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Abstract: Atherothrombotic stroke represents approximately 20% of all ischemic strokes. It is caused
by large-artery atherosclerosis, mostly in the internal carotid artery, and it is associated with a high
risk of early recurrence. After an ischemic stroke, tissue plasminogen activator is used in clinical
practice, although it is not possible in all patients. In severe clinical situations, such as high carotid
stenosis (≥70%), revascularization by carotid endarterectomy or by stent placement is carried out
to avoid recurrences. In stroke prevention, the pharmacological recommendations are based on
antithrombotic, lipid-lowering, and antihypertensive therapy. Inflammation is a promising target
in stroke prevention, particularly in ischemic strokes associated with atherosclerosis. However, the
use of anti-inflammatory strategies has been scarcely studied. No clinical trials are clearly successful
and most preclinical studies are focused on protection after a stroke. The present review describes
novel therapies addressed to counteract inflammation in the prevention of the first-ever or recurrent
stroke. The putative clinical use of broad-spectrum and specific anti-inflammatory drugs, such as
monoclonal antibodies and microRNAs (miRNAs) as regulators of atherosclerosis, will be outlined.
Further studies are necessary to ascertain which patients may benefit from anti-inflammatory agents
and how.

Keywords: ischemic stroke; atherosclerosis; inflammation; therapies

1. Introduction

Stroke is the second leading cause of death and the third cause of disability world-
wide [1]. More than 20% of patients suffer a recurrence of stroke within 5 years, which
increases the risk of severe disability [2]. Between 80–85% of all strokes are ischemic [3],
and approximately 20% of them are caused by large-artery atherosclerosis [4], with athero-
matous plaque in the internal carotid artery (ICA) being the most common. This type of
ischemic stroke is named atherothrombotic stroke and shows a higher risk of recurrence
than other stroke subtypes. Its pathogenesis is mainly related to atherosclerotic plaque
rupture, which leads to thrombus formation with the clot blocking locally the blood vessel
or provoking distal emboli, which ultimately interrupts oxygen supply to an area of the
brain [5]. Otherwise, severe obstruction of the carotid or vertebral arteries by atherosclerosis
may lead to hemodynamic alterations and hypoperfusion triggering an atherothrombotic
stroke. In clinical practice, in addition to a healthy lifestyle, the current pharmacological
treatments for stroke prevention are based on antithrombotic, lipid-lowering, hypoglycemic,
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and antihypertensive therapy [6]. In noncardioembolic ischemic stroke, lipid-lowering ther-
apies, mainly high-dose statins, inhibitors of the 3-hydroxy-3-methyl-glutaryl-coenzyme A
reductase (HMG-CoA), are essential to reduce low-density lipoprotein cholesterol (LDLc)
levels to less than 70 mg/dL [7], as indicated by stroke guidelines [8]. In addition, treat-
ment with high-dose statins in the acute phase of ischemic stroke and transient ischemic
attack (TIA) reduces the NIHSS score and improves short-term functional outcomes with-
out related adverse events [9]. Apart from statins, other lipid-lowering drugs (ezetimibe,
proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors) are recommended in
a group of patients for stroke prevention. In antiplatelet therapy, aspirin, a nonsteroidal
anti-inflammatory drug that inhibits cyclooxygenase, is the main treatment. Clopidogrel,
an inhibitor of the P2Y12 receptor mainly found in platelets, and the combination of aspirin
with dipyridamole, an inhibitor of phosphodiesterase 3 (PDE3), are also recommended.
Recently, ticagrelor, another inhibitor of the P2Y12 receptor, has been also included in the
stroke guidelines [10,11].

Atherothrombotic strokes due to symptomatic carotid plaques are associated with
a threefold risk of early recurrence compared with the risk of recurrence in other stroke
subtypes [12]. For this reason, apart from pharmacological treatment, revascularization
may be considered in the setting of this stroke subtype. The principal revascularization
techniques are carotid endarterectomy and plaque exclusion by stent placement. Although
they are relatively safe and effective, current evidence supports revascularization only in
some clinical situations, such as in severe carotid stenosis (70–99%) and moderate carotid
stenosis (50–69%), mainly in men [13,14]. Nevertheless, despite the existing pharmacologi-
cal and revascularization treatments, novel preventive therapies are needed to reduce the
high number of recurrences in atherothrombotic stroke as well as the first event in high-risk
asymptomatic patients with carotid atherosclerosis.

Inflammation is a key factor in ischemic stroke and a potential target to prevent stroke
in high-risk patients with carotid atherosclerosis. The use of therapies based on avoiding
inflammation for the prevention of atherothrombotic stroke is the main topic of the present
review. Indeed, medications currently used for stroke prevention, such as aspirin and
antihypertensive drugs, have known anti-inflammatory effects [15]. In turn, statins exerted
a dual lipid-lowering/anti-inflammatory role in the primary prevention of vascular events
in the JUPITER trial [16], in which rosuvastatin reduced the risk of the first stroke by 48%.
Finally, two new oral hypoglycemic agents named Semaglutide and Dulaglutide have been
shown to reduce stroke incidence among diabetic patients, and additionally, semaglutide
has been shown to reduce vascular inflammation in patients with atherosclerosis [17].

This comprehensive review not only discusses existing anti-inflammatory therapies
but also highlights novel strategies addressed to counteract inflammation and their poten-
tial clinical use in the prevention of ischemic stroke, particularly of the atherothrombotic
subtype, where inflammation plays a major role, as discussed in the next section. Hindering
inflammation could slow the progression of the plaque to become vulnerable and, as a
result, prevent the onset of the event. There are broad-spectrum well-known therapies,
such as colchicine used long-term in low doses or others directed against specific inflam-
matory molecules by using monoclonal antibodies (MAb). The former often has multiple
deleterious collateral effects, whereas the latter may fail due to the blocking of a single
molecule since several interconnected molecules play a role in atherosclerosis. In this
context, novel therapies targeting upstream mediators of inflammation may be of great
interest. Unfortunately, there is a lack of knowledge on the use of novel anti-inflammatory
therapies to prevent ischemic stroke, first-ever or recurrent stroke. Most studies are of a
preclinical nature, with no clinical trials being clearly successful so far, and are usually fo-
cused on promoting protection after ischemic stroke. In this review, beyond lipid-lowering
and antiplatelet drugs, the role of several inflammatory molecules as targets, including
miRNA as regulators of atherosclerosis, in preventing ischemic stroke associated with
carotid atherosclerosis is thoroughly discussed.
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2. Inflammation in Atherothrombotic Ischemic Stroke

Inflammation has been proven to play a major role in the development and pro-
gression of atherosclerosis disease. In the earliest stages, LDL is retained within the
subendothelial space where it is modified by oxidative stress and enzymatic activities,
causing endothelial injury, abnormal lipid metabolism, and hemodynamic damage [18].
Modified LDL, which has inflammatory properties, induces the expression of adhesion
molecules and chemokines, such as intercellular adhesion molecule-1 (ICAM-1), vascular
adhesion molecule-1 (VCAM-1), E-selectin, P-selectin, monocyte chemoattractant protein-1
(MCP-1), and other inflammatory factors, in endothelial cells [19]. The presence of these
inflammatory molecules causes lymphocytes and monocytes to infiltrate the arterial wall.
The infiltrated monocytes are then differentiated into macrophages, which elicit a strong
inflammatory response as a response to modified LDL by releasing more cytokines, adhe-
sion molecules, and other molecules, such as tumor necrosis factor (TNF)-α and interleukin
(IL)-1β and IL-6. In turn, the inflammatory microenvironment promotes the recruitment
of vascular smooth muscle cells (VSMCs), which secrete connective tissue, contributing
to the development of the fibrous cap within the atherosclerotic plaque [20]. In late-stage
atherosclerosis, macrophages and VSMCs can take up modified LDL, becoming lipid-
loaded foam cells. Necrotic macrophages secrete matrix metalloproteinases (MMPs) and
other proteolytic enzymes that hydrolyze the extracellular matrix [20] and also release
lipid, inflammatory, and prothrombotic molecules, leading eventually to plaque rupture,
bleeding, and thrombosis, causing a cerebrovascular event in the case of carotid artery
atherosclerosis [21].

A growing body of evidence supports the theory that inflammation and the immune
system are key players in the pathophysiology of ischemic stroke, particularly when the
origin is carotid atherosclerosis. Symptomatic carotid plaques show evidence of marked
inflammation [22], including a high level of infiltration of monocyte/macrophage and
T cells [23,24] in association with early recurrent stroke [25]. In addition, inflammation
contributes to the brain damage caused by ischemia after the stroke. In turn, the damaged
brain responds with a counteracting immunosuppressive effect that leads to the risk of
infections and the release of mediators that induce tissue regeneration. Several inflamma-
tory molecules participate in all the stages of the ischemic cascade, with a major role in the
earlier stages, mainly in the formation of atherosclerotic plaque and its progression.

Plaque formation and progression may be also influenced by arterial geometry and
intraluminal hemodynamics. Some hemodynamics contribute to the shear stress and, thus,
to chronic endothelial damage. In this regard, several studies have used computational
models to analyze blood flow [26–28], with some of them demonstrating a relationship
between arterial geometry and the risk of cardiovascular disease and stroke.

2.1. Cytokines

Several cytokines are known to play an essential role in the atherosclerotic process.
TNF-α and interferon (INF)γ are type I cytokines produced by Th1 cells. In advanced
phases of atherosclerosis, they induce effects leading to the narrowing and rupture of fibrous
plaque. TNF-α promotes the expression of multiple pro-inflammatory genes inhibits anti-
atherogenic genes and is involved in foam cell formation [29]. After ischemic stroke, it
induces ICAM-1 and increases the expression of MMPs, promoting blood–brain barrier
(BBB) disruption [30]. IFN-γ is involved in immune cell recruitment, LDL accumulation,
inflammation, plaque development, and stabilization [31]. A study suggested that IFN-γ
and T cells could be considered therapeutic targets for ischemic stroke in the late phase of
ischemic stroke [32].

IL-1β is secreted as a propeptide that needs to be cleaved by caspase 1 to perform
its functions. IL-1β promotes the recruitment of leukocytes to the atherosclerotic plaque
and also to the ischemic brain region extending the cerebral infarct area [33]. IL-1β is
considered a pro-inflammatory cytokine whose effects depend on the haplotype, with
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some of them linked to the risk of stroke. Among them, haplotype 4 is associated with the
greatest risk [34].

IL-6 is a pro-inflammatory cytokine secreted by different cell types that are involved in
several processes including the activation of endothelial cells, differentiation and oxidation
processes of lipoproteins, the stimulation of hepatic synthesis of acute phase reactants,
high-sensitivity C-reactive protein (hsCRP) and fibrinogen, leukocyte recruitment and the
stimulation of lymphocyte proliferation [35,36]. As a result, IL-6 accelerates the develop-
ment of atherosclerotic lesions [37,38]. On the other hand, IL-6 has also been shown to have
some anti-atherogenic properties [39].

hsCRP has been reported as a marker of inflammation associated with an increased
risk of the first ischemic stroke [40]. Indeed, the Emerging Risk Factors Collaboration, in
an analysis of over 160,000 patients, reported a linear relationship between hsCRP and the
first stroke and coronary events [41]. Some data also point to an association of hsCRP and
IL-6 with recurrent stroke [42].

Some anti-atherogenic cytokines are transforming growth factor-β (TGF-β), which
inhibits cell MMPs, and anti-inflammatory IL-10. After ischemia, TGF-β1 is induced to
regulate tissue damage and promote repair [43]. IL-10 is closely related to the prevention
of the progress of atherosclerosis [44] and seems to play an immunosuppressive role after a
stroke, which could otherwise increase the risk of bacterial infection [45].

Chemokines, such as MCP-1 and IL-8, are involved in leukocyte recruitment to the
lesion area. MCP-1, also known as CCL2, regulates the migration and infiltration of
monocytes, T lymphocytes, and natural killer cells [46]. Increased levels of MCP-1 in the
blood have been observed in patients with ischemic stroke compared with the control
group, independently of known risk factors [47,48]. IL-8 induces the expression of integrins
in neutrophils, promoting their adhesion to the endothelium [49]. A study showed that
after ischemic stroke, high levels of IL-8 were observed [50].

2.2. MMPs

MMPs constitute a family of endopeptidases, zinc-containing and calcium-dependent
enzymes that are mainly released by foam cells with the function of degrading proteins
of the extracellular matrix (collagen, elastin, fibronectin, and others), which give stability
to atherosclerotic plaque [51]. Accordingly, MMPs are higher in unstable plaques [52,53].
Thus, it would be therapeutically interesting to decrease the activity of these enzymes to
decrease the risk of plaque rupture. However, this approach is controversial since MMPs
also play a beneficial role in remodeling, which may hinder the usefulness of inhibiting
these enzymes [54].

MMPs with collagenase action have been associated with plaque destabilization [55].
Among them, MMP-8 has proven to exert a strong effect [56]. Indeed, the presence of
MMP-8 together with MMP-12 in macrophages within the plaque was associated with
an increased risk of major cardiovascular (CV) events and stroke [57,58]. MMPs with
gelatinase activity, such as MMP-2 and MMP-9, have been in the spotlight of many CV
diseases, as they highly induce VSMC migration and proliferation [59]. Some approaches,
such as MMP-9 gene silencing [60], have been shown to avoid the deleterious effects
of MMP-9.

MMP-3 and MMP-7 are also related to carotid atherosclerosis and stroke [61], with
some polymorphisms causing variability in the risk of suffering from stroke [62–64]. MMP-
14 is upregulated during human atherosclerotic plaque progression and in symptomatic
carotid plaques. Moreover, it plays an important role in plaque neovascularization and the
activation of other MMPs [65,66].

Tissue inhibitors of MMPs (TIMPs) have been suggested as a therapeutic tool for
delaying the development of atherosclerosis, such as the potent inhibitor of MMP-9. In this
regard, TIMP-3, which inhibits several MMPs [54,67], is a candidate for therapeutic use.
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2.3. Adhesion Molecules

Cell adhesion molecules (CAMs) are located on cell surfaces and are involved in
binding to other cells or to the extracellular matrix. In atherosclerosis, several CAMs ex-
pressed on the endothelial cell membrane are involved in leukocyte recruitment, enhancing
the number of inflammatory cells within the lesion [68]. E-selectin promotes the initial
binding and rolling of inflammatory cells by interacting with carbohydrates present on
the surface of leukocytes. Then, a tight attachment is allowed by the interaction of the
CAMs of the immunoglobulin superfamily ICAM-1 and VCAM-1 with their counterparts
in leukocytes. The chemokine fractalkine (FKN), when expressed on the membrane of
activated endothelial cells, also shows the ability to tightly adhere to leukocytes [69].

CAMs play an outstanding role in ischemic stroke, as demonstrated in animal mod-
els [70]. ICAM-1 is highly expressed in atherosclerotic carotid plaques of symptomatic
patients compared to asymptomatic plaques [71]. In this context, targeting CAMs and,
thus, inhibiting the binding of leukocytes to endothelium may slow the development
of atherosclerotic plaque, which would be useful for the prevention of ischemic strokes
in patients with carotid atherosclerosis. In a post-ischemic situation, experimental stud-
ies revealed that the injection of antibodies against ICAM-1 in rats reduced infarct size
after transient unilateral stroke [72]. However, the murine antihuman ICAM-1 MAb (en-
limomab) treatment did not show efficacy in a human clinical trial conducted in ischemic
stroke patients [73], as discussed below.

In a highly inflammatory microenvironment, as is that of advanced atherosclerotic
plaque, activated cells express not only increased levels of membrane-bound adhesion
molecules but also release their soluble forms into circulation [74]. The shedding of CAM
from the membrane is an active process regulated by proteolytic enzyme activity, mainly
MMPs [75]. The function of these soluble forms in atherosclerosis and ischemic stroke
remains to be elucidated. On the one hand, they may avoid the recruitment of more
inflammatory cells to the lesion; on the other, they are known to have some deleterious
effects, such as the secretion of inflammatory cytokines.

The soluble(s) forms of selectins, including sE-selectin and sP-selectin, are elevated
in ischemic stroke [76]. In the atherothrombotic subtype, sP-selectin levels are elevated
in the acute phase [77] and they are associated with sE-selectin levels in the subacute
phase [78]. As well as selectins, concentrations of sICAM-1 and sVCAM-1 are increased in
ischemic stroke patients [70,79,80]. Moreover, serum sICAM-1 concentrations at admission
are predictors of the prognosis of ischemic stroke patients [81]. The plasma concentration of
sICAM-1 has been proposed as a marker of early atherosclerosis and of subclinical coronary
disease in humans [82,83] and of the progression of atherosclerosis in mice [84]. As ICAM-1
is a molecule expressed not only in endothelial cells but also in macrophages, the released
soluble form may indicate both endothelial dysfunction and macrophage activation. A
recent study has revealed that in ischemic stroke patients, sICAM-1, sVCAM-1, and FKN
were associated with carotid plaque inflammation, measured by the gold-standard method
18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) [80]. Of these soluble
CAMs, only sICAM-1 predicted ischemic stroke recurrence and was associated with the
presence of highly inflamed carotid plaques with high sensitivity, thereby suggesting that
sICAM-1 mirrors the inflammatory state of the atherosclerotic plaque and is a feasible
target to prevent the progression of the lesion and the ensuing ischemic event.

2.4. Cell and Soluble Forms of Receptors

Some cell receptors, as well as their soluble forms, related to cell inflammation and
internalization of modified lipoproteins, are increased in ischemic stroke patients, thus
being potential candidates for suppression and developing a strategy to hamper the onset
of stroke events. Once again, it is important to highlight that this would be of particular
importance in the subtype associated with atherosclerosis, in which lipid accumulation and
inflammation are the main inductors.
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Lectin-like oxidized LDL receptor-1 (LOX-1) is a scavenger receptor found in atheroscle-
rotic carotid lesions whose expression within the carotid plaques is increased versus
non-atherosclerotic vessels [85]. The shedding of LOX-1 can be elicited by inflammatory
molecules and by oxidized LDL (oxLDL). sLOX-1 is then released into the systemic circu-
lation, especially in ruptured atherosclerotic lesions [86]. Several studies have found that
sLOX-1 concentration is increased in ischemic stroke patients [87,88] and in asymptomatic
patients at high risk of stroke [89].

The soluble forms of other receptors related to inflammation and foam cell formation,
such as the cluster of differentiation (CD) 163, CD36, CD14, and CD63, and low-density
lipoprotein receptor-related protein 1 (LRP1), have been proposed as biomarkers for is-
chemic stroke, particularly for the atherothrombotic subtype [90–93]. In carotid plaque, the
expression levels of CD36 and CD163 are higher in vulnerable plaques and symptomatic
plaques [90,94].

sLRP1 had been postulated as being a predictive biomarker for coronary artery disease
(CAD) risk [95]. A recent study revealed that it was also independently associated with
the degree of carotid plaque inflammation measured by 18F-FGD PET in ischemic stroke
patients and predicted highly inflamed plaques with high sensitivity [96]. These results
suggest that sLRP1 is a surrogate marker of carotid plaque inflammation that may be
targeted in future therapeutic strategies.

3. Biomarkers of Disease Progression

Carotid atherosclerosis can be caused by risk factors like hypertension, diabetes,
obesity, smoking, and genetic predisposition due to their effect on LDL particles and
inflammation. Progression of carotid atherosclerosis is related to a higher risk of vascular
events compared with atherosclerosis, which remains stable over time. Unstable plaques
are characterized by showing a necrotic core with an overlying thin/ruptured cap, and
strong intraplaque inflammatory processes, such as endothelial dysfunction, macrophage
activation, oxidative stress, lipid deposition, and neovascularization. Unstable/vulnerable
plaques can be detected by imaging techniques, owing to fast progression in the degree of
stenosis and an echolucent appearance on ultrasonography [97].

Surrogate markers of progression are necessary for obtaining information and moni-
toring the disease before an ischemic stroke event occurs. These markers could help us to
prevent the disease and could lead to personalized medicines and the design of preclini-
cal assays to identify new therapies. Among the potential biomarkers of carotid plaque
progression, inflammatory and lipid biomarkers are briefly described below [98].

Among inflammatory markers, IL6 is the main candidate to be considered as an
indicator of plaque progression, whereas there is a lack of evidence concerning other
cytokines and the risk of atherosclerosis progression in patients with carotid stenosis or
ischemic stroke. The first population-based study demonstrating the role of IL-6 as an
independent predictor of plaque progression in atherosclerosis disease was the Tromso
study [99], which was conducted with a relatively small sample size. However, this study
did not reveal an association between circulating levels of IL-6 and plaque severity or
vulnerability. Nevertheless, the relationship with plaque progression was supported by a
recent and noteworthy analysis of a large population-based Cardiovascular Health Study
(CHS), which demonstrated that circulating IL-6 predicts carotid plaque severity and
vulnerability as well as plaque progression at 5 years [100]. This study demonstrated the
relationship between levels of IL-6 and high-risk plaque features associated with stroke
risk. The authors identified a cutoff point (2.0 pg/mL) as a threshold for selecting patients
who would benefit from anti-IL-6 drugs for stroke prevention.

Although lipid markers are not the focus of this review, their relationship with plaque
vulnerability and progression deserves to be briefly discussed. High-density lipoprotein
(HDL) is a lipid biomarker with properties conferring atheroprotection, such as promoting
reverse cholesterol transport and inhibiting lipoprotein oxidation [101]. Several stud-
ies have demonstrated the inverse relationship between HDL cholesterol and carotid
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atherosclerosis [102,103]. The Tromso study showed for the first time that high levels of
HDL cholesterol are inversely associated with plaque growth [104].

OxLDL is formed as a result of oxidative stress in the arterial wall and is a well-
known factor in the development of atherosclerosis by inducing inflammation and foam
cell formation [105,106]. Nishi K et al. described that high plasma and plaque oxLDL
are associated with plaque vulnerability [105], which was corroborated later, as well as
the association with the stroke outcome [107]. A recent study has reported that plasma
oxLDL levels were increased in ischemic stroke patients with carotid atherosclerosis, with
no association with imaging features of carotid vulnerability. However, electronegative
LDL (LDL(−)), a group of heterogeneous modified LDLs with increased negative charge
and inflammatory properties, was increased in those patients in association with the degree
of stenosis and with the presence of hypoechoic plaque and intraplaque neovessels [108].

Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an enzyme associated with
lipoproteins and, within LDL particles, with LDL(−) [109]. It has been expressed in the
necrotic center of the atherosclerotic plaques in macrophage-rich areas [110]. In a small
sub-study of the NASCET trial, Lp-LPA2 was increased in patients with high-grade carotid
stenosis and unstable plaque [111].

4. Pharmacological Therapies Based on Inflammatory Molecules

Besides antithrombotic therapies, the usual interventions to slow the progression of
atherosclerosis have been the control of vascular risk factors and particularly the reduction
in plasma cholesterol levels. In this regard, it has been shown that every 1 mmol/L reduc-
tion in LDLc is associated with a 20% relative reduction in future CV events. In addition,
several drugs aimed at counteracting an excessive inflammatory response have been re-
cently proposed as potential therapies for atherosclerosis and atherothrombotic ischemic
stroke. Some of them have been tested in clinical trials that suggested that aggressive
inhibition of inflammation may be a crucial therapeutic target for secondary prevention
in high-risk patients—a topic that has been covered in a few previous reviews [15,112].
The main anti-inflammatory strategies, which will be discussed throughout the present
review, based on slowing the progression of atherosclerosis to prevent ischemic stroke are
summarized in Figure 1.

Some new stroke anti-inflammatory approaches based on studies in animal models
inhibit the acute innate immune response (to limit excessive damage in the ischemic brain)
and the post-acute modulation of the adaptive immune system (to limit post-stroke compli-
cations). Antileukocyte strategies, including the blocking of adhesion molecules, have been
demonstrated to reduce ischemic brain injury in animal models. These treatments showed
longer therapeutic windows (12–24 h after stroke) than tPA and may be administered
together with reperfusion therapy [113,114]. These therapies could also be beneficial when
hemorrhagic stroke has not been discarded [115]. Specifically, ApTOLL, an aptamer that
antagonizes Toll-like receptor 4 (TLR4), was safe and associated with a reduction in mor-
tality and disability at 90 days in patients with ischemic stroke in Phase I/II randomized
clinical trial when administered within 6 h of onset in combination with endovascular
treatment [116]. Interestingly, this kind of anti-inflammatory therapies could also be useful
for preventing the development of atherosclerotic plaques to avoid a first event or an
ischemic stroke recurrence, particularly in patients with high-risk carotid plaques who are
not eligible for surgical revascularization [117].

A first line of anti-inflammatory therapy is the long-term use of broad-spectrum
agents, mainly low doses of colchicine or methotrexate. However, these agents usually
have undesirable side effects, such as the renal toxicity ascribed to colchicine. On the
other hand, studies based on inhibiting specific cytokines have shown promising but
inconclusive results. Inflammatory cytokines can be blocked by different approaches, such
as the use of soluble receptors and MAb against specific inflammatory mediators, such
as IL-1β and IL-6. CANTOS trial reported the beneficial effect on CV risk of blocking
IL-1β [118]. Unfortunately, trials assessing anti-inflammatory agents have used composite
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endpoints of CV risk and not specifically stroke caused by carotid atherosclerosis. Other
trials evaluating agents that inhibit TNF-α, CAMs, leukotrienes, secretory phospholipases,
and inflammation-associated antioxidants have been ineffective for event reduction [119].
Novel anti-inflammatory and anti-cytokine agents targeting molecules upstream of IL-1β,
such as NLR family pyrin domain-containing 3 (NLRP3) inhibition and other pathways
of innate immunity, have also been proposed [120]. Clinical trials to date involving anti-
inflammatory therapies that include stroke among clinical outcomes are summarized in
Table 1.
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Table 1. Clinical trials involving anti-inflammatory therapies that include stroke among clinical outcomes.

Drug Clinical Trial Sample Size and
Study Population Design Intervention Outcome Effect

Broad-spectrum anti-inflammatory drugs

Colchicine

LoDoCo n = 532, patients
with stable CAD

Single-center,
randomized,

observer-blinded

Colchicine
0.5 mg/day
vs. control

Acute coronary
syndrome,

out-of-hospital
cardiac arrest, or

noncardioembolic
ischemic stroke

Effective for the
prevention of

CV events

LoDoCo2 n = 5522, patients
with chronic CAD

Multicenter,
randomized,
double-blind

Colchicine
0.5 mg vs.
placebo

CV death,
spontaneous MI,
ischemic stroke

Effective for the
prevention of

CV events

COLCOT

n = 4745, patients
with CAD

randomized within
the first 30 days

after MI

Multicenter,
randomized,
double-blind

Colchicine
0.5 mg vs.
placebo

Death from CV
causes, resuscitated
cardiac arrest, MI,
stroke, coronary
revascularization

Effective for the
prevention risk

of CV events

COPS

n = 795, patients
with acute coronary

syndrome and
CAD

Multicenter,
randomized,
double-blind

Colchicine
0.5 mg vs.
placebo

All-cause mortality,
acute coronary

syndrome,
revascularization,
noncardioembolic

ischemic stroke

Improved
clinical

outcome in the
colchicine

group

CLEAR
SYNERGY

n = 7063, patients
with MI

Multicenter,
randomized,
double-blind,

double-dummy,
2 × 2 factorial

design

Colchicine
0.5 mg vs.
placebo or
Spironolac-

tone 25 mg vs.
placebo)

CV death, recurrent
MI, stroke Ongoing trial

CONVINCE

n = 2623, patients
with

noncardioembolic
ischemic stroke or

TIA

Multicenter,
randomized,
double-blind

Colchicine
0.5 mg/day

vs. usual
standard of

care

Recurrence of
vascular events Ongoing trial

CASPER

Not yet recruiting,
patients with

ischemic stroke or
TIA and

hsCRP ≥ 2 mg/L

Multicenter,
randomized,
double-blind

Colchicine
0.5 mg/day

vs. usual
standard of

care

Recurrence of
vascular events Ongoing trial

Methotrexate CIRT
n = 4786, patients
with MI and type

2 diabetes

Multicenter,
randomized,
double-blind

Methotrexate
15–20 mg vs.

placebo

CV events,
all-cause mortality,

congestive heart
failure

No results in
CV events

Minocycline MINOS
n = 60, patients

with acute ischemic
stroke

Single-center,
Open-label, dose

escalation

3, 4.5, 6, or
10 mg/kg
daily over

72 h

Safety,
pharmacokinetic,
mRS at 3 months

Safe and neuro-
protective
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Table 1. Cont.

Drug Clinical Trial Sample Size and
Study Population Design Intervention Outcome Effect

Lp-PLA2 inhibitory drugs

Varespladib VISTA-16
n = 5145, patients

with acute coronary
syndrome

Multicenter,
randomized,
double-blind

Varespladib
500 mg vs.

placebo

CV mortality, MI,
stroke, angina

No results in
recurrent CV

events and risk
of MI

IL-1β blocking drugs

Canakinumab CANTOS
n = 10,066, patients

with MI and
atherosclerosis

Multicenter,
randomized,
double-blind

Canakinumab
50, 150 or
300 mg vs.

placebo

Nonfatal MI, stroke,
CV death,

inflammatory
burden

All doses
reduced hsCRP;
but only the 150

mg dose
reduced

nonfatal MI,
stroke, or CV

death

Anakinra SCIL-
STROKE

n = 80, patients
presenting within 5
h of ischemic stroke

onset

Single-center,
randomized,
double-blind

Anakinra
100 mg vs.

placebo
mRS at 3 months

Reduction in
plasma

inflammatory
markers

associated with
worse clinical

outcome

IL-6 receptors blocking drugs

ZEUS

n = 6200, patients
with chronic kidney

disease and
hsCRP ≥ 2 mg/L

Multicenter,
randomized,
double-blind

Ziltivekimab
15 mg vs.
Placebo

CV death, nonfatal
MI, stroke Ongoing trial

ICAM-1 inhibitory drugs

Enlimomab
Enlimomab

Acute Stroke
Trial

n = 625, patients
with ischemic

stroke

Single-center,
randomized,
double-blind

Enlimomab
160 mg vs.

placebo

mRS at 3 months,
NIHSS, survival

Enlimomab
worsens stroke

outcome

Abbreviations: CAD, coronary artery disease; CV, cardiovascular; hsCRP, high-sensitivity C-reactive protein;
ICAM-1, intercellular adhesion molecule-1; IL, interleukin; Lp-PLA2, lipoprotein-associated phospholipase A2;
MI, myocardial infarction.

The conflicting results regarding anti-inflammatory therapy on vascular diseases and
particularly on stroke prevention suggest the need for future trials in which the results
should be analyzed by stroke subtypes and the use of anti-inflammatory therapies, coupled
with other approaches, including cholesterol-lowering treatment and statin therapy [119].

4.1. Broad-Spectrum Anti-Inflammatory Drugs
4.1.1. Colchicine

Colchicine is an anti-inflammatory remedy that has been used for centuries in the
prevention of inflammatory diseases. Colchicine binds to tubulin, thereby altering its
conformation. As a result, the assembly of the inflammasome is altered, leading to de-
creased levels of interleukins IL-1β and IL-18 [121]. As colchicine decreases both L-selectin
and E-selectin expression, neutrophil recruitment to endothelium is diminished as well
as the ensuing deleterious actions, such as the release of superoxide and neutrophil ex-
tracellular traps. Colchicine also prevents platelet aggregation. Therefore, it has broader
anti-inflammatory effects beyond inhibition of IL-1β and is a strong candidate as a damper
of general inflammation, exerting beneficial effects in CV medicine. To date, independent
randomized controlled trials evaluating the effect of long-term low-dose colchicine in a
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broad number of patients with acute and chronic coronary disease demonstrated that
colchicine may reduce the risk of CV death, myocardial infarction, ischemic stroke, and
ischemia-driven revascularization.

First, Nidorf et al., demonstrated that colchicine had anti-inflammatory effects in addi-
tion to those of statin and antiplatelet therapy in patients with stable coronary disease [122].
In a pilot study (LoDoCo) conducted in patients with stable coronary disease, colchicine
decreased the occurrence of unstable angina [123]. This observation was corroborated in
a larger cohort (LoDoCo2) in which colchicine diminished CV death, myocardial infarc-
tion, ischemic stroke, and ischemia-driven coronary revascularization [124]. However, in
acute coronary syndrome, colchicine has shown mixed results [121]. The COLCOT trial
powerfully assessed the clinical effects of colchicine following myocardial infarction [125].
In this trial, patients treated with 0.5 mg colchicine daily had a lower incidence of CV
death, cardiac arrest, myocardial infarction, and, especially, stroke. COLCHICINE-PCI
trial showed that the preprocedural administration of colchicine decreased IL-6 and hsCRP
when compared with placebo but did not affect enzymatic measures of infarct size [126]. In
the COPS trial, the colchicine group showed an improved clinical outcome (including less
noncardioembolic ischemic stroke) than the placebo group [127].

Overall, the above-mentioned independent randomized clinical trials conducted in
>11,000 patients with acute and chronic CV disease, followed for up to 5 years, demon-
strated that colchicine safely slows the progression of atherosclerosis and reduces the risk of
CV disease. However, they have some limitations, such as the lack of clinical or biological
markers for the selection of participants or no data regarding lipid levels or blood pressure
at enrollment. Moreover, some patients showed intolerance to colchicine (10% in the COPS
trial) and, in LoDoCo 2 and COPS trials, there was a higher incidence of non-CV death in
patients receiving colchicine, although without finding a direct association.

Other ongoing studies will provide further information about the use of colchicine in
subsets of patients with CV disease, such as the CLEAR SYNERGY study, the COLCARDIO
trial (ACTRN12616000400460), and the CONVINCE trial (NCT02898610) [121], a Phase
3 trial conducted in non-severe ischemic stroke (noncardioembolic) that evaluates the
recurrence of vascular events [128]. CASPER trial will investigate colchicine for secondary
prevention after a stroke, in patients with elevated hsCRP. Finally, the CIAFS-1 pilot trial is
investigating the effect of colchicine on reducing markers of inflammation and thrombosis in
anticoagulated atrial fibrillation patients in preparation for a Phase 3 trial for the prevention
of stroke and systemic embolism.

4.1.2. Other Broad-Spectrum Anti-Inflammatory Treatments

Besides colchicine, other anti-inflammatory treatments have been proposed for is-
chemic stroke with mixed results. In the CIRT trial, a low dose of the nonspecific anti-
inflammatory agent methotrexate failed to reduce recurrent vascular events in patients
with coronary disease [129]. Minocycline has been tested in clinical trials showing broad
anti-inflammatory and neuroprotective properties [130]. Vinpocetine, an anti-inflammatory
alkaloid that diminishes the release of inflammatory cytokines and chemokines through
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition has shown
an anti-inflammatory role in atherosclerosis and early inflammation associated with an
ischemic stroke [131]. Melatonin is another agent with potent anti-inflammatory, antiox-
idative, and neuroprotective properties. Some studies have pointed to beneficial effects on
carotid artery stenosis by diminishing endothelial damage, stabilizing arterial plaque, and
reducing cerebral ischemia/reperfusion injury [132].

4.2. Specific Anti-Inflammatory Drugs

The main specific targets proposed for stroke therapies are the cytokines TNF-α, IL-1β,
and IL-6, and the adhesion molecule ICAM-1, which will be discussed in this section. Other
molecule tributaries to be targeted are MMPs, including SB-3CT, a gelatinase inhibitor and
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ADAM17 inhibitor [133], and other specific MMP inhibitors (BB-94, BB-1101, GM6001, and
FN-439).

Some trials have targeted Lp-PLA2 by using specific antagonists (darapladib, vares-
pladib) but without showing benefit in patients with recent or stable coronary disease [134].

4.2.1. TNF-α

TNF-α is targeted by drugs such as infliximab, etanercept, and adalimumab [134].
TNF-α inhibition affects downstream inflammatory cytokines such as IL-6. Thus, TNF-α
antagonists may inhibit early stages of atherosclerosis development by downregulating
the expression of VCAM-1 and ensuing smooth muscle proliferation and adherence of
leucocytes to endothelial cells. To date, no clinical trials have assessed the potential benefit
for stroke prevention of TNF-α antagonists in patients with CV diseases.

4.2.2. IL-1β

The CANTOS trial focused on the effect of blocking IL-1β by the MAb canakinumab
in CV disease. The patients in this study had stable atherosclerosis and were on statin
therapy but with residual inflammatory risk. High doses of canakinumab promoted a 15%
reduction in major adverse CV events and a 17% reduction in major adverse CV events plus
urgent revascularization in comparison with placebo [118] and a high reduction in plasma
levels of the marker of inflammation hsCRP (concentrations of less than 2 mg/L) [135].
These effects were independent of lipid-lowering and blood pressure control. However, a
subgroup analysis of the CANTOS trial did not show benefits for stroke prevention [118].
This lack of effect in stroke may be because of non-atherothrombotic causes of stroke.

Agents proposed for counteracting the action of IL1-β, although not currently ap-
proved for vascular treatment, include recombinant IL-1 receptor antagonist (anakinra),
sIL-1 receptor chimeric fusion protein (rilonacept), and oral NLRP3 inflammasome in-
hibitors, which inhibit the formation of active IL-1β [136]. Anakinra reduces the release
of hsCRP, but this compound seems to lead to a dual IL-1α and IL-1β inhibition and may
therefore not be optimal for atheroprotection or providing the best safety balance between
IL-1 activation and inhibition [137].

4.2.3. IL-6

The recent and noteworthy study of Kamtchum-Tatuene et al. demonstrated the
relationship between levels of IL-6 and high-risk plaque features associated with stroke
risk [100]. The authors identified a cutoff point (2 pg/mL) as a threshold for selecting
patients who would benefit from anti-IL-6 drugs for stroke prevention. Targeting IL-6 with
agents may cause both membrane-bound and circulating IL-6 receptors to be blocked. This
may help to minimize endothelial dysfunction and the pro-inflammatory effect of IL-6,
being useful for not only atherothrombotic stroke but atherosclerosis prevention as well.

The CANTOS trial helped define the inflammatory pathway from IL-1β to IL-6 to
hsCRP as a central target for atheroprotection. Indeed, further analyses showed that the
effect of canakinumab was mediated by the reduction in circulating levels of IL-6 [138,139],
an observation that is supported by genetic studies [140,141]. Together, this evidence
suggests that targeting IL-6 with MAb may be an adjuvant treatment for preventing
ischemic stroke in patients with carotid atherosclerosis.

Ziltivekimab is an IL-6 ligand MAb that was developed specifically for atherosclerosis
in patients with chronic kidney disease [142]. In the RESCUE trial, (hsCRP), Lp-PLA2,
and lipoprotein (a) (Lp(a)) levels were reduced in patients with ziltivekimab, whereas
HDL cholesterol was not affected [143]. Following on from these results, an ongoing trial,
ZEUS, will compare ziltivekimab with placebo in patients with chronic kidney disease
and elevated hsCRP to determine if the anti-inflammatory approach of directly reducing
circulating IL-6 reduces CV event rates [142].

Tocilizumab, an IL-6 receptor antibody, has shown conflicting results regarding CV
disease prevention. In patients with rheumatoid arthritis, tocilizumab decreased hepatic
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LDL receptor expression [144] and induced elevations in LDL cholesterol, as well as pro-
moted anti-inflammatory properties in HDL [145], improved endothelial dysfunction [146],
and decreased Lp(a) levels [147].

Again, to date, no clinical trials have addressed directly the potential benefit of IL-6
inhibitors for stroke prevention.

4.2.4. ICAM-1

The recruitment of leukocytes to the endothelium of the carotid artery triggers the de-
velopment of atherosclerosis. Three therapies based on counteracting the role of leukocytes
have been developed and tested in clinical trials: a humanized antibody to the CD11b/CD18
integrin (Hu23F2G or LeukArrest) [144]; the recombinant neutrophil inhibitory factor UK-
279 that binds to CD11b/CD18 [148]; and mainly a MAb against ICAM-1 (enlimomab,
R6.5). Unfortunately, the outcome of these clinical trials was not what was desired, owing
to side effects or a lack of efficacy that limited their clinical translation.

Enlimomab is a murine IgG2a MAb directed against extracellular domain 2 of hu-
man ICAM-1 [149]. Previous preclinical studies showed that enlimomab prevented brain
damage [150]. Unfortunately, in the enlimomab acute stroke trial [73], enlimomab adminis-
tration within 6 h of stroke onset did not benefit patients.

4.3. Ischemic Tolerance and Immunomodulation

Another alternative strategy related to the counteraction of inflammation is im-
munomodulation. The aim of this strategy is the suppression of the deleterious effects of
inflammation while improving its protective potential. Ischemic tolerance is one of the
approaches to achieving immunomodulation.

Ischemic tolerance consists of preconditioning an organ, such as the brain, with a
subthreshold level of pathologic stimulus so it acquires protection. Clinical evidence
indicates that preconditioning may occur naturally after transient ischemic attacks and
mild strokes in humans [151]. It has been demonstrated that a short nondamaging ischemic
insult protects the brain from a subsequent damaging ischemic stimulus [152,153]. Likewise,
endotoxin tolerance induced by low doses of lipopolysaccharide protects the brain from
subsequent ischemic damage [154]. The molecular mechanisms involved in endotoxin
tolerance are closely parallel to ischemic tolerance. There is a modulation of the balance of
pro-and anti-inflammatory signaling, leading eventually to the shift of toll-like receptors
(TLR) 4 signaling the release of IFN-β, which suppresses the induction of inflammatory
cytokines and the recruitment of inflammatory cells.

Depending on the preconditioning stimulus and the conditions, tolerance can be
(1) rapid (within minutes), induced by disruption of lipid rafts, changes in membrane
microdomains mediating receptor-induced signaling pathways and leading to the inhibition
of TLR/cytokine pathways; and (2) a delayed form of tolerance, in which protection is
acquired after several hours or days, as de novo protein synthesis is required. In the latter,
the preconditioning stimulus first activates the TLR/cytokine inflammatory pathways,
triggering both inflammation and upregulation of the feedback inhibitors of inflammation
(signaling inhibitors, decoy receptors, and anti-inflammatory cytokines) [155]. Cerebral
preconditioning counteracts the acute inflammatory response that exacerbates ischemic
brain injury. However, preconditioning seems to be more suitable for stroke prevention in
high-risk patients than in acute stroke patients, since “tolerance” needs to be induced prior
to injury [156]. In this context, it would also be useful before surgical procedures [155].

Other strategies focused on immunomodulation are orientated to shifting the immune
response from a Th1- to a Th2-type response. One strategy is exposure to myelin antigens
or E-selectin, which promotes a protective Th2 response [157]. The administration of
recombinant T-cell receptor ligands also suppresses the infiltration of inflammatory cells
and provides neuroprotection [158]. Finally, the induction of the protective roles of Treg
has been proposed [159].
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Although the decreased inflammatory response to ischemic injury may be beneficial
in the acute phase of the stroke, it may compromise repair counteracting mechanisms and
worsen infectious complications and long-term outcomes [156]. In addition, all these im-
munomodulatory strategies are in a very preliminary phase. Further studies are necessary
to explore the consequences and the short- and long-term benefits of stroke prevention.

5. miRNAs as Regulators of Atherosclerosis and Ischemic Stroke

MicroRNAs (miRNAs), a class of noncoding RNA, have emerged as critical regulators
of gene expression, acting predominantly at the posttranscriptional level. This large family
of short (22-nucleotide) noncoding RNA binds to the 3′ untranslated (3′UTR) region of
mRNA, thereby repressing gene expression. Since their discovery in 1998, thousands of
miRNAs have been described in both healthy and pathological states. The implication of
diverse miRNAs during the different processes of atheroma plaque formation has been
shown during the last two decades. It is well known and has been extensively described,
how and which miRNAs regulate vascular macrophage, endothelial, and smooth muscle
cell dysfunctions during atherosclerotic plaque formation in preclinical models [160–166],
although this is not the focus of the present section.

Interestingly, there is a large number of clinical studies that relate circulating miRNA
expression profiles to ischemic stroke, although from different approaches. For example,
several works study the presence of miRNAs in carotid arteries [167–170]. Others are
longitudinal studies that compare the miRNA expression profile between patients with an
incident stroke (ischemic, hemorrhagic, or unspecified) vs. no stroke [171,172]. However,
this section of the review is focused on those studies that compare the levels of different cir-
culating miRNAs between asymptomatic ICA stenosis (ICAS) patients and healthy controls,
as shown in Table 2. Some of these miRNAs differentially expressed in the circulation might
be used as biomarkers of the progression of the diseases leading to ischemic stroke and
their levels may help to identify patients with high risk of ischemic stroke who are eligible
for carotid endarterectomy. Specifically, serum expression levels of miR-106b-5p [173],
miR-92a [174], miR-19a-3p [175], miR-483-5p [176], miR-186-5p [177], miR-27b [178], and
miR-342-5p [179] were found to be upregulated in asymptomatic ICAS patients versus
controls, showing relatively high sensitivity and specificity in differentiating them from
healthy subjects. Additionally, logistic regression analyses revealed an association between
these miRNAs and the patients’ degree of carotid stenosis, as well as other vascular risk
factors, such as diabetes, hypertension, and dyslipidemia. This evidence may provide some
support for the involvement of these miRNAs in the development of carotid atherosclerosis.

To further evaluate the predictive value of miRNAs for the occurrence of cerebral
ischemic stroke, the enrolled asymptomatic patients were followed up for 5 years. The
primary endpoint was the occurrence of ipsilateral ischemic stroke, TIA, or sudden death.
The results demonstrated that high levels of miR-106b-5p, miR-92a, miR-19a-3p, miR-
483-5p, miR-186-5p, miR-27b, and miR-342-5p in serum could be used as independent
predictive factors associated with the risk of the future onset of cerebrovascular events
in this kind of patient [173–179]. Additionally, in another study using peripheral blood
exosomes from patients with plaque progression, Dolz et al. stated that the expression of
miR-199-3b, miR-27b-3, miR-130a-3p, miR-221-3p, and miR-24-3p was upregulated [180].

In line with this, similar studies have determined that the levels of serum miR-206 [181],
miR-9-5p [182], miR-637 [183], miR-503-5p [184], and miR-486-5p [185] were significantly
reduced in asymptomatic ICAS patients compared with those in healthy individuals.
Their diagnostic accuracy for the patients was high. Furthermore, the downregulation
of miR-206, miR-9-5p, and miR-637 in the patients had predictive value for the incidence
of cerebrovascular events within 5 years [181–183]. Interestingly, an in vitro proliferation
assay indicated that overexpression of miR-503-5p significantly inhibited the proliferation
of VSMCs, thus improving atherosclerosis [184] and that miR-486-5p prevented endothelial
dysfunction in association with an anti-inflammatory and antioxidative effect by targeting
the nuclear factor of activated T cells 5 (NFAT5) [185].
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Thus, it is clear from the number of studies published, that there is a high level
of interest in deciphering the use of miRNAs as biomarkers or therapeutic targets for
stroke, but it is also true that the design of these studies has some limitations that need
to be addressed—for instance, further investigations with a larger study population are
needed to confirm the role of miRNAs; some studies did not include healthy controls; and
during the follow-up period, lifestyle and other factors of patients were not monitored,
leading to poor prognosis. However, all these studies suggest the role of specific circulating
miRNA expression profiles as a noninvasive biomarker of carotid plaque. In this regard,
the identification of specific miRNAs is essential for developing novel diagnostic and
therapeutic tools and strategies, as will be discussed in the next section.

Table 2. Circulating miRNAs have been reported to have a high diagnostic value in identifying
asymptomatic ICAS patients from healthy controls and predicting the occurrence of cerebral is-
chemic events.

miRNA Study
Population

Up- or
Downregulation

Diagnostic Value:
ROC Analysis

Predictive Value:
Cox Regression

Analysis (95% CI)

Significant
Correlations Ref.

miR-106b-5p 58 patients vs.
61 controls ↑

AUC 0.911
SE 89.7%, SP 83.6%
(cutoff value 0.198)

HR 5.431
CI (1.592–18.520)

p = 0.007

Dyslipidemia,
hypertension, and

carotid stenosis
[173]

miR-92a 122 patients vs.
62 controls ↑

AUC 0.895
SE 88.5%, SP 79%

(cutoff value 1.285)

HR 2.971
CI (1.230–7.173)

p = 0.015

Fasting blood
glucose, TC,

hypertension, and
carotid stenosis

[174]

miR-19a-3p 101 patients vs.
98 controls ↑ AUC 0.905

SE 80.2%, SP 86.7%

HR 8.507
CI (2.239–32.328)

p = 0.002
Carotid stenosis [175]

miR-483-5p 128 patients vs.
76 controls ↑

AUC 0.910
SE 80.5%, SP 89.5%
(cutoff value 0.705)

HR 2.670
CI (1.099–6.484)

p = 0.030

Diabetes,
dyslipidemia, and

carotid stenosis
[176]

miR-186-5p 67 patients vs.
60 controls ↑

AUC 0.919
SE 89.6%, SP 81.7%
(cutoff value 1.221)

HR 4.190
CI (1.166–15.061)

p = 0.028

Dyslipidemia,
hypertension, and

carotid stenosis
[177]

miR-27b 71 patients vs.
58 controls ↑

AUC 0.902
SE 77.5%, SP 94.8%
(cutoff value 1.491)

HR 5.067
CI (1.170–21.943)

p = 0.030

TC, hypertension,
and carotid

stenosis
[178]

miR-342-5p 92 patients vs.
86 controls ↑ AUC 0.905

SE 85.9%, SP 80.2%

HR 5.512
CI (1.370–22.176)

p = 0.016

Serum IL-6 and
TNFα

inflammatory
factors

[179]

miR-206 105 patients vs.
101 controls ↓

AUC 0.939
SE 86.7%, SP 86.14%
(cutoff value 0.754)

HR 0.046
CI (0.005–0.431)

p = 0.007
Carotid stenosis [181]

miR-9-5p 88 patients vs.
86 controls ↓

AUC 0.910
SE 80.7%, SP 87.2%
(cutoff value 0.72)

HR 0.239
CI (0.087–0.652)

p = 0.005
Hypertension [182]

miR-637 97 patients vs.
90 controls ↓

AUC 0.919
SE 85.6%, SP 83.3%
(cutoff value 0.759)

HR 0.073
CI (0.017–0.313)

p ≤ 0.001
Carotid stenosis [183]

miR-503-5p 62 patients vs.
60 controls ↓

AUC 0.817
SE 83.3%, SP 79.03%
(cutoff value 0.810)

N/A Diabetes and
arterial stenosis [184]

miR-486-5p 91 patients vs.
87 controls ↓

AUC 0.921
SE 82.4%, SP 89.7%
(cutoff value 0.692)

N/A Carotid stenosis [185]

Abbreviations: AUC, area under curve; CI, confidence interval; HR, hazard ratio; IL-6, interleukin-6; N/A, not
applicable; ROC, receiver operating characteristic; SE, sensitivity; SP, specificity; TC, total cholesterol; TNFα,
tumor necrosis factor alpha.
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6. Putative Strategies Based on miRNA

In preclinical studies, therapies for regulating the activity of miRNAs, inhibiting or
overexpressing them, are typically used. Thanks to the development of nanotechnologies,
they are emerging as the next frontier in treatment options for different pathologies, such
as cancer and atherosclerosis. However, the translation of these miRNA-based therapies
into clinical practice has been hampered by different issues associated with the specific
delivery, their tolerability, efficacy, and specificity. These issues are the reason why most
clinical trials have been terminated. A few clinical trials, the majority in the field of cancer,
had positive results. A first-in-human Phase I study assessed the maximum tolerance dose,
pharmacokinetics, safety, and clinical activity of a liposomal miR-34a mimic (MRX34) in
patients with advanced solid tumors [186], but it was closed down early due to adverse
reactions in patients [187]. The MesomiR-1 is another Phase I clinical trial for malignant
pleural mesothelioma treatment in which patients were treated with miR-16 mimic [188].
Related to the CV field, the first clinical trial in heart failure patients using CDR132L
to target miRN-132-3p (NCT04045405) was recently described. This Phase 1b clinical
study was well tolerated and safe, and the pharmacodynamic findings were encouraging.
Interestingly, levels of miR-132 in the plasma of patients were reduced and there were some
functional cardiac improvements. However, one limitation of this study was the small
number of patients [165].

Nine ongoing clinical trials are using miRNA-based therapies but related to other diseases,
such as type II diabetes and nonalcoholic fatty liver disease (NCT03225846 and NCT04617860),
hepatitis C virus infection (NCT01646489, NCT01727934, NCT01872936, NCT01200420), the
treatment of keloid (pathological fibrosis) (NCT02603224 and NCT03601052), or Huntington’s
disease (NCT04120493). It is clear that further investigations in nonhuman primates and
future clinical studies are needed to overcome the challenges of translational miRNA-based
therapies into clinical applications for the prevention of stroke or the prospective use of miRNA
modulation in carotid atherosclerosis.

7. Other Putative and Complementary Strategies

Apart from the anti-inflammatory therapies described and novel therapies based on
miRNA, other strategies include lipid-lowering therapies beyond statins, antibiotic drugs,
and natural/nutritional medicine.

Lipids play a pivotal role in atherothrombotic stroke and they are potentially important
targets, as previously discussed. Therefore, the use of any targeted anti-inflammatory agent
should be considered in parallel with statin therapy and/or novel lipid-lowering therapies.
Owing to the well-described interactions between lipids and innate immunity, it is very
feasible that the overall clinical benefit deriving from intensive combination therapy will
be enhanced compared with individual therapy, as proposed by Ridker 2020 [119].

Besides statins, other lipid-lowering agents show anti-inflammatory properties [189].
Ezetimibe therapy, which blocks the intestinal absorption of cholesterol, not only lowers
LDLc but also enhances the reduction in hsCRP promoted by statin therapy. Importantly,
in the FOURIER study, in patients with established atherosclerosis treated with statins,
the inhibition of PCSK9, involved in increasing the expression of the LDL receptor, with
evolocumab reduced the risk of ischemic stroke [190]. In addition, two of the newest
lipid-lowering medications for the prevention and treatment of cardiovascular disease that
are in Phase III clinical trials are bempedoic acid and inclisiran [191]. Other future therapies
aiming to reduce the modification of LDL and/or to improve the qualitative properties
of LDL and HDL may be very valuable in preventing carotid atherosclerosis progression
and complications. In this regard, the putative use of apolipoprotein (apo)-based mimetic
peptides to reduce atherosclerosis [192] is outstanding.

It has been hypothesized that some chronic bacterial infections may be associated with
the development of atherosclerosis and ensuing complications, such as myocardial infarc-
tion and stroke. These bacterial infections seem to play a role in the initiation, progression,
and destabilization of atherosclerotic plaques. Supporting epidemiological studies reported
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the presence of Chlamydia pneumoniae within carotid plaque and associations between
chronic infection with C. pneumoniae and stroke risk [193,194]. Also, chronic periodon-
titis has been linked to carotid plaque destabilization. In this context, sub-antimicrobial
dosages of antibiotics have demonstrated benefits in inhibiting inflammation. A study by
Sander et al., showed a protective effect of roxithromycin treatment on the progression of
arteriosclerosis [195]. Once again, a better knowledge of plasmatic biomarkers associated
with chronic infection/immune response will probably help in selecting patients who are
candidates for receiving antibiotic drugs.

Recently, increasing interest in the use of natural medicines for stroke has emerged.
Some natural compounds seem to elicit a positive effect on microcirculation in the brain
by reducing oxidative stress and inflammation. Many of those studies are conducted in
animal models of ischemic stroke, particularly in the acute phase of cerebral ischemia, as
extensively reviewed by Tao et al. [196]. Several natural medicines are antioxidants that
regulate oxidative stress-related signaling pathways and, also, exert anti-inflammatory
effects. Therefore, they may be useful as a preventive therapy, particularly in ischemic
stroke associated with carotid atherosclerosis. Moreover, many stroke patients are elderly
and with comorbidities, such as hypertension and diabetes. In this regard, some studies
have shown the therapeutic effect of natural medicine on stroke and its comorbidities,
such as a study revealing that Chinese herbal medicine may reduce the risk of stroke in
patients with Parkinson’s disease [197]. However, natural medicine has limitations, mainly
differences between formulations and batches of the preparations, and the lack of success
in its translation into clinical settings. The latter is likely because the preclinical studies are
usually performed in healthy young adult rodents whereas stroke predominantly occurs in
the aging population.

A basic potential strategy for primary prevention is based on nutrition and physi-
cal exercise, whose role in cardiovascular disease and stroke has been widely reviewed
previously [198,199]; thus, they will not be discussed in the present review.

The intake of probiotics and prebiotics also seems to play an important role in prevent-
ing and delaying the development of CV disease, an effect partly mediated through the
modulation of the levels of LDLc and hsCRP. The underlying mechanisms of their protec-
tive effect emerge from promoting changes in gut microbiota and modulating inflammatory
responses [200].

8. Conclusions and Future Investigations

In summary, several anti-inflammatory strategies have been suggested as therapies
in the prevention of ischemic stroke, particularly of the atherothrombotic subtype, where
inflammation plays a major role. Broad-spectrum anti-inflammatory therapies used long-
term in low doses are well-known candidates. In this context, colchicine has been the focus
of several clinical studies with controversial results, mainly due to a lack of specificity
and ensuing deleterious collateral effects. On the other hand, other therapies have been
directed against specific inflammatory molecules (cytokines, adhesion molecules) by using
monoclonal antibodies. Although these strategies showed promising results in preclinical
studies with animal models, they failed to prevent ischemic stroke in clinical trials. Part
of the lack of success is likely due to the complexity of the immune response. In addition,
animal models do not replicate exactly the complexity of pathologies, such as stroke,
especially if the studies are conducted in young animals.

Other interesting and promising therapies based on counteracting inflammation have
emerged. Some of them are based on promoting immunomodulation or the use of miRNA
mimics. They are in a much more preliminary stage, a fact that hampers their implementa-
tion in clinical practice but deserves future investigations.

Therefore, although some anti-inflammatory and immunomodulatory therapies have
been suggested for the prevention of atherothrombotic ischemic stroke, they are far from
being available for clinical use. To choose the best candidate to target stroke, future studies
addressing the inflammatory/immune mechanisms leading to vulnerable carotid plaque
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are essential. Moreover, an appropriate strategy would be targeting not only a single
inflammatory cell/molecule but several ones, in combination with lipid-lowering therapies.
Future studies should take into account the specific stroke subtypes, considering particu-
larly ischemic stroke associated with carotid atherosclerosis, in which anti-inflammatory
therapies may show the strongest benefit.

Although several limitations hamper the achievement of an effective target for therapy,
the protective effects of anti-inflammatory strategies in preclinical models justify additional
investigations to achieve a successful clinical translation. In this context, further studies are
necessary to ascertain which patients may benefit from anti-inflammatory agents and how.
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