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Abstract: The study aimed to evaluate the antidepressant-like effects of an imipramine-zinc (IMI-
Zn) complex compound on mice and assess the level of oxidative stress parameters. The research
also investigated whether the IMI-Zn complex showed superior antidepressant activity compared
to individual treatments of both compounds at effective doses and their joint administration at
subtherapeutic doses. The study was conducted on mice. Forced swim (FST), tail suspension (TST),
and locomotor activity tests were used for behavioral studies. The results demonstrated the IMI-Zn
complex’s dose-dependent antidepressant potential when orally administered to mice. Its efficacy
was similar to the separate administration of therapeutic doses of imipramine (IMI) and zinc (Zn)
and their joint administration at subtherapeutic doses. Moreover, subjecting mice to acute stress did
not significantly affect the activity of on glutathione peroxidase (GPX), glutathione reductase (GR),
and total antioxidant status (TAS), possibly due to the short exposure time to the stress stimulus. By
developing the IMI-Zn complex, it might be possible to simplify the treatment approach, potentially
improving patient compliance by combining the therapeutic effects of both IMI and Zn within a
single compound, thus addressing one of the contributing factors to non-compliance in depression
therapy. The IMI-Zn complex could be a valuable strategy to optimize therapeutic outcomes and
balance efficacy and tolerability.

Keywords: imipramine-zinc complex; antidepressant-like activity; mice; oxidative stress; glutathione
peroxidase; glutathione reductase; total antioxidant status; environmental stress

1. Introduction

Depression is a complex and debilitating mental health disorder affecting millions
worldwide [1,2]. It is characterized by persistent sadness, loss of interest or pleasure, dis-
turbed sleep, altered appetite, and impaired cognitive function [3–7]. The pathophysiology
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of depression involves multifactorial mechanisms, including dysregulation of neurotrans-
mitters, impaired synaptic plasticity, and increased oxidative stress (for review, see [8–12]).

Conventional antidepressant drugs, such as selective serotonin reuptake inhibitors
(SSRIs) and tricyclic antidepressants (TCAs), have been the mainstay of treatment for de-
pression. Imipramine (IMI), a prototypical TCA, has demonstrated efficacy in ameliorating
depressive symptoms [13,14]. However, the therapeutic response to IMI varies among
individuals, and some patients may experience adverse side effects, highlighting the need
for alternative or adjunctive treatment options [15,16]. Currently, available therapeutic
strategies for depression are very often ineffective or not very effective. Perhaps one of the
reasons is that their mechanisms of action do not consider the multifactorial basis of the
disease. Therefore, it is essential to search for new therapeutic strategies for depression
based on several mechanisms of its pathogenesis. The antioxidant potential seems to be
particularly important in this aspect.

In recent years, there has been growing interest in the role of micronutrients, particu-
larly zinc (Zn), in mental health disorders (for review, see [17,18]). Zn is an essential trace
element in various physiological processes, including neurotransmission, neurogenesis,
and antioxidant defense mechanisms [19–23]. Several studies have reported altered Zn
levels in individuals with depression, suggesting a potential link between Zn deficiency
and depressive symptoms [24–29].

Moreover, Zn supplementation has shown promising results in preclinical and clin-
ical studies as adjunctive therapy for depression [18,27–30]. Zn has been implicated in
the regulation of brain-derived neurotrophic factor (BDNF) signaling [28,31–36], which
plays a crucial role in neuroplasticity and neuronal survival [37]. Additionally, Zn exerts
antioxidant effects by modulating oxidative stress markers, including superoxide dismu-
tase (SOD), catalase (CAT), and malondialdehyde (MDA), thereby attenuating oxidative
damage in the brain [38].

Given the evidence supporting the involvement of Zn in depression and its potential
therapeutic benefits, combining Zn with conventional antidepressant drugs may offer a
novel approach to enhance treatment outcomes. Therefore, this study aims to assess the
effects of an imipramine-zinc (IMI-Zn) complex compound on depressive-like behaviors
and oxidative stress parameters in mice. Additionally, presented research was scheduled
to determine whether the IMI-Zn complex exhibits superior antidepressant-like activity
compared to individual treatments at effective doses and their joint administration at
subtherapeutic doses. Furthermore, the study aims to elucidate the possible mechanisms
underlying the observed effects by examining relevant biochemical and neurochemical
parameters. By evaluating both behavioral and biochemical aspects, the study seeks to
provide insights into the potential therapeutic value of the IMI-Zn complex compound as a
treatment option for depression. Ultimately, this research may contribute to developing
more effective and safer treatment strategies for depression, addressing the unmet needs in
mental health care. The study also aimed to evaluate oxidative stress parameters in mice’s
blood treated with the IMI-Zn complex. The IMI-Zn complex compound is a novelty in
research into new therapeutic approaches to treating depression. This study determined
the effect of the IMI-Zn complex on glutathione peroxidase (GPX), glutathione reductase
(GR), and total antioxidant status (TAS) in mice subjected to acute environmental stress.
The stress inducer in mice was the forced swimming test that the mice underwent in the
FST (forced swimming test). FST can lead to the formation of oxygen free radicals and
increased oxidative stress [39,40].

2. Results
2.1. Behavioural Examination

Dose-effect studies. According to the findings presented in Figure 1, the IMI-Zn com-
plex exhibited antidepressant-like activity in the FST (Figure 1A) and TST (Figure 1B)
in mice when administered orally. The antidepressant-like effect was significant within
the 20–100 mg/kg dose range. The statistical analysis using one-way ANOVA revealed
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significant results for both the FST [F(7,72) = 14.10; p < 0.0001] and the TST [F(7,72) = 9.362,
p < 0.0001]. Furthermore, the positive control, IMI, administered at a dose of 90 mg/kg, also
significantly reduced the immobility time in both behavioral tests, confirming the validity
of the experimental approach.
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Figure 1. Effect of IMI-Zn complex administration on mice behaviors in the FST (A) and TST (B). IMI-
Zn complex (5–100 mg/kg) and IMI (90 mg/kg) were administered orally 60 min before behavioral
testing. Mice from the control group received 0.9% NaCl, whereas IMI was a positive control. The
values represent the mean ± S.E.M. (n = 10 mice/group). * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001 vs. 0.9% NaCl-treated group (one-way ANOVA followed by Dunnett’s post-hoc test).

Notably, the tested doses of the IMI-Zn complex did not influence locomotor activity.
Only the group receiving IMI at a dose of 90 mg/kg showed a statistically significant
reduction in the distance traveled by the animals compared to the 0.9% NaCl-treated group
(p < 0.01), as indicated in Table 1.
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Table 1. Effect of oral administration of IMI-Zn complex on the mice locomotor activity.

Treatment Dose
[mg/kg]

Locomotor Activity between the
2nd and the 6th min [cm]

0.9% NaCl - 637.0 ± 84.57
IMI-Zn complex 5 620.6 ± 51.21
IMI-Zn complex 10 397.7 ± 108.9
IMI-Zn complex 20 531.8 ± 106.4
IMI-Zn complex 40 730.1 ± 90.27
IMI-Zn complex 80 515.0 ± 94.92
IMI-Zn complex 100 708.3 ± 53.04

IMI 90 248.3 ± 84.15 *
IMI-Zn complex (5–100 mg/kg) and IMI (90 mg/kg) were administered orally 60 min before the test. Mice from
the control group received 0.9% NaCl. The values represent the mean ± S.E.M. (n = 10 mice/group). * p < 0.05 vs.
0.9% NaCl-treated group (one-way ANOVA followed by Dunnett’s post-hoc test: F(7,72) = 3.539, p = 0.0025).

Comparison studies. In the groups of animals that received IMI-Zn complex at a dose of
20 mg/kg (selected based on dose-effect studies), IMI at a dose of 90 mg/kg, Zn at a dose of
60 mg/kg, and a combination of IMI and Zn at doses of 60 and 40 mg/kg, respectively, there
was a significant reduction in the immobility time of mice in both the FST and TST (p < 0.0001,
p < 0.0001, p < 0.0001, p < 0.05 for FST; p < 0.01, p < 0.05, p < 0.01, p < 0.01 for TST). This was
determined through statistical analysis using one-way ANOVA followed by Tukey’s post-hoc
test compared to the group that received 0.9% NaCl (F(6,63) = 15.42, p < 0.0001 for FST;
F(6,63) = 6.904, p < 0.0001 for TST).

However, in the groups that received IMI at a dose of 60 mg/kg and Zn at a dose of
40 mg/kg, there were no statistically significant changes in the immobility time of mice in
either the FST or TST compared to the group receiving 0.9% NaCl (p > 0.05).

Importantly, in the group that received the IMI-Zn complex at a dose of 20 mg/kg, the
reduction in the immobility time of mice was not statistically different from the reduction
observed in the groups that received IMI at 90 mg/kg, Zn at 60 mg/kg, and the combination
of IMI and Zn at doses of 60 and 40 mg/kg, respectively (Figure 2).

The tested doses of IMI, Zn, IMI-Zn complex, and joint administration of IMI and Zn
did not increase the locomotor activity of mice. In the locomotor activity test, only the
group receiving IMI at a dose of 90 mg/kg showed a statistically significant reduction in
the distance traveled by the animals compared to the 0.9% NaCl-treated group (p < 0.01),
as indicated in Table 2.

Table 2. Effect of oral administration of IMI, Zn, IMI + Zn, and IMI-Zn complex on the mice
locomotor activity.

Treatment Dose
[mg/kg]

Locomotor Activity between the
2nd and the 6th min [cm]

0.9% NaCl - 670.4 ± 47.71
IMI 90 448.1 ± 28.63 **
Zn 60 664.1 ± 42.09
IMI 60 732.0 ± 31.33
Zn 40 722.0 ± 40.01

IMI + Zn 60 + 40 667.9 ± 69.13
IMI-Zn complex 20 731.1 ± 29.03

IMI-Zn complex (20 mg/kg), IMI (60 and 90 mg/kg), and Zn (40 and 60 mg/kg) were administered orally
60 min before behavioral testing. Mice from the control group received 0.9% NaCl. The values represent the
mean ± S.E.M. (n = 10 mice/group). ** p < 0.01 vs. 0.9% NaCl-treated group (one-way ANOVA followed by
Tukey’s post-hoc test: F(6,63) = 5.280, p = 0.0002).
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Figure 2. Comparison of the antidepressant-like effect of IMI-Zn complex and IMI, Zn and their joint
administration on animal behaviors in the FST (A) and TST (B) in mice. IMI-Zn complex (20 mg/kg),
IMI (60 and 90 mg/kg), and Zn (40 and 60 mg/kg) were administered orally 60 min before behavioral
testing. Mice from the control group received 0.9% NaCl. The values represent the mean ± S.E.M.
(n = 10 mice/group). * p < 0.05, ** p < 0.01, **** p < 0.0001 vs. 0.9% NaCl-treated group, not statistically
significant (ns) p > 0.05 vs. relevant treated group (one-way ANOVA followed by Tukey’s post-hoc test).

2.2. Biochemical Studies

In the blood of mice treated with 0.9% NaCl and exposed to severe environmental
stress (FST) (group B), no changes in GPX and GR activity, as well as TAS level, were
observed as compared to the group of mice not exposed to the stressor (group A) (Table 3).
Also, no changes in studied parameters were observed in the mice receiving IMI (60 mg/kg)
or Zn (40 and 60 mg/kg) compared to the 0.9% NaCl group. In the mice receiving IMI
(60 mg/kg) and Zn (40 mg/kg) simultaneously, no changes in GPX, GR activity, and
TAS level were observed compared to the group receiving only IMI (60 mg/kg) or Zn
(40 mg/kg). Moreover, IMI-Zn complex at doses of 5, 10, 20, 40, 80, and 100 mg/kg did not
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influence the GPX, GR activity, and TAS levels as compared to groups of mice receiving
IMI alone (60 mg/kg), Zn alone (40 or 60 mg/kg) and IMI (60 mg/kg) and (Zn 40 mg/kg)
in combination (Table 3).

Table 3. The influence of oral administration of IMI, Zn, IMI + Zn, and IMI-Zn complex on the GPX,
GR activity, and TAS level in naïve (A) and subjected to FST (B-L) mice.

Treatment Dose
[mg/kg]

GPX
[nmol/min/mL]

GR
[nmol/min/mL]

TAS
[µmol/L]

A Naive - 114.52 ± 21.7 10.8 ± 2.38 391.69 ± 0.08
B 0.9% NaCl - 141.26 ± 11.4 9.67 ± 1.55 391.34 ± 0.27
C IMI 60 157.90 ± 11.1 11.2 ± 1.63 391.35 ± 0.21
D Zn 40 162.83 ± 7.19 10.3 ± 0.62 391.68 ± 0.13
E Zn 60 153.92 ± 6.61 10.8 ± 3.37 375.32 ± 16.3
F IMI + Zn 60 + 40 129.21 ± 9.41 7.21 ± 1.05 391.68 ± 0.15

G IMI-Zn
complex 5 147.13 ± 9.90 7.81 ± 1.57 391.56 ± 0.13

H IMI-Zn
complex 10 159.86 ± 8.50 8.32 ± 1.32 388.72 ± 1.38

I IMI-Zn
complex 20 149.59 ± 11.4 6.87 ± 0.43 391.24 ± 0.36

J IMI-Zn
complex 40 143.90 ± 9.99 7.55 ± 0.89 391.56 ± 0.11

K IMI-Zn
complex 80 143.22 ± 10.9 7.98 ± 0.81 391.85 ± 0.09

L IMI-Zn
complex 100 175.74 ± 15.0 8.74 ± 0.89 391.31 ± 0.16

IMI-Zn complex (5–100 mg/kg), IMI (60 mg/kg), and Zn (40 and 60 mg/kg) were administered orally
60 min before blood collection. Mice from the control group received 0.9% NaCl. All values are reported as
mean ± S.E.M. (n = 6 mice/group). One-way ANOVA followed by Dunnett’s post-hoc test: F(11,60) = 1.862,
p > 0.05 for GPX; F(11,60) = 0.9669, p > 0.05 for GR; F(11,60) = 0.9810, p > 0.05 for TAS.

3. Discussion

Observations have indicated that by using multiple medications with different but
complementary effects, it might be possible to improve the overall response to antidepres-
sant treatment. Moreover, this approach could allow for a more effective antidepressant
effect without relying on higher doses of a single medication, which could lead to more
adverse side effects [41–45]. The rationale behind polytherapy is to capitalize on the unique
mechanisms of action of different substances with antidepressant activity to achieve a
synergistic effect. This approach aims to maximize treatment benefits by targeting multiple
neurotransmitter systems and modulating various aspects of the complex neurobiology
underlying depression [46,47].

Not only antidepressant-antidepressant combinations have been studied for their
potential use in treating depression. It was found that several substances can potentiate
or enhance the antidepressant activity of commonly used antidepressant drugs. These
substances are often called “augmentation agents” or “adjunctive therapies”. These in-
clude, among others, atypical antipsychotics (e.g., aripiprazole [48], quetiapine [49], and
olanzapine [50]), lithium [51,52], triiodothyronine (T3) [53], omega-3 fatty acids [54], caf-
feine [55], N-acetylcysteine [56], S-adenosylmethionine [57], as well as essential minerals
like magnesium [58], and zinc [59].

Numerous clinical and preclinical studies have demonstrated the antidepressant-like
potential of Zn (for review, see [59–63]), prompting investigations into the possibility of
enhancing the therapeutic effects of antidepressant drugs through Zn supplementation.
Over the past 20 years, researchers have been exploring the potential of Zn to augment the
activity of antidepressants with various mechanisms of action. Nowak et al. [64] carried
out research demonstrating that the addition of Zn in the treatment of both TCAs and
SSRIs led to positive results in easing depressive symptoms among patients with unipolar
depression. Further research by Siwek et al. [27] supported these findings, confirming that
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Zn compounds increase the effectiveness and speed of therapeutic response in treatment-
resistant depressed patients receiving IMI. Subsequently, Ranjbar et al. [65] demonstrated
that Zn supplementation, when combined with SSRIs, also yields beneficial therapeutic
effects. Moreover, preclinical studies have consistently shown the antidepressant effect
of Zn, along with the enhancement of antidepressant effects when combined with both
inorganic and organic Zn compounds, such as zinc chloride (ZnCl2), zinc sulfate (ZnSO4),
and zinc hydroaspartate [59,60]. Numerous animal tests and models of depression have
focused on investigating the effects of co-administering Zn with IMI, a commonly used an-
tidepressant. Various intraperitoneal (i.p.) dosing regimens have been examined, including
ZnCl2 30 mg/kg + IMI 20 mg/kg [66], ZnSO4 1 mg/kg + IMI 5 mg/kg [67], zinc hydroas-
partate 5 mg/kg + IMI 5 mg/kg, zinc hydroaspartate 10 mg/kg + IMI 15 mg/kg, zinc
hydroaspartate 10 mg/kg + IMI 10 mg/kg [68]. These combinations significantly affected
rodents’ immobility duration in the FST and TST [66–68], indicating their antidepressant-
like activity. Likewise, Cunha et al. [69] exhibited a similar outcome in the TST when
they administered ZnCl2 to mice orally at 1 mg/kg and IMI at 0.1 mg/kg. Furthermore,
Rafało-Ulińska et al. [70] reported a significant increase in the activity of mice in the FST
after oral administration of subtherapeutic doses of zinc hydroaspartate and IMI at doses
of 40 and 60 mg/kg, respectively. The conclusions drawn from the mentioned research, in
conjunction with the outcomes presented in this study, suggest that this combination shows
promise as an antidepressant therapy while also enabling a reduction in the combined
dosage of these substances. This reduction can effectively minimize their adverse effects
and expedite the antidepressant response. One of the significant factors contributing to
non-compliance in patients is the number of drugs prescribed and the complexity of dosing
schedules [71]. When patients are required to take multiple drugs or follow intricate dosing
regimens, it can lead to difficulties and contribute to non-compliance and discontinuation
of therapy. This issue arises when IMI and Zn are administered as separate oral treatments
in animal and human experiments. Therefore, Rogalewicz et al. [72] developed a methodol-
ogy for obtaining and synthesizing an IMI-Zn complex compound, whose antidepressant
activity in the FST in mice was assessed in these studies. The outcomes of the conducted
investigation revealed that the IMI-Zn complex displayed an antidepressant-like effect
that varied with dosage. This effect was evident through a notable decrease in immobility
duration in mice during the FST and TST. Importantly, it is worth noting that the IMI-Zn
complex, at any of the concentrations used, did not significantly affect the animals’ motor
activity. This finding indicates that the complex exhibited its antidepressant-like effects
without causing an increase in locomotor activity. This indicates that the results obtained
in despair tests are not false positives.

In the acute toxicity studies conducted using the Zebrafish model, the IMI-Zn complex
compound was found to have no adverse effects on fish development. Additionally, it
exhibited a dose-dependent impact on the spontaneous locomotor activity of 5-day-old
larvae—higher doses of the IMI-Zn complex inhibited locomotor activity, while lower
doses increased it [72]. Additionally, Rogalewicz et al. [72] demonstrated that the IMI-Zn
complex, specifically at a concentration of 3 µM, produced a similar anxiolytic-like effect in
a light/dark test compared to diazepam, a commonly used anxiolytic drug. The authors
further showed that the impact of each tested concentration of the IMI-Zn complex differed
from those of IMI alone, suggesting that the addition of Zn modified the effect of IMI on
the central nervous system [72].

In the present studies aimed at comparing the antidepressant-like activity of the IMI-Zn
complex (20 mg/kg) with the activity of single doses of IMI (90 mg/kg) and Zn (60 mg/kg),
as well as the combined use of subtherapeutic doses of these substances (60 + 40 mg/kg,
respectively), it was observed that the IMI-Zn complex reduced the duration of immobility
time of mice in the FST and TST to a slightly lesser extent compared to the groups receiving
effective doses of IMI and Zn, as well as the combination of IMI and Zn at subtherapeutic doses.
However, these differences were not statistically significant. Consequently, it can be concluded
that the antidepressant-like activity of IMI-Zn at 20 mg/kg in mice is comparable to the
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antidepressant activity of IMI at 90 mg/kg, Zn at 60 mg/kg, and the combined administration
of IMI + Zn (60 and 40 mg/kg), respectively.

Oxidative stress plays a vital role in the pathogenesis of depression, mainly when it is
associated with exposure to environmental stress. It has been shown that subjecting rats to
chronic stress factors increases protein and lipid peroxidation in brain structures [73,74]. It
can lead to neuronal damage and be a significant factor in the development of neurodegen-
erative diseases. Oxidative stress is a factor that impairs the plasticity of neurons and leads
to impaired neurogenesis [75,76]. Therefore, new strategies of pharmacotherapy for these
diseases, including depression, should take into account the significant role of oxidative
stress in the progeny of conditions [77] and should also take into account the antioxidant
properties of substances [74]. A study by Réus et al. [78] showed the antioxidant properties
of IMI in an animal stress model. They confirmed that IMI benefits oxidative stress param-
eters, such as SOD and CAT activity, in the brain structures of animals exposed to acute
and chronic stress [79]. Research by Mokoen et al. [79] in an animal model also showed
that IMI reverses oxidative damage in the hippocampus induced during an intense stress
reaction [79]. However, IMI belongs to TCAs, so it has many side effects. Therefore, despite
its considerable effectiveness, it is rarely used in antidepressant therapy. Considering the
low efficacy of currently used antidepressants in many cases and the above considerations,
in our research, we hypothesized that classic antidepressants in reduced doses, supported
by substances with antioxidant potential, may show antidepressant activity based on the
mechanisms of the pathogenesis of the disease while maintaining a high safety profile.
Doboszewska et al. [80] studied the antioxidant role of Zn. In in vivo studies, Zn-rich and
Zn-poor diets were used for comparison. Researchers showed that rats fed a diet rich in Zn
had better antioxidant status than animals fed with a diet low in Zn. This proves that Zn
has significant antioxidant potential [80]. Also, a study by Emojevwe et al. [81] showed that
the administration of Zn ions to rats increased the activity of antioxidant enzymes while
reducing ROS and oxidative stress [81]. Therefore, a new approach in the pharmacotherapy
of depressive disorders may be the use of antidepressants enriched in Zn compounds. It is
worth mentioning that by reducing cellular oxidative stress, Zn has a protective effect on
cells [82–84].

Therefore, this study aimed to evaluate the parameters of oxidative stress in the
blood of mice exposed to an acute stress factor and the IMI-Zn complex administration.
Based on the findings from the studies as mentioned above, it is justifiable to assess the
antioxidant capabilities of the IMI-Zn complex compound in contrast to the administration
of individual drugs. Animals were exposed to FST, which in this study was an inducer
of physical stress, leading to increased ROS production, which can then lead to oxidative
stress and depressive behavior. Selected oxidative stress parameters were determined to
check the antioxidant activity of the substances used. The study showed no statistically
significant differences in the measured parameters between mice in the naïve group, which
were not subjected to swimming and did not receive any substances, and mice in the control
group, which were given 0.9% NaCl solution and subjected to severe environmental stress,
such as the forced swimming. This indicates that the stress induced by FST did not lead
to oxidative reduction disturbances in the blood of the mice. Although, according to the
literature [85–89], FST is a model test of inducing physical stress, no statistically significant
changes in the determined oxidative stress parameters were observed in the presented
study. It should be noted that the test animals were exposed to the stress stimulus for
a short time. Probably the adaptive and defensive abilities of the mouse organism are
sufficient to maintain the balance of the redox potential during exposure to a short-stress
stimulus. The study should be repeated in the chronic stress model. It has been shown that
a 21-day administration of corticosterone to animals leads to depressive symptoms and
increased oxidative stress [90].

Based on the literature analysis, it is reasonable to determine the antioxidant potential
of the IMI-Zn complex compound compared to drugs administered alone. In this study,
animals were administered with IMI or Zn, both alone and in combination, as well as the
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IMI-Zn complex, to compare the antioxidant potential of the test substances administered
alone and in the form of a complex. No statistically significant changes were observed
in all parameters determined in the groups of mice receiving the complex compound
IMI-Zn (at all doses) compared to the administration of IMI and Zn, either alone or in
combination. This could suggest that the antioxidant potential of the complex is comparable
to the antioxidant potential of drugs administered alone. However, taking into account the
lack of statistically significant changes in the parameters determined in the group of mice
subjected to acute stress compared to mice not exposed to this factor, it can be assumed
that unambiguous determination and comparison of the antioxidant potential of the tested
drugs, administered both individually and in the form of a complex compound, is not
possible under these conditions. It can, therefore be assumed that the results obtained in
this study may be closely related to the too-short duration of the stress factor. It is also
possible, that the lack of statistically significant changes in the determined parameters after
administration of the tested drugs to mice may result from their single administration. IMI
is a drug whose therapeutic effect is achieved after several weeks of treatment. Considering
the literature data confirming the antioxidant activity of both IMI and Zn, as well as the
results of behavioral tests of the presented work, it seems reasonable to conduct future
studies on the antioxidant status of the IMI-Zn complex in the chronic stress model and
with long-term administration of the tested substances.

4. Materials and Methods
4.1. Animals

Male Albino Swiss mice (n = 310) aged 6–8 weeks were used for the experiment. The
mice were obtained from the Experimental Medicine Centre (Lublin, Poland) and housed
in standard laboratory conditions (temperature of 21 ± 1 ◦C, relative humidity of 50 ± 5%)
with a 12-h light-dark cycle and ad libitum access to food and water. Before the test, mice
were acclimated to the testing room for 1 h.

All experimental procedures were approved by the Local Ethics Committee (license
No. 62/2021) and conducted in line with the guidelines of the European Community
Council (2010/63/EU).

4.2. Drugs/Substances

The following substances were used in the conducted research: imipramine hydrochlo-
ride (IMI, Sigma-Aldrich, Poznań, Poland) at a dose of 60 mg/kg and 90 mg/kg, i.e., 53.096
and 79.644 mg/kg pure IMI (subtherapeutic and effective dose, respectively); zinc hydroas-
partate (Zn, Farmapol, Poznań, Poland) at a dose of 40 mg/kg and 80 mg/kg (calculated
as pure Zn2+ ions; subtherapeutic and effective dose, respectively); imipramine-zinc com-
plex (IMI-Zn, [HL]2+[ZnCl4]2− (where L: IMI) was synthesized at the Institute of General
and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz,
Poland [72]. The IMI-Zn complex was administered in the dose range of 5–100 mg/kg
(the percentage of Zn in 1 mg of the administered complex is 84.9 µg and 731 µg of IMI).
The amount of pure Zn and IMI for individual concentrations of the IMI-Zn complex was
presented in Table 4.

Table 4. The amount of pure Zn and IMI for individual concentrations of the IMI-Zn complex.

IMI-Zn Complex
[mg/kg]

Pure Zn
[mg/kg]

Pure IMI
[mg/kg]

5 0.424 3.655
10 0.849 7.310
20 1.698 14.62
40 3.396 29.24
80 6.792 58.48

100 8.490 73.10
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All substances were dissolved in 0.9% NaCl immediately before the experiments and
were administered orally in a volume of 0.01 mL/g 60 min before behavioral testing. Animals
from the control group received 0.9% NaCl. Doses of tested substances and administration
schedules were chosen based on our earlier studies and literature data [70,72].

Drugs Administration Schedule

I. Dose-effect studies: 1st group: 0.9% NaCl (control group); 2nd group: IMI-Zn complex
5 mg/kg; 3rd group: IMI-Zn complex 10 mg/kg; 4th group: IMI-Zn complex 20 mg/kg; 5th
group: IMI-Zn complex 40 mg/kg; 6th group: IMI-Zn complex 80 mg/kg; 7th group: IMI-Zn
complex 100 mg/kg; 8th group: IMI 90 mg/kg (positive control group).

II. Comparison studies: 1st group: 0.9% NaCl; 2nd group: IMI 90 mg/kg (effective dose);
3rd group: Zn 60 mg/kg (effective dose); 4th group: IMI 60 mg/kg (subtherapeutic dose);
5th group: Zn 40 mg/kg (subtherapeutic dose); 6th group: IMI + Zn 60 mg/kg + 40 mg/kg
(subtherapeutic doses); 7th group: IMI-Zn complex 20 mg/kg (effective dose).

Each experimental group consisted of 10 mice randomly assigned before drug admin-
istration.

4.3. Behavioural Examination
4.3.1. Forced Swimming Test (FST)

FST was conducted according to the method described by Porsolt et al. [91] with minor
modifications. Glass tanks (25 cm height × 10 cm diameter) filled with water (23–25 ◦C)
to a depth of approximately 15 cm were used. Each mouse was separately put into a tank
for 6 min. The test session was recorded using a video camera and then analyzed by two
blinded investigators. The mice’s immobility time (s) was assessed for the last 4 min of the
test duration. An animal was considered immobile when it floated or made only minimal
movements to keep the head above water.

4.3.2. Tail Suspension Test (TST)

TST was conducted according to the method described by Steru et al. [92] with minor
modifications. Each mouse was gently suspended by the taped tail onto the bar positioned
approximately 50 cm above the floor using adhesive tape, ensuring that the mouse was
hanging freely without touching any surfaces. The session duration was set at 6 min.
The test session was recorded using a video camera and then analyzed by two blinded
investigators. The mice’s immobility time (s) was assessed for the last 4 min of the test
duration. An animal was considered immobile when it made only minimal movements
necessary to breathe.

4.3.3. Locomotor Activity Test

The locomotor activity apparatus (Opto-Varimex-4 Auto-Track, Columbus Instru-
ments, Columbus, OH, USA) consisted of eight square open-field arenas (dimensions:
43 cm × 43 cm × 32 cm) equipped with infrared photocells to detect the mouse’s move-
ment. Each mouse was individually placed in the center of the open-field arena. The
session duration was set at 6 min. Locomotor motility was determined as distance traveled
(cm) by mice in the last 4 min of the test duration, which corresponds with the time interval
evaluated in the FST and TST.

4.3.4. Research Scheme

The research schedule was presented on Scheme 1.

4.4. Biochemical Analysis
4.4.1. Collection of Blood Samples

Mice were decapitated after performing behavioral tests. The test material was blood
collected into an Eppendorf tube filled with EDTA to prevent blood clotting. The samples
were then centrifuged at 10,000 rpm for 15 min at 4 ◦C. After centrifugation, the plasma
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was collected into empty Eppendorf tubes to obtain material for further studies. Samples
were stored at –80 ◦C for 3 weeks.
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Scheme 1. Research scheme. Studies were divided into three steps: I. Dose-effect studies; II. Com-
parison studies, and III. Experiments done on naïve mice. Different cohorts of mice were used for
all three steps. Mice used in steps I-II were further divided into two groups: one subjected to FST
and the second to locomotor activity and TST. After the tests, mice were decapitated, and blood was
collected for biochemical studies. III. Naïve mice were not taken for any tests. They were decapitated,
and blood was collected for biochemical studies.

4.4.2. Determination of Biochemical Parameters

The prepared samples were tested to determine the activity of oxidative stress parameters.
GPX activity, GR activity, and TAS levels were measured using diagnostic kits. GPX and
GR activity were measured using the Glutathione Peroxidase Assay Kit and Glutathione
Reductase Assay Kit (Cayman Chemical, Ann Arbor, MI, USA). TAS levels were measured
using the ImAnOx® kit (TAS/TAC) (Immunodiagnostic AG, Bensheim, Germany).

4.5. Statistical Analyze

The recorded data were analyzed using statistical software (GraphPad Prism 10, ver-
sion 10.0.2) to compare the behavioral parameters between groups. The FST and TST
outcomes were shown as mice immobility time (s) arithmetic mean. In contrast, the lo-
comotor activity test is the arithmetic mean of distance traveled (cm) by mice in the last
4 min of the test duration ± standard error of the mean (S.E.M.) for each experimental group.

When applicable, statistical significance was determined using one-way ANOVA and
Dunnett’s or Tukey’s post-hoc test, with a significance level set at p < 0.05.

5. Conclusions

In conclusion, the behavioral studies demonstrate the antidepressant-like potential of
the IMI-Zn complex, with its effect shown to be dose-dependent after oral administration
to mice. Additionally, findings indicate that the IMI-Zn complex shows antidepressant
potential at lower doses (of both Zn and IMI) compared to the single administration of IMI
and Zn in therapeutic doses and their joint administration in subtherapeutic doses.

By developing the IMI-Zn complex, it might be possible to simplify the treatment
approach, potentially improving patient compliance by combining the therapeutic effects
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of both IMI and Zn within a single compound, thus addressing one of the contributing
factors to non-compliance in depression therapy. The IMI-Zn complex could be a valuable
strategy to optimize therapeutic outcomes and balance efficacy and tolerability.

Moreover, it was found that subjecting the mice to an acute stress factor (FST) did not
cause statistically significant changes in the activity of GPX, GR, and in the level of TAS,
which may indicate too short exposure time of the experimental animals to the stress stimulus.
The absence of statistically significant alterations in the measured oxidative stress indicators
among mice subjected to the IMI-Zn complex compound could stem from the stress stimulus
not disrupting the equilibrium between oxidation and reduction processes. Conversely,
the collected data might suggest that the IMI + Zn complex shares comparable antioxidant
characteristics with Zn and IMI. It seems reasonable to conduct research using the model
of chronic stress and the long-term administration of tested complex and consider the other
factors that underly superior properties of the IMI + Zn complex. The study’s constraints
involve conducting experiments exclusively on male mice. To substantiate the positive impacts
of the Zn-IMI complex, it is imperative to carry out research on female subjects.
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25. Styczeń, K.; Sowa-Kućma, M.; Dudek, D.; Siwek, M.; Reczyński, W.; Szewczyk, B.; Misztak, P.; Topór-Mądry, R.; Opoka, W.;

Nowak, G. Zinc and copper concentration do not differentiate bipolar disorder from major depressive disorder. Psychiatr. Polska
2018, 52, 449–457. [CrossRef] [PubMed]
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64. Nowak, G.; Siwek, M.; Dudek, D.; Zięba, A.; Pilc, A. Effect of zinc supplementation on antidepressant therapy in unipolar
depression: A preliminary placebo-controlled study. Pol. J. Pharmacol. 2003, 55, 1143–1147. [PubMed]

65. Ranjbar, E.; Shams, J.; Sabetkasaei, M.; M-Shirazi, M.; Rashidkhani, B.; Mostafavi, A.; Bornak, E.; Nasrollahzadeh, J. Effects of zinc
supplementation on efficacy of antidepressant therapy, inflammatory cytokines, and brain-derived neurotrophic factor in patients
with major depression. Nutr. Neurosci. 2014, 17, 65–71. [CrossRef] [PubMed]

66. Huang, Y.; Xu, D.; Xiang, H.; Yan, S.; Sun, F.; Wei, Z. Rapid antidepressant actions of imipramine potentiated by zinc through
PKA-dependented regulation of mTOR and CREB signaling. Biochem. Biophys. Res. Commun. 2019, 518, 337–343. [CrossRef]
[PubMed]

67. Kroczka, B.; Zieba, A.; Dudek, D.; Pilc, A.; Nowak, G. Zinc exhibits an antidepressant-like effect in the forced swimming test in
mice. Pol. J. Pharmacol. 2000, 52, 403–406. [PubMed]
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