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Abstract: Systemic sclerosis (SSc) is an autoimmune disease associated with increased mortality and
poor morbidity, impairing the quality of life in patients. Whilst we know that SSc affects multiple
organs via vasculopathy, inflammation, and fibrosis, its exact pathophysiology remains elusive.
Microvascular injury and vasculopathy are the initial pathological features of the disease. Clinically,
the vasculopathy in SSc is manifested as Raynaud’s phenomenon (reversible vasospasm in reaction
to the cold or emotional stress) and digital ulcers due to ischemic injury. There are several reports
that medications for vasculopathy, such as bosentan and soluble guanylate cyclase (sGC) modulators,
improve not only vasculopathy but also dermal fibrosis, suggesting that vasculopathy is important
in SSc. Although vasculopathy is an important initial step of the pathogenesis for SSc, it is still
unclear how vasculopathy is related to inflammation and fibrosis. In this review, we focused on the
clinical evidence for vasculopathy, the major cellular players for the pathogenesis, including pericytes,
adipocytes, endothelial cells (ECs), and myofibroblasts, and their signaling pathway to elucidate the
relationship among vasculopathy, inflammation, and fibrosis in SSc.

Keywords: scleroderma; Raynaud; systemic sclerosis; vasculopathy; inflammation; fibrosis;
pathogenesis; autoimmunity

1. Introduction

Systemic sclerosis (SSc) is an autoimmune disease that is characterized by microvascu-
lar injury, the dysregulation of adaptive and innate immunity, and the aberrant activation
of fibrotic signaling pathways affecting the skin and internal organs [1]. Whilst endothelial
dysfunction and widespread microvasculopathy are the hallmark of SSc, large arteries
are also increasingly recognized to be part of SSc contributing to coronary artery disease
and accelerated atherosclerosis independent of traditional cardiovascular risk factors [2].
Arterial stiffness and damage to elastin fibers were shown to contribute to macrovascu-
lar involvement, together with heart valve involvement, thus contributing to increased
mortality and poor morbidity and negatively impacting the quality of life in patients [3–9].
The common cause of death before the advent of established treatments was scleroderma
renal crisis (SRC), but pulmonary fibrosis and pulmonary arterial hypertension (PAH) are
currently the leading causes of mortality in patients with SSc [7,10,11]. Clinical features of
SSc include Raynaud’s phenomenon; skin sclerosis; calcinosis; and gastrointestinal, joint,
pulmonary, cardiac, and renal involvement [12]. Clinically, SSc can be classified into diffuse
(dcSSc) and limited cutaneous SSc (lcSSc) based on the extent of skin sclerosis [13].

Although SSc classification by cutaneous involvement has discriminatory value in
the prognostication of SSc patients, it is limited by the varied, heterogeneous, and over-
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lapping clinical features between the two subsets. In addition, there is a subset called sine
scleroderma, in which the patients have no cutaneous involvement but have internal organ
manifestations [14]. Furthermore, a subset of patients may also develop overlap syndromes
with other connective tissue diseases, e.g., polymyositis and systemic lupus erythemato-
sus [15]. Hence, there is a need to develop a more granular stratification system that could
distinctly segregate the different subsets of patients based on pathogenetically homogenous
subsets. This would lead to improved prognostication and therapeutic approaches for a
better clinical outcome.

In this article, we review the complex pathogenesis of SSc, with particular focus on
the origin of fibrosis, as well as its complex interlink with vasculopathy. We also highlight
the unmet need for future studies to further untangle the etiopathogenesis of SSc by
integrating clinical features with holistic multi-omic approaches. A deeper understanding
of etiopathogenesis could lead to the identification of novel therapeutic targets, as well as
prognostic and therapeutic clinical biomarkers, towards precision medicine and improved
clinical care.

2. Vasculopathy as an Initial Step in SSc Pathogenesis

Endothelial injury is an important initial step in the pathogenesis of SSc. Endothelial
dysfunction, apoptosis, perivascular inflammation, and platelet aggregation are often found
in patients with SSc prior to the onset of disease [16–18]. In most SSc patients, Raynaud’s
phenomenon (reversible vasospasm of the digits in reaction to the cold or emotional stress)
typically appears first before skin sclerosis or involvement of internal organs [19]. The
manifestation of Raynaud’s phenomenon and vasculopathy in SSc patients is paralleled
by abnormal changes in nailfold capillaries and aberrant immune activation [20,21]. The
progressive microvascular damage in the nailfold of patients with Raynaud’s phenomenon
predicts the development of definite SSc, suggesting the significant association between
early vasculopathy and SSc [19,22]. In addition to the onset of disease, nailfold capillaro-
scopic pattern and morphology are significantly associated with the severity of both lung
and skin fibrosis [23–26].

3. Autoimmunity Link with Vasculopathy
3.1. Clinical Evidence

SSc-specific autoantibodies have been described as risk factors for certain organ man-
ifestations, including vascular manifestations. For example, anti-RNA polymerase III
antibody is associated with a higher risk of developing gastroesophageal vascular ectasia,
PAH, and scleroderma renal crisis [27–30]. Anti-centromere anti-Th/To, anti-U1 ribonucleo-
protein (RNP), and anti-U3 RNP antibodies are associated with a higher risk of PAH [31,32].
In their in vitro studies, Raschi et al. demonstrated the pathogenic role of SSc-specific
autoantibodies (anti-Scl70, anti-centromere, and anti-Th/To) embedded in the immune
complex in mediating endothelial damage [33], with differential cytokine expression medi-
ated by different autoantibodies. Anti-endothelial cell antibody was previously shown to be
associated with digital infarcts and PAH in SSc [34]. The pathogenic role of autoantibody in
mediating vasculopathy has been recently demonstrated by Liu et al., as they conducted an
in vitro study to investigate the role of autoantibody in connective-tissue-disease-associated
PAH [35]. They found that anti-endothelial cell antibodies increased the expression of adhe-
sion molecule ICAM-1 (a marker of endothelial cell (EC) activation) and the production of
chemokine RANTES (important chemoattractant for T cells and monocytes) [35]. This study
further supports the pathologic function of autoantibody in mediating auto-inflammatory
processes, leading to the clinical manifestation of vasculopathy. The autoantibody is likely
to be produced by abnormal effector cells; the loss of self-tolerance of B cells could result in
the production of autoantibodies [36,37].

The association between the circulating immune cells of patients with SSc and vascu-
lopathic manifestations suggests the role of autoimmunity in SSc [31,34,35,38]. Zhang et al.
performed a bioinformatic analysis of gene expression profile data, obtained from the gene
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expression database to compare the immune signatures across lcSSc patients with PAH
and those without PAH, and they observed distinct patterns of immune signatures [38].
A pronounced positive correlation of innate immune cell subsets (monocytes and neu-
trophils) was noticed in lcSSc patients with PAH, as compared to those without PAH [38].
Furthermore, there was an observed trend of increasing positive correlations between
adaptive immune subsets (CD8+ T cells and MAIT (mucosal-associated invariant T) cells)
and the innate subsets (dendritic cells and natural killer cells) in lcSSc patients with PAH,
as compared to those without PAH [38]. More recently, the role of MAIT cells in SSc and
specifically in relation to PAH has been highlighted. MAIT cells, mostly located in mucosal
tissues and the liver, are innate-like lymphocytes that have cytotoxic activity and produce
proinflammatory cytokines. Peripheral blood MAIT cells were found to be lower in SSc
patients than in healthy controls [39,40]. As MAIT cells have the capability of migrating to
the site of tissue inflammation, it is possible that the reduced number reflected the recruit-
ment to the site of inflammation [41]. Interestingly, lcSSc patients with PAH had a higher
proportion of peripheral blood MAIT cells than healthy controls [38]. These contradictory
results could be due to the inhibitory effects of glucocorticosteroid on MAIT cells in other
studies and the complex role of MAIT cells in SSc that remains to be elucidated. It is
plausible that the circulating immune cell population may play a pathogenic role in the
disease pathogenesis underlying vasculopathy. More studies are needed to understand
the contribution of innate and adaptive immune subsets in the pathophysiology of SSc, in
relation to vasculopathy.

Additionally, medications used for vasculopathy, such as bosentan, clinically improved
the modified Rodnan Skin Score (mRSS), although the findings of these studies should
be interpreted with caution as the sample size of these open-label studies was small, and
the patients were cotreated with other immunosuppressive medication [42,43]. Preclinical
in vitro and in vivo studies have demonstrated the direct anti-fibrotic efficacy of soluble
guanylate cyclase (sGC) modulators on different fibrotic diseases, including SSc [44]. In
a recent phase II clinical trial of riociguat, a sGC stimulator and vasodilator, whilst the
primary endpoint of mRSS was not met, the subgroup analysis showed that those with
positive anti-RNA polymerase III antibody and negative anti-Scl70 antibody, and with
higher baseline mRSS showed significant improvement in mRSS (RISE trial) [45]. The dis-
tinct clinical outcome in patients with different autoantibody profiles suggested potentially
different pathogenic roles and inflammatory mediators targeted by sGC stimulators. Last
but not least, in vitro studies with sildenafil, another medication for vasculopathy, either as
monotherapy or in combination with sGC activators, also showed an improvement in the
fibrotic phenotype [46,47].

3.2. Immunopathogenesis and Interlink with Fibrosis and Vasculopathy

Vasculopathy has been hypothesized to trigger inflammation and fibrosis in SSc. The
activation and apoptosis of ECs were found to be mediated by IL-6, suggesting its major
role in the early stage of SSc. Indeed, anti-IL-6 receptor antibody tocilizumab improved
skin fibrosis in a phase II trial, albeit not statistically significant [48]. Further evidence of the
link between immune cell activation and vasculopathy comes from a recent study in which
an expansion of angiogenic T cells was observed in SSc patients with severe peripheral
vascular complications [49].

Disruption to T-cell homeostasis has been suggested in SSc. Reduced regulatory T
cells (Tregs) have been demonstrated in the skin lesions and peripheral blood of patients
with SSc [50,51]. Immune polarization in SSc patients was shown to be distinct in different
disease stages and statuses [52]. Th2 immune polarization was closely associated with
disease exacerbation, while shifts from Th2 to Th1 were observed in parallel with disease
duration [52]. In addition, Th17 cells and secreted IL-17 have also been suggested to play
an important role in SSc.

The expression of cell adhesion molecules on inflammatory cells and ECs plays a
pivotal role in immune polarization. In the peripheral blood mononuclear cells (PBMCs) of
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SSc patients, the expression of adhesion molecules involved in the tethering to EC and skin
homing was elevated [53]. For example, L-selectin, involved in initial tethering to ECs, as
well as P-selectin ligand-regulating leukocyte rolling on ECs and T-cell homing to the skin,
were elevated, suggesting the ability of SSc inflammatory cells to infiltrate into injured
tissues [53]. In the bleomycin-treated mice model, L-selectin and ICAM-1 were shown to
regulate Th2 and Th17 cell infiltration, while P-selectin and E-selectin were demonstrated
to regulate Th1 cell infiltration [54].

Many studies have found evidence of monocyte/macrophage activation in the fi-
brotic process, with profibrotic M2 macrophage being the prominent player [55–57]. M2
macrophages could secrete IL-13, and the macrophages could also lead to the activation
of T cells, which could lead to the production of IL-13, which is profibrotic [58,59]. An-
other inflammatory mediator of M2 macrophage appears to be IL-6, as M2 macrophage
differentiation blockage leads to the reduced secretion of IL-6 [58]. Other cells that produce
IL-6 include B effector cells, which have a proinflammatory role [60]. There is a shift in the
B-cell homeostasis in favor of more B effector cells and fewer regulatory B cells [60]. Future
studies are needed to identify the trigger of this shift. The dysregulation of immune cells
is complex, and emerging lines of evidence highlight the roles of plasmacytoid dendritic
cells, mast cells, neutrophils, and innate lymphoid cells in immunopathogenesis, as well as
fibrosis and vasculopathy [58].

4. The Origin of Fibrosis and Interlink with Vasculopathy
4.1. Contribution of Pericytes to Fibrosis and Vasculopathy

Pericytes are heterogenous perivascular cells mainly residing in the precapillary, capil-
lary, and postcapillary microvasculature (Figure 1) [61]. These cells closely communicate
with endothelial, vascular smooth muscle cells, and collagen-producing myofibroblasts
for the homeostasis of the vasculature and skin, including vascular permeability, angio-
genesis, and blood flow [62]. Although pericytes have been studied extensively in other
pathological processes, the current understanding of the role of pericytes in SSc is lim-
ited. Pericytes differentiate from myeloid progenitors by transforming growth factor beta
(TGF-β), a profibrotic cytokine during development in the skin [63]. In adult skin in vivo,
the stimulation of pericytes by TGF-β and platelet-derived growth factor beta (PDGF-β)
promotes angiogenesis and the differentiation of pericytes to fibroblasts, suggesting that
collagen-producing mesenchymal cells in SSc may be originally from pericytes [64]. This
hypothesis is further supported by the overlapping cellular markers of pericytes and my-
ofibroblasts in SSc, such as alpha-smooth muscle cell actin (αSMA), fibronectin (FN), and
Thy-1 [65].

How exactly vasculopathy leads to the activation of pericytes is still elusive. Pericytes
in immunohistology of skin biopsy samples of patients with early SSc overexpressed PDGF
and PDGF receptors, but this was not observed in skin immunohistology from patients
with Raynaud’s phenomenon without skin involvement [66]. This result suggests that
there might be a phenotypic change in pericytes in relation to vasculopathy in the early
pathogenesis of SSc, which later contributes to the development of fibrosis. Indeed, the
inhibition of the PDGF signaling pathway attenuates collagen deposition and fibroblast
proliferation in the skin, demonstrating that the phenotypic shift in pericytes towards the
PDGF signaling pathway is critical for fibrosis [67].
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Figure 1. The origin of skin fibrosis in systemic sclerosis. Initial injuries in endothelial cells lead to 
the recruitment and activation of immune cells, including T cells, B cells, macrophages, and neu-
trophils. The activation of the immune cells promotes the production of proinflammatory cyto-
kines, which subsequently activate the potential precursors of extracellular matrix (ECM)-produc-
ing myofibroblasts, such as pericytes, resident fibroblasts, endothelial cells, or adipocytes. The 
morphological change in the myofibroblasts and ECM production induce tissue remodeling and 
skin thickening. The image was created with BioRender.com. 
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is reduced in the vascular endothelium of SSc patients [69,71]. The main source of ET-1 is 
EC, and ET-1 is a regulator of fibrotic responses, smooth muscle cell proliferation, and 
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suggesting that ET-1 is not only important for vasculopathy but also for skin fibrosis [71–
73]. One of the key regulators of ET-1 and NO signaling pathways is TGF-β1 [74]. The 

Figure 1. The origin of skin fibrosis in systemic sclerosis. Initial injuries in endothelial cells lead to the
recruitment and activation of immune cells, including T cells, B cells, macrophages, and neutrophils.
The activation of the immune cells promotes the production of proinflammatory cytokines, which
subsequently activate the potential precursors of extracellular matrix (ECM)-producing myofibrob-
lasts, such as pericytes, resident fibroblasts, endothelial cells, or adipocytes. The morphological
change in the myofibroblasts and ECM production induce tissue remodeling and skin thickening.
The image was created with BioRender.com.

4.2. Signaling Pathways Involved in Vasculopathy and Fibrosis

Vasoconstrictors such as endothelin-1 (ET-1) and vasodilators such as nitric oxide
(NO) play pivotal roles in vascular dysfunction in SSc patients. ET-1 is elevated in the
lungs, kidneys, vasculature, and skin of SSc patients [68–71]. Conversely, the level of NO
is reduced in the vascular endothelium of SSc patients [69,71]. The main source of ET-1
is EC, and ET-1 is a regulator of fibrotic responses, smooth muscle cell proliferation, and
vasoconstriction. The level of ET-1 and the clinical severity of skin fibrosis are correlated,
suggesting that ET-1 is not only important for vasculopathy but also for skin fibrosis [71–73].
One of the key regulators of ET-1 and NO signaling pathways is TGF-β1 [74]. The activation
of noncanonical pathways (Smad-independent) not only contributes to the activation of
myofibroblasts and ECM production but also the elevation of ET-1 [71,72,75]. This result
suggests that fibrosis and vasculopathy are bidirectionally related with ET-1 acting as an
amplifying factor.

Multiple signaling pathways have been investigated to elucidate the linkage between
the activation of pericytes and vasculopathy. Friend leukemia virus integration 1 (FLI1) is
a transcription factor expressed in ECs and is hypothesized to be a negative regulator of
skin fibrosis [76]. The expression of Fli1 is decreased in the circulating myeloid in patients
with SSc, and the reduction in Fli1 in myeloid cells is associated with profibrotic and
proinflammatory phenotypic changes [77]. Furthermore, the decrease in Fli1 is correlated
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with defective angiogenesis, the loss of pericytes in the vasculature, fibrosis, and immune
system abnormalities [78,79]. The conditional deletion of Fli1 in EC recapitulates, at least
in part, the phenotypes of SSc, including vasculopathy, impaired angiogenesis, and the
activation of fibroblasts in mice [76,80]. Epigenetic modifications, such as DNA methylation
and histone acetylation, and miRNAs are hypothesized to be upstream of the FLI1 gene
reduction in SSc [81,82]. Despite the remarkable findings from in vivo animal models of Fli1
deletion and skin fibrosis, the expression pattern of Fli1 in patients with SSc has not been
well characterized, and it is unclear which cell types show a reduction in Fli1 expression
leading to the development of fibrosis in patients with SSc.

In addition to Fli1, caveolin-1, a membrane protein critical for the formation of vesicles
and membrane invagination, has been proposed to be an important player in SSc. The
caveolin-1 rs959173C minor allele is correlated with a reduced risk of SSc in Caucasian
populations, suggesting that the polymorphism of caveolin-1 can alter the susceptibility to
SSc [83]. Caveolin-1 is markedly reduced in both skin and lung biopsy samples isolated
from patients with SSc [84]. Additionally, bone marrow mesenchymal cells in SSc patients
show a significant reduction in caveolin-1 and are associated with the profibrotic pheno-
type [85]. Caveolin-1-dependent invaginations reduce TGF-β1 signaling significantly as
a result of the internalization of the TGF-β1 receptor [84]. The deletion of caveolin-1 in
mice is sufficient to induce the impairment of vascular tone, and spontaneous endothelial-
to-mesenchymal transition, and to promote lung and skin fibrosis [84,86]. Deficiency in
caveolin-1 in mesenchymal cells seems to upregulate vascular endothelial growth factor
A (VEGF) signaling, which is implicated in SSc [87]. In summary, caveolin-1 is one of the
important mediators between vasculopathy and fibrosis. However, the exact connection
of the differential expression of caveolin-1 in ECs and pericytes with vasculopathy and
fibrosis needs to be further investigated.

4.3. Role of Adipocytes in Fibrosis and Vasculopathy

Adipocytes are the cells primarily composing adipose tissues and serve as an important
reservoir of energy and fat. There is increasing evidence that adipocytes may play a role
in the pathogenesis of skin fibrosis. The loss of subcutaneous adipocytes is one of the
hallmarks of SSc [88]. This phenomenon is consistently found in various animal models
for skin fibrosis, including bleomycin-induced [89], angiotensin II-induced [90], TGF-β-
induced [91], and tight skin models [92].

A tdTomato-based lineage study on adiponectin, a marker of adipocytes, demonstrated
that adiponectin positive cells differentiated into myofibroblast-like cells upon fibrotic
injuries. Moreover, the unique gene profile of adipocytes decreased before the induction
of profibrotic gene transcripts, suggesting that adipocytes might be the origin of collagen-
producing fibroblasts in skin fibrosis [93,94]. A reduction in proliferator-activated receptor
γ (PPAR-γ), a well-known nuclear hormone receptor for adipogenesis, and activation found
in inflammatory zone 1, FIZZ1, have been proposed as a trigger of the trans-differentiation
of adipocytes to myofibroblasts [95,96]. However, the exact mechanism of phenotypic
changes in adipocytes in SSc is still elusive.

The interplay between adipocytes and vasculopathy is an active area of research.
Adipocytes produce a variety of adipokines activating various cell types via autocrine,
paracrine, and endocrine pathways. An altered balance of adipokine due to adipocyte
loss or transition to fibroblasts may contribute to inflammation, vasculopathy, and fibro-
sis [97–101]. Adiponectin, one of the SSc-related adipokines, has a protective role in the
pathogenesis of SSc; mice with deleted adiponectin develop less fibrosis upon bleomycin
challenge [102]. Furthermore, in a bleomycin model of skin fibrosis, a pharmacological
intervention not only reduced the degree of fibrosis but also inflammation via the inhibition
of the transition from adipocytes to myofibroblasts, suggesting that adipokines may be one
of the interlinks between inflammation and fibrosis [103].

Interestingly, fat graft induces dermal adipose regeneration and reduces skin fibrosis in
both SSc patients [104] and animal models of skin fibrosis [105]. Furthermore, the grafting
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of autologous adipose tissues improves the treatment-resistant digital ulcers, demonstrating
that vasculopathy and ulcerations are presumably downstream of the adipose pathology in
SSc [106]. Although the therapeutic effect of adipocyte graft and how exactly adipose tissues
contribute to the development of vasculopathy and fibrosis should be further investigated,
this evidence significantly suggests that adipocytes play a key role in the pathogenesis
of SSc.

4.4. Fibrocytes

Bone marrow-derived fibrocytes have been investigated as a potential origin in SSc.
These cells are fibroblast-like cells expressing collagen 1 and increase in number in the event
of acute injury and fibrosis [107]. Patients with interstitial lung disease (ILD) secondary to
SSc have an increased number of circulating fibrocytes [108]. Furthermore, the severity of
the fibrosis is correlated with the number of circulating fibrocytes in lcSSc [109]. Although
there are a limited number of studies available for SSc regarding fibrocytes and bone
marrow-derived collagen-positive cells, a bone marrow transplant study demonstrated that
very few collagen-positive cells were positive for platelet-derived growth factor receptor
alpha (PDGFR-α), a marker of fibroblasts derived from bone marrow [110]. This suggested
that the collagen-positive cells were very likely originally from local cells residing in
the skin.

4.5. Endothelial-to-Mesenchymal Transition (EndoMT)

EndoMT is a phenomenon of cellular trans-differentiation by which ECs lose vascular
EC markers (e.g., von Willebrand factor, CD31, and vascular endothelial cadherin) and gain
mesenchymal cell markers (e.g., αSMA, vimentin, collagen, and FN; Figure 2) [111,112].
EndoMT is mediated through various signaling molecules, including β-catenin, Akt, nu-
clear factor kappa-light-chain-enhancer of activated B cells (NF-kB), Notch, Wnt, Sp1, bone
morphogenetic protein 4 (BMP-4), and phosphoinositide 3-kinase (PI3K) [113]. These medi-
ators lead to the elevation of transcription factors, including ZEB1, Snail, and Slug, which
subsequently induce the expression of target genes related to mesenchymal cells [113]. ECs
lose the typical cobblestone morphology and acquire the phenotypic profile and prolifer-
ative ability of mesenchymal cells. During EndoMT, EC disaggregation from the vessel
lining leads to an impaired vessel layer [114]. This EndoMT process is observed during
wound healing but also during pathological processes of vascular injury with characteristic
fibrosis and inflammation [111].

In SSc vasculopathy, the small and medium-sized arteries may undergo intimal hyper-
plasia, leading to medial thickening and lumen obliteration, contributed by perivascular
inflammation and microthrombi [115]. Although microvasculature loss was observed
during SSc with persistent hypoxia, compensatory angiogenesis did not occur [116]. It
was previously demonstrated that although hypoxia promotes the release of vascular en-
dothelial growth factor (VEGF), impaired angiogenesis persists, and this could be due to
anti-angiogenic VEGF 165b isoform overexpressed in ECs, fibroblasts, and inflammatory
cells in SSc [117]. Furthermore, platelets might also release VEGF165b after activation with
the damaged endothelia [118].

The pivotal inducer of EndoMT is postulated to be the TGF-β family [69]. TGF-β
promotes morphological changes in ECs, leading to the reduced expression of ECs and
increased expression of mesenchymal markers [119,120]. The secretion of TGF-β and its
synthesis may be increased by endothelin-1 (ET-1), and ET-1 has been shown to have a
synergistic effect with TGF-β to modulate EndoMT [121,122]. TGF-β activates the canonical
Wnt pathway, and Wnt3a may play a role in EndoMT by promoting the expression of cad-
herin and inducing the expression of vimentin [123]. Other possible mediators of EndoMT
include tumor necrosis factor alpha (TNF-α), which enhances TGF-β-induced EndoMT
by stimulating the TGF-β signaling pathway [124]. Moreover, interferon-gamma (IFN-γ)
has also been reported to mediate EndoMT via TGF-β2 and ET-1 signaling pathways in
SSc [125].
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hand, vascular injuries can lead to the activation of platelets via the exposure of collagens in the 
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Figure 2. The molecular mechanism of endothelial-to-mesenchymal transition (EndoMT) and its
interlink with fibrosis. Factors that contribute to vascular injuries like transforming growth factor
beta 1 (TGF-β1), tumor necrosis factor alpha (TNF-α), IL-1, interferon-gamma (IFN-γ), and hypoxia
induce the transition to mesenchymal cells via various mediators (e.g., β-catenin, Akt/NF-kB, Notch,
Wnt, Sp1, BMP-4, and PI3K) and subsequent elevation of transcription factors (ZEB1, Snail, and
Slug). Furthermore, vascular injuries promote vascular remodeling, including intimal hyperplasia,
medial thickening, and lumen obliteration, through perivascular inflammation. Along with this
vascular remodeling, chronic hypoxia increases anti-angiogenic vascular endothelial growth factor
165b (VEGF165b) isoform from platelets, endothelial cells, and immune cells, including macrophages,
leading to perpetual hypoxia. Mesenchymal cells contribute to pulmonary and dermal fibrosis by
producing extracellular matrix (ECM), including fibronectin and collagen. On the other hand, vascular
injuries can lead to the activation of platelets via the exposure of collagens in the endothelium. The
activated platelets and endothelial cells secrete profibrotic mediators, inducing TGF-β1, serotonin,
endothelin-1 (ET-1), and platelet-derived microparticles (PMPs), which further amplify the fibrosis in
SSc. Furthermore, anti-fibrotic mediators, including Fli-1 and nitric oxide (NO), are suppressed. The
image was created with BioRender.com.

EndoMT could potentially be a therapeutic target for fibrotic disease as evidenced
by preclinical studies utilizing anti-vasculopathy treatment. ET-1 receptor antagonist
macitentan has been reported to inhibit both ET-1-induced and TGF-β-induced EndoMT in
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microvascular ECs isolated from SSc patients [121,126]. These findings were confirmed by
other in vitro studies using bosentan, another ET-1 receptor antagonist, in the fibroblast
and EC co-culture model [127]. Iloprost, which is an analogue of prostacyclin, promotes
VE-cadherin clustering and stability at the adherent junction, promotes angiogenesis, and
prevents EndoMT [128]. A better understanding of the pathophysiology underpinning
EndoMT has opened up potential therapeutic avenues for the development of anti-fibrotic
therapies. More studies are needed to investigate the efficacy of EndoMT inhibitors in SSc.

4.6. Platelet Activation in the Interlink between Vasculopathy, Autoimmunity, and Fibrosis

Endothelial injury through the exposure of collagen from the subendothelial matrix
contributes to the activation of platelets, which have been found to be actively involved
in the pathogenesis of SSc [129–131]. Platelet activation led to the release of profibrotic
mediators such as TGF-β and serotonin. Platelet-derived serotonin was shown to strongly
induce extracellular matrix synthesis in a TGF-β-dependent manner. The inactivation of
serotonin was demonstrated to prevent the onset of fibrosis and ameliorate established
fibrosis. In addition to being a source of profibrotic signals, activated platelets produced
microparticles [132]. Platelet-derived microparticles (PMPs) were shown to be associated
with clinical features in SSc. PMP levels were significantly higher in patients with disease
duration >3 years and in patients with positive anti-topoisomerase-I antibodies [133]. Prior
studies demonstrated that PMPs promoted neutrophil autophagy, induced neutrophil
activation, and enhanced neutrophil extracellular trap (NET) production [134]. In a study
by Didier et al., it was shown that NET production by polymorphonuclear neutrophils
(PMNs) from SSc patients with severe vascular complications (PAH, digital ulcer) was
higher than those without severe vascular complications [135]. Additionally, platelets
modulate immune responses by interacting with Tregs and activating monocytes or B cells
via the costimulatory axis CD40/CD40L [129]. The growing insights into the potential
contribution of platelets in the vicious cycle of fibrosis, autoimmunity, and vascular damage
SSc highlight potential novel therapeutic interventions.

5. Unmet Needs and Future Studies

At the molecular level, SSc is a heterogeneous disease with varying clinical outcomes.
The crude clinical classification into dcSSc and lcSSc is insufficient to reflect this hetero-
geneity. Whilst acknowledging that different SSc-specific autoantibodies are associated
with distinct clinical phenotypes and organ involvement in SSc, there remains a great
unmet need for precision medicine to aid targeted treatment based on patients’ dynamic
biological state. Layered upon the possibility of distinct subtypes of SSc with distinct
clinical outcomes, patients may transition through different stages of disease such as a
predominant vasculopathic or inflammatory stage to the fibrotic stage. For example, in
a phase II trial of abatacept, a T-cell inhibitor, whose primary endpoint of skin fibrosis
improvement was not met, patients’ skin biopsies with the inflammatory gene subset
showed significant improvement in mRSS compared with those of the fibro-proliferative
subset [136]. In contrast, patients with fibro-proliferative gene signatures, but not the
inflammatory gene signatures, were found to respond to tyrosine kinase inhibitor nilotinib,
imatinib, and dasatinib [137–139]. These serve as proof of concept to utilise molecular
phenotyping to guide treatment approaches by selecting treatment for patients who are
most likely to respond towards precision medicine.

The advent of multi-omic platforms has opened possibilities to gain deeper insights
into the molecular mechanisms underlying SSc. Future direction necessitates a holistic
approach to integrate these data from various omic platforms (transcriptomics, genomics,
proteomics, cytomics, epigenomics, and microbiomics) to shed light on the signalling
pathways underlying the complex etiopathogenesis [13]. For example, although the role of
activated macrophages has been implicated in the regulation of inflammation, fibrosis, and
vascularisation, the trigger that underlies aberrant macrophage activation is not clear [140].
The integration of clinical phenotyping with a multi-omic approach suggested the im-
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portant role of IL-13 in monocyte–macrophage activation in the development of PAH in
SSc [141]. Christmann et al. investigated the monocyte–macrophage activation in patients
with SSc-PAH by combining transcriptomics, proteomics, and cytomics; the results revealed
the upregulation of MRC1 (c-type mannose receptor 1, a marker of alternative activation of
monocyte–macrophage) expression in CD14+ cells, and this was greatly increased upon
stimulation with IL-13, the concentration of which was most increased in patients with
lcSSc-PAH [141,142]. More recent investigations have highlighted the important role of epi-
genetic factors in regulating gene expression in SSc, specifically through DNA methylation,
hydroxymethylation, histone modification, and noncoding RNAs without modifying the
underlying DNA sequences [143,144]. Epigenetic modification by environmental signals
is implicated in the pathogenesis of SSc in genetically susceptible individuals [144]. Ad-
vances in technologies, such as cytometry by time of flight (CyTOF), are promising with the
possibility to now look at cellular markers in whole blood, including platelet and red blood
cells [145–147]. Furthermore, the Extended Polydimensional Immunome Characterization
(EPIC), a web-based tool, could be used for the analysis of high-dimensional biomarkers in
SSc patients compared with datasets of healthy controls [148]. The discovery of biomarkers
for early diagnosis, patient stratification, monitoring disease progression, and treatment is
sorely needed.

In this paper, we highlighted the origin of fibrosis, and the complex interplay between
inflammation, vasculopathy, and fibrosis. Research in SSc is challenging due to its het-
erogeneous nature and rarity. Limitations in sample size and lack of complete clinical
information in published data hindered data analysis and interpretation to a great extent.
Overcoming these limitations requires a collaborative effort among clinicians and scientists.
Furthermore, a holistic approach to address research questions by deploying the current
technological advancement to integrate clinical features with multi-omic advances is crucial.
Such a strategy holds promise for improving SSc management and tailored treatment for
individual patients.
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