycogenolysis and gluconeogenesis pathway-related genes 
(Figure 3D, p < 0.05). These results suggest that cold exposure induces glucose metabolism 

Figure 2. RNA-seq analysis revealed the altered gene expression pattern in livers of newborn goats.
(A) Heatmap showing hierarchical clustering of gene expression. (B) Volcano plot showing DEGs
between RT and COLD groups. The red dots represent significantly up-regulated genes, the green
dots represent significantly down-regulated genes, and the gray dots represent no difference change
genes. (C) KEGG pathway analysis showing the enrichment of functional categories (n = 4).

2.3. Cold Exposure Regulates Glycogen Metabolism in Liver of Newborn Goats

The aim of this study was to investigate the effects of cold exposure on glucose
metabolism in the livers of newborn goats. The PSA staining results showed that there
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was a higher hepatic glycogen content after cold exposure (Figure 3A). Further detection
results found that the glycogen content was significantly increased in the livers of newborn
goats after cold exposure compared to the RT group (Figure 3B, p < 0.01). These findings
suggest that cold exposure promotes the deposition of glycogen in the livers of newborn
goats, indicating a potential influence on glucose metabolism. Furthermore, RNA-seq
results revealed that cold exposure significantly activated the glycolysis and glycogen
synthesis pathways in the liver, such as PGAM1, PDHA1, PFKM, ALDOA, PFKFB3, HK2,
HKDC1, GYG1, and GYS2. Notably, HKDC1 and PFKM are two key rate-limiting enzymes
in the glycolytic pathway, while GYS2 is a major enzyme for glycogen synthesis in the
liver (Figure 3C, p < 0.05). In contrast, cold exposure significantly decreased the expres-
sion of the glycogenolysis pathway-related gene PYGL (PYGL is the main rate-limiting
enzyme in glycogenolysis) and the gluconeogenesis pathway-related gene PCK1 was also
down-regulated under cold exposure (Figure 3C, p < 0.05). The qPCR results provide
robust evidence that cold exposure significantly up-regulated the expression of glycolysis
and glycogen synthesis pathway-related genes, while down-regulated the expression of
glycogenolysis and gluconeogenesis pathway-related genes (Figure 3D, p < 0.05). These
results suggest that cold exposure induces glucose metabolism by promoting glycogen syn-
thesis and glycolysis, inhibiting glycogenolysis and gluconeogenesis, and thus increasing
hepatic glycogen deposition (figure in below).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 13 
 

 

by promoting glycogen synthesis and glycolysis, inhibiting glycogenolysis and 
gluconeogenesis, and thus increasing hepatic glycogen deposition (figure in below). 

 
Figure 3. Cold exposure increased hepatic glycogen deposition in newborn goats. (A) PSA staining 
in livers of the RT and COLD groups newborn goats. (B) The glycogen content in livers of the RT 
and COLD groups of newborn goats (n = 4). (C) Heatmap showing the differentially expressed genes 
related to glycolysis, glycogen synthesis, glycogenolysis and gluconeogenesis pathways (n = 4). (D) 
qPCR analysis of PGAM1, PDHA1, PFKM, ALDOA, PFKFB3, HK2, HKDC1, GYG1, GYS2, PYGL and 
PCK1 in livers after cold exposure (n = 4). p-values were calculated using Student’s t-test; * p < 0.05, 
** p < 0.01. 

2.4. Cold Exposure Regulates Lipid Metabolism in Liver of Newborn Goats 
This study also aimed to determine whether cold exposure affects hepatic lipid 
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Figure 3. Cold exposure increased hepatic glycogen deposition in newborn goats. (A) PSA staining
in livers of the RT and COLD groups newborn goats. (B) The glycogen content in livers of the RT
and COLD groups of newborn goats (n = 4). (C) Heatmap showing the differentially expressed
genes related to glycolysis, glycogen synthesis, glycogenolysis and gluconeogenesis pathways (n = 4).
(D) qPCR analysis of PGAM1, PDHA1, PFKM, ALDOA, PFKFB3, HK2, HKDC1, GYG1, GYS2, PYGL
and PCK1 in livers after cold exposure (n = 4). p-values were calculated using Student’s t-test; * p < 0.05,
** p < 0.01.

2.4. Cold Exposure Regulates Lipid Metabolism in Liver of Newborn Goats

This study also aimed to determine whether cold exposure affects hepatic lipid
metabolism of newborn goats. Oil red O staining showed that lipid droplets in the livers
of newborn goats were significantly reduced after cold exposure (Figure 4A). Next, we
measured the TC and TG content in the livers of newborn goats. We found that TC content
was not affected after cold exposure while the TG level was significantly decreased after
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cold treatment (Figure 4B, p < 0.01), suggesting that cold exposure reduced lipid deposition
in the livers of newborn goats compared with the RT group.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 4. Cold exposure reduces hepatic lipid deposition in newborn goats. (A) Oil red O staining 
in livers of the RT and COLD groups newborn goats. (B) The TC and TG content in livers of the RT 
and COLD groups newborn goats (n = 4). (C) Heatmap showing the differentially expressed genes 
related to fatty acid synthesis and fatty acid degradation pathways (n = 4). (D) qPCR analysis of 
HACD2, HACD3, FADS1, FADS2, ACSBG1, DGAT2, PPARGC1A, ACSL3, LPL and ACOX1 in livers 
after cold exposure (n = 4). p-values were calculated using Student’s t-test; * p < 0.05, ** p < 0.01. 
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key enzymes in de novo fatty acid synthesis. DGAT2, which inhibits the final step of TG 
synthesis, was significantly down-regulated after cold exposure. On the other hand, genes 
involved in fatty acid degradation, such as PPARGC1A, ACSL3, LPL, and ACOX1, were 
significantly up-regulated after cold exposure (Figure 4C, p < 0.05). ACOX1 is the first 
enzyme in the fatty acid oxidation pathway, while LPL is a key gene in the process of TG 
degradation to fatty acids. The ACSL3 gene encodes a long-chain acyl α synthetase, which 
is a key enzyme in β-oxidation. The qPCR results provide robust evidence that cold 
exposure significantly down-regulated the expression of fatty acid synthesis pathway-
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Figure 4. Cold exposure reduces hepatic lipid deposition in newborn goats. (A) Oil red O staining
in livers of the RT and COLD groups newborn goats. (B) The TC and TG content in livers of the RT
and COLD groups newborn goats (n = 4). (C) Heatmap showing the differentially expressed genes
related to fatty acid synthesis and fatty acid degradation pathways (n = 4). (D) qPCR analysis of
HACD2, HACD3, FADS1, FADS2, ACSBG1, DGAT2, PPARGC1A, ACSL3, LPL and ACOX1 in livers
after cold exposure (n = 4). p-values were calculated using Student’s t-test; * p < 0.05, ** p < 0.01.

RNA-seq analysis revealed that several pathways related to lipid metabolism were
significantly altered by cold exposure. Specifically, the expression of genes involved in
fatty acid elongation, such as HACD2 and HACD3, was significantly down-regulated after
cold exposure (Figure 4C, p < 0.05). Additionally, genes related to fatty acid synthesis,
including FADS1, FADS2, and ACSBG1, were also suppressed. FADS1 and FADS2 are
two key enzymes in de novo fatty acid synthesis. DGAT2, which inhibits the final step of
TG synthesis, was significantly down-regulated after cold exposure. On the other hand,
genes involved in fatty acid degradation, such as PPARGC1A, ACSL3, LPL, and ACOX1,
were significantly up-regulated after cold exposure (Figure 4C, p < 0.05). ACOX1 is the
first enzyme in the fatty acid oxidation pathway, while LPL is a key gene in the process of
TG degradation to fatty acids. The ACSL3 gene encodes a long-chain acyl α synthetase,
which is a key enzyme in β-oxidation. The qPCR results provide robust evidence that
cold exposure significantly down-regulated the expression of fatty acid synthesis pathway-
related genes, while up-regulated the expression of fatty acid degradation pathway-related
genes (Figure 4D, p < 0.05). These findings suggest that cold exposure reduces hepatic lipid
deposition in newborn goats by promoting fatty acid degradation and inhibiting fatty acid
synthesis (Figure 5).
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Figure 5. A working model showing that cold exposure regulates lipid and glycogen metabolism in
livers of newborn goats. Cold exposure induces glucose metabolism by promoting glycogen synthesis
and glycolysis, inhibiting glycogenolysis and gluconeogenesis, and thus increasing hepatic glycogen
deposition. In addition, Cold exposure also reduces hepatic lipid deposition by promoting fatty acid
degradation and inhibiting fatty acid synthesis. Red represents up-regulated genes. Green represents
down-regulated genes. Blue snowflakes indicated cold exposure of newborn goats for 24 h.

3. Discussion

In mammals, long-term exposure to cold can cause a variety of physiological reactions,
such as severe energy depletion, lack of energy substrates, and increased glucose production
in the liver [15]. However, the liver, as the main organ, participates in adaptation regulation,
maintains glucose homeostasis, and plays a key role in energy metabolism. In this study, we
found that 24 h cold exposure increased the level of plasma glucose but decreased the level
of plasma NEFA and TG compared with the RT group. Cold exposure also significantly
increased glycogen content and significantly decreased lipid deposition in the livers of
newborn goats. The RNA-seq results showed that cold exposure increases hepatic glycogen
deposition by promoting glycogen synthesis and glycolysis, while reducing hepatic lipid
deposition by promoting fatty acid degradation. Thus, we hypothesized that newborn
goats mobilized fat reserves to store glucose and meet the increased heat production needs
at low temperatures.

After three weeks of low temperature exposure, the plasma glucose level was increased
and the plasma triglyceride level was decreased in dairy goats [16], consistent with the
results after cold exposure 24 h in newborn goats. There was a slight, but not significant
increase in hepatic glucose output after feeding, and there was no effect on blood glucose
concentration [17]. Exposure to cold environments increased the output of glucose in the
liver, which may explain the higher blood glucose levels in cold-treated goats. In mice,
cold exposure reduced plasma TG concentrations but had no effect on plasma cholesterol
concentrations [18], consistent with our results. It was found that cold exposure did not
affect aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase
(ALP) or total bilirubin (TB) levels in the plasma of Yorkshire pigs [19]. Similarly, 15-day-old
cocks were exposed to 12/−1 ◦C acute (24 h) cold stress and chronic (20 d) cold stress,
respectively. The contents of insulin and NEFA in the plasma of the cocks subjected to
acute cold stress showed fluctuation, while the glucose contents increased first and then
decreased. The contents of NEFA and glucose in the plasma of the cocks subjected to chronic
cold stress increased gradually with a time course trend [20]. Our results showed that cold
exposure increased the level of glucose and decreased the NEFA in plasma compared with
the RT group. However, cold exposure does not affect the levels of TG, TC, HDL-C and
LDL-C ALT, and AST in plasma.
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Previous studies have shown that mice exposed to cold (4 ◦C) for up to 5 days sig-
nificantly reduced the levels of TG and TC in the liver and increased the expression of
gluconeogenic genes [21]. At the same time, acute cold exposure increased the consumption
of liver glycogen and increased protein kinase B (AKT) phosphorylation to maintain the
hepatocyte energy balance in mice [22]. The glycogen content of weaned piglets at 21 days
of age was significantly increased under acute cold exposure [23]. In the present study,
we found that the liver glycogen content of newborn goats was increased significantly
(p < 0.01) and the TG content decreased significantly (p < 0.01) after 24 h cold exposure,
which was consistent with the results of mice and weaned piglets, indicating that cold
exposure can increase liver glycogen content and decrease TG content.

Furthermore, PFKFB3, PDHA1, HK2, ALDOA, PGAM1, HKDC1, and PFKM genes,
which are involved in the glycolysis pathway, were up-regulated under cold stress. Hex-
okinase (HK) catalyzes the phosphorylation of glucose, the first rate-limiting enzyme or
key enzyme of the glycolysis pathway [24]. HKDC1 is one of the isoforms expressed by
HK in the liver, which has low glucose phosphorylation ability and has proved its associ-
ation with hepatocyte mitochondria. HKDC1 gene deletion leads to changes in liver TG
levels [25]. Phosphofructokinase (PFKM) is the second rate-rater of the glycolysis pathway
and a protein-coding gene that catalyzes the phosphorylation of fructose-6-phosphate to
fructose-1, 6-diphosphate [26]. PFKFB3 encodes 6-phosphofructose-2 kinase/fructose-2 and
6-bisphosphatase-3 enzymes (PFK-2/FBASE-2). PFK-2/FBASE-2 is a bifunctional enzyme
that controls glycolysis flux through fructose 2, 6-diphosphate (F-2, 6-P). F-2, 6-P is a potent
allosteric activator of 6-phosphofructokinase-1 (PFK-1) that triggers aerobic oxidation of
glucose metabolism. Recent studies have reported that PFKFB3 regulates inflammation
induced by a high-fat diet (HFD) and inflammation associated with overnutrition [27].

However, our results show that cold exposure promoted the glycolysis of newborn
goats to meet the high energy needs of newborn goats. Phosphorylase kinase (PHKA2)
degrades glycogen to produce glucose 1-phosphate, which is a key enzyme in glycogen
decomposition. A lack of the PHKA2 gene has been reported to cause glycogen storage
disease [28]. Glycogen synthase 2 (GYS2) is considered a key enzyme involved in the
regulation of glycogen synthesis. It is part of the rate-limiting step in catalyzing glycogen
synthesis and transfer of glucose molecules from uridine diphosphate (UDP)-glucose to
the terminal branch of glycogen molecules. Glycogen 1 (GYG1) is a glycosyltransferase
that catalyzes the formation of short glucose polymers in the auto-glycation of glucose
uridine diphosphate. The polymer extends to form glycogen under the catalysis of glycogen
synthetase (GYS2) and branched enzymes [29]. In this study, cold exposure induced the
expression of GYG1, which promotes glycogen synthesis in the liver by regulating glycolysis
metabolism, which is consistent with our phenotypic results. This study found that cold
exposure can affect the glucose metabolism of newborn goats. Our results demonstrate
that the glycolysis/gluconeogenesis pathway was activated after cold in the livers of
newborn goats.

The liver is an essential organ for the metabolism of lipids. Fatty acid synthesis is
a complex process due to the different lengths of fatty acid chains. Lipid metabolism is
a key biological process of lipid synthesis and degradation in animals. Diacyl glyceryl
transferase-2 (DGAT2) catalyzes the final reaction of TG synthesis using diacylglycerol
and fatty acyl-CoA as substrates [30]. HACD3 catalyzes the dehydration of 3-hydroxy
acyl-coA intermediates to trans—2, 3-dilute acyl-CoA, catalyzes the extended circulation
of long-chain fatty acids, and promotes the transport and synthesis of unsaturated fatty
acids (UFAs) [31]. Fatty acid desaturase 1 (FADS1), as a key enzyme in the metabolism
of polyunsaturated fatty acids (PUFA), catalyzes di-high -y-linolenic acid (DGLA) into
arachidonic acid (AA) [32]. The results showed that the cold group had reduced liver
fat content compared to the RT group. The RNA-seq results showed that cold exposure
significantly down-regulated the genes related to liver fatty acid synthesis (DGAT2, HACD3,
FADS1, ACSBG1). It showed that fatty acid and TG synthesis were inhibited in the liver of
newborn goats after cold exposure. Previous studies have shown that ACSLs catalyze the
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conversion of free long-chain fatty acids to fatty acid acyl-CoA, which plays a key role in
lipid synthesis and fatty acid degradation [33]. The expression of ACSL3 increased in the
liver of hamsters fed a diet rich in fat and cholesterol [34]. According to the RNA-seq results,
we found that ACSL3 expression was also increased in the cold group compared with the
RT group. LPL is a key gene in the process of degrading TG into fatty acids [35]. Previous
studies have shown significant increases in LPL expression in NASH livers in both humans
and mice [36]. Our results indicate that the fatty acid β oxidation pathway is activated
and the fatty acid synthesis pathway is down-regulated during cold exposure. Finally,
we recognize the limitations of our research. Although we investigated the effects of cold
exposure on hepatic glycogen and lipid metabolism in newborn goats, the effects of cold
exposure on hepatic metabolism in adult goats still need to be explored in future research.

4. Materials and Methods
4.1. Ethics Statement

All research involving animals was conducted according to the regulation proposed
by the Institutional Animal Care and Use Committee at Sichuan Agricultural University,
under permit No. DKY-2022102011.

4.2. Animals and Sample Collection

All animals were raised at the breeding center of Sichuan Agricultural University,
Ya’an, China. Female Chuanzhong black goats (n = 16) were artificially inseminated with
the semen of a ram. Then, there were 17 pregnant ewes lambing, including 9 males and
11 females. After birth, the newborn goats were wiped and fed colostrum (30 mL/kg body
weight) in a 25 ◦C environment for 2 h. A total of 8 male kids were selected and randomized
into room temperature (n = 4) and cold exposure groups (n = 4). At 2 h of age, kids from
the 25 ◦C environments were placed in a 6 ◦C cold room (COLD, 6 ◦C) or maintained at
room temperature (RT, 25 ◦C) for 24 h. Warmed colostrum was fed three times at 8, 14,
and 20 h of age. After 24 h, blood samples from newborn goats were collected from the RT
and cold exposure groups, respectively, and the samples were then centrifuged at 1000× g,
4 ◦C for 15 min and stored at −20 ◦C for plasma biochemical analysis. Finally, the newborn
goats from the RT and cold exposure groups were anesthetized by intraperitoneal injection
of pentobarbital sodium (60 mg/kg) and ketamine (80 mg/kg), and the liver tissues were
collected and stored at −80 ◦C.

4.3. Plasma Biochemical Analysis

The contents of glucose (GLU), triglycerides (TG), total cholesterol (TC), low-density
lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), non-esterified
fatty acids (NEFA), aspartate transaminase (AST), alanine transaminase (ALT), and albumin
(ALB) in the plasma of newborn goats were determined using Hitachi 7020 Automated
Biochem (Hitachi, Tokyo, Japan).

4.4. Hematoxylin-Eosin (H&E), Periodic Acid Schiff (PAS), and Oil Red O Staining

For H&E staining, the liver tissues were fixed in 4% formaldehyde, embedded with
paraffin, and cut into sections (4-µm thick). Next, liver sections were stained with a
hematoxylin–eosin (H&E) staining kit (G1120, Solarbio, Beijing, China) according to the
manufacturer’s instructions. Finally, liver sections were observed and photographed under
a light microscope (Olympus, Tokyo, Japan). For glycogen staining, liver tissues were
fixed in 4% paraformaldehyde, embedded in paraffin, and cut into 4 µm sections. Then,
they were stained with periodic acid–Schiff (PAS). For oil red O staining, liver tissues were
embedded using an OCT embedding agent. Then, dye sections were stained with oil red
working solution for 10 min. The nuclei were counterstained with hematoxylin for 3–5 min,
then covered with filter paper to remove the surrounding water, and sealed with glycerin
gelatin. The sections were imaged under an inverted microscope (Olympus, Tokyo, Japan).
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4.5. Glycogen, Triglyceride (TG), and Total Cholesterol (TC) Analysis

The glycogen contents of the livers were measured using the Liver Glycogen Assay
Kit (A043-1-1, Jiancheng, Nanjing, China) according to the manufacturer’s instructions.
Briefly, we mixed 50 mg of the sample with a hydrolysis buffer, and incubated it at 100 ◦C
for 20 min. The color substrate solution was then added. The absorbance of the prepared
samples was measured at 620 nm using the Varioskan LUX Microplate Reader (Thermo
Fisher Scientific, Waltham, MA, USA).

The liver tissues were weighed according to weight (g):volume (mL) = 1:9 and added
to 9 times the volume of anhydrous ethanol. The samples were homogenized and cen-
trifuged at 2500 rpm for 10 min. The supernatant was collected for the assay. TG and TC
were determined by GPO-PAP and COD-PAP with the Triglyceride Assay Kit and Total
Cholesterol Assay Kit (A110-1 and A111-1-1 Jiancheng, Nanjing, China) according to the
manufacturer’s instructions. The absorbance of the prepared samples was measured at
510 nm and 500 nm, respectively, using the Varioskan LUX Microplate Reader (Thermo
Fisher Scientific, Waltham, MA, USA).

4.6. Quantitative Real-Time PCR

Total RNA was extracted with TRIzol reagent (Invitrogen Life technologies, Carlsbad,
CA, USA) from liver tissues according to the manufacturer’s protocols. The RNA was
reverse-transcribed into cDNA using the HiScript III RT SuperMix (Vazyme, Nanjing,
China). The stable expression housekeeping gene GAPDH in the RT and cold-treated groups
using transcriptome data was used as an internal reference to calculate the relative gene
expression. Bio-rad CFX 96 quantitative PCR was used to analyze the relative expression
levels of each gene by the 2−∆∆CT method. The qPCR primer sequences are summarized in
Supplementary Table S3.

4.7. RNA Library Construction, and Sequencing

All samples revealed an RNA integrity number (RIN) above 8.5. Sequencing libraries
were generated using the NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB, USA).
Magnetic beads with Oligo (dT) were used to enrich mRNA with a polyA structure. DNA
libraries were sequenced on an Illumina Novaseq 6000 platform and 150 bp paired-end
reads were generated.

The RNA-seq data reported in this paper have been deposited in the Genome Sequence
Archive (Genomics, Proteomics & Bioinformatics 2017) in National Genomics Data Center
(Nucleic Acids Res 2020), Beijing Institute of Genomics, Chinese Academy of Sciences,
under the accession number CRA010578 and are publicly accessible at https://bigd#big#
ac#cn/gsa (accessed on 10 April 2023).

4.8. RNA-Seq Analysis

The RNA-seq clean reads were aligned to the goat reference genome (ARS1) using
HISAT2 (v2.2.1), and the reads were quantified using featureCounts within the Rsub-
read package (v2.8.1). DEGs were identified as genes with a|log2fold change| ≥ 1 and
p < 0.05. KEGG functional enrichment analysis of the DEGs was performed using Metascape
(http://metascape.org/ (accessed on 25 July 2023)). Terms with p < 0.01 were considered
significantly enriched for DEGs.

4.9. Statistical Analysis

Statistical analyses were conducted in SPSS Statistics 19.0. All data are presented as
the mean ± standard deviation (SD) of the replicates from independent experiments unless
stated otherwise. p-values were calculated using Student’s t-test. p < 0.05 was consid-
ered statistically significant, and p < 0.01 was considered highly statistically significant
(* p < 0.05; ** p < 0.01).

https://bigd##big##ac##cn/gsa
https://bigd##big##ac##cn/gsa
http://metascape.org/
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5. Conclusions

In this study, we found that cold exposure increased the level of plasma glucose but
decreased the level of plasma NEFA and TG compared with the RT group. Cold exposure
increased hepatic glycogen content and decreased hepatic lipid content in the livers of
newborn goats. Cold exposure increased the expression of genes involved in glycolysis,
glycogen synthesis, and fatty acid β-oxidation pathways. These results can provide a
reference for hepatic lipid and glycogen metabolism in newborn goats after cold exposure.
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