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Abstract: Much of today’s molecular science revolves around next-generation sequencing. Frequently,
the first step in analyzing such data is aligning sequencing reads to a reference genome. This step
is often taken for granted, but any analysis downstream of the alignment will be affected by the
aligner’s ability to correctly map sequences. In most cases, for research into chromatin structure
and nucleosome positioning, ATAC-seq, ChIP-seq, and MNase-seq experiments use short read
lengths. How well aligners manage these reads is critical. Most aligner programs will output
mapped reads and unmapped reads. However, from a biological point of view, reads will fall into
one of three categories: correctly mapped, incorrectly mapped, and unmapped. While increased
sequencing depth can often compensate for unmapped reads, incorrectly and correctly mapped reads
appear algorithmically identical but can produce biologically significant alterations in the results.
For this reason, we are benchmarking various alignment programs to determine their propensity to
incorrectly map short reads. As short-read alignment is an important step in ATAC-seq, ChIP-seq, and
MNase-seq experiments, caution should be taken in mapping reads to ensure that the most accurate
conclusions can be made from the data generated. Our analysis is intended to help investigators new
to the field pick the alignment program best suited for their experimental conditions. In general, the
aligners we tested performed well. BWA, Bowtie2, and Chromap were all exceptionally accurate, and
we recommend using them. Furthermore, we show that longer read lengths do in fact lead to more
accurate mappings.

Keywords: alignment programs; ChIP-seq; NGS

1. Introduction

In today’s world of next generation sequencing (NGS) and high-throughput biology,
sequence read mapping has become, at most, an afterthought. With the ease of web-based
graphical user interfaces like Galaxy [1], any biologist can easily undertake bioinformatic
tasks, like sequence read mapping, which were previously left to the experts. While this
is overwhelmingly a positive development, it can also be a cause for concern. Mistakes
made at the sequence read-mapping step of the data processing pipeline can have drastic
downstream effects. Galaxy itself issues a warning for short-read alignment programs it
supports: “There is no such thing (yet) as an automated gearshift in short read mapping. It
is all like stick-shift driving in San Francisco. In other words, running this tool with default
parameters will probably not give you meaningful results. A way to deal with this is to
understand the parameters by carefully reading the documentation and experimenting.
Fortunately, Galaxy makes experimenting easy” [1].

The intent of this study is to provide useful information so that those with limited
bioinformatic experience who are undertaking short-sequence high-throughput assays,
such as ATAC-seq, ChIP-seq, and MNase-seq, can make informed decisions about align-
ment programs. To this end, we use two different approaches, one using biological data and
the other using in silico derived simulated reads. In the first approach, we cross-compare
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several aligner programs’ performance using real biological ChIP-seq data to see to what
extent ChIP-seq results will differ based solely on the aligner used. With the second ap-
proach, we generate simulated sequence reads to quantify the accuracy of each aligner
programs’ alignments.

As noted above, there are two main ways to evaluate alignment programs, using
simulated data sets or biological data sets. The benefit of using real data (biological) is
that it is derived from real biological samples and conditions. The downside with testing
biological data is that your output only tells you if reads mapped or did not map to the
genome. There is no way of knowing if the reads are correctly mapped to the loci from
which they were derived. Most benchmarking studies have used real data [2]. Conversely,
using simulated data allows us to know if the reads are correctly mapped or not to the loci
of origin. The downside of simulated data is that it is hard to exactly replicate biological
conditions. Fewer benchmarking studies use simulated data [3]. Here, we are doing both
types of analysis to mitigate the weaknesses of each approach.

We chose several short-read alignment programs and benchmarked their performance
based on how well they correctly mapped short (150-nucleotide × 2, 100-nucleotide × 2)
to very short (50-nucleotide × 2, 25-nucleotide × 2) NGS-style paired-end reads as well
as how they handled a ChIP-seq data set. BWA, Bowtie2, Gsnap, Subread, and Chromap
are the aligner programs that were tested [4–8]. We chose these aligners based on three
criteria: citations, short read useability, and ease of use. The criteria are further detailed in
the Methods section. Each of the aligners we chose indexes the reference sequences and not
the reads. Indexing the reference has been the more popular choice for aligners as it uses
computational resources more judicially [9]. Bowtie2 and BWA both use a Burrows–Wheeler
Transform (BWT) to index the reference. Chromap, Gsnap and Subread use hashing. For
aligning, Bowtie2 uses a Needleman–Wunsch algorithm. BWA and Chromap use a Dynamic
Programming algorithm. Gsnap uses a Non-DP Heuristic algorithm. Subread uses a Smith–
Waterman algorithm [4–8]. While we recognize that a study of how aligners are built
algorithmically is important, our aim is to provide information to those who are neophytes
and do not necessarily need to understand all the bioinformatical specifics, but for learning
about alignment algorithms, we recommend the following review papers [9,10].

The ChIP-seq data set used in our analysis was taken from the ENCODE consortium
(see data availability section for accession number) [11]. These data were used to test
if depending on the alignment program used, downstream analysis and results would
be different.

The program ART was used to generate NGS-style reads from the H. sapiens (human)
genome GRCh38p14 [12]. ART takes a reference sequence file and generates reads from it.
It also generates a perfectly mapped SAM file for the ART-generated reads, thus allowing
the user to know from which loci the reads were generated. The reads can then be run
through an alignment program, and the output can be compared to the perfectly mapped
SAM file alignment. This allows classification and quantification of how many reads were
mapped correctly, mapped half-correctly, mapped incorrectly, or not mapped (Figure 1).
We define “mapped correctly” as both paired end reads aligned to the same sequence from
which they were generated, “mapped half-correctly” as one of the paired ends aligned
to the same sequence from which it was generated, “mapped incorrectly” as aligned to a
different sequence than the one from which it was generated, and “unmapped” as neither
paired-end read aligned to the reference genome. We will use these definitions henceforth.
Bioinformatically, there is no difference between mapped correctly and mapped incorrectly,
as the alignment program, in both cases, aligns the reads. However, this distinction is used
because there is a difference biologically.
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Figure 1. The selected reference genome is used by ART to produce Illumina-style reads in a fastq
format. Additionally, a perfect alignment file is produced by ART designating the true genomic loci
from which each read was derived. The ART generated fastq file is aligned to the reference genome,
and then custom scripts are used to evaluate how well each alignment program did (Imperfect
Alignment) compared to the Perfect Alignment file.

2. Results
2.1. ChIP-Seq Comparison

Raw ChIP-seq data were aligned with each of the alignment programs. Following
the alignment, Peaks were called with MACS2 [13]. Table 1 shows how many peaks were
called using each aligner program. Default parameters for each of the aligners were used to
align the reads, and the same MACS2 parameters were used to process all five alignments
and call peaks.

Table 1. Number of peaks from each alignment.

Aligner Number of Peaks

Bowtie2 76,915
BWA 76,136

Chromap 74,388
Gsnap 273

Subread 76,007

MACS2 called the fewest peaks from the Gsnap alignment with only 273, and further
analysis showed that no peaks were called in chromosomes 9 through 23. The other four
alignments resulted in between 74,388 and 76,915 peaks called, which is a small discrepancy
of ~3% the in number of peaks. Overall, Bowtie2 and BWA alignments resulted in highly
similar peak numbers and positions, with Bowtie2 finding only 340 peaks (0.44%) that
were not found by BWA, and BWA finding only 195 peaks (0.26%) that were not found by
Bowtie2. A total of 6315 peaks (8.31%) found with the Bowtie2 alignment were not found
using the Subread alignment, while the Subread alignment resulted in only 351 peaks that
were not found by Bowtie2. The Chromap alignment resulted in slightly fewer peaks than
the other previously mentioned alignments but had a similar performance to Subread in
that 6020 peaks (8.31%) from the Bowtie2 alignment were not found using the Chromap
alignment. Also, the Chromap alignment resulted in 140 peaks that were not found using
the Bowtie2 alignment. Finally, the Gsnap alignment data resulted in a tremendous paucity
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of peaks across the genome (Supplemental Figure S1), and the peaks that were produced
using its read output were extremely broad.

As a typical example, Figure 2 shows peaks called by MACS2 using all five read
aligners’ read alignments data at the chr8:9,024,498–9,084,425 locus. Peaks called from the
Bowtie2 and BWA alignments result in peaks that are usually very similar. As exemplified
in Figure 2, box C, both Bowtie2 and BWA alignments result in calling this peak, but using
the data from the other three aligners, MACS2 does not find it. While Bowtie2 and BWA
alignments often result in the same peaks, a very small minority of the peaks from these
alignments are incongruent (<0.5%). Figure 2 box A is an example of where these two
alignments result in different peaks being called. Figure 2 box B shows a peak that was
called in all alignments except for the alignment generated by Gsnap. In box B, however,
we see that the width of the peaks varies between alignments. These data show that even
when similar number of peaks are called, the differences in the alignment step due to the
use of different aligner programs result in different peaks being called and almost certainly
in different biological interpretations, especially when looking at individual loci.
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Figure 2. Peaks called at the chr8:9,024,498–9,084,425 locus. At the top of the figure, the entirety of
chromosome 8 is represented with a very subtle red box demarking their locus, which is depicted
below. Boxes A, B, and C highlight instances of congruent and incongruent peaks called from the
alignments generated by the various aligner programs.

2.2. Generated Read Comparison

To directly analyze the accuracy of each genome aligner we used both the top-level
assembly of the human genome and the primary assembly to generate in silico reads. The
top-level assembly contains non-chromosomal contigs, patches, and haplotypes that repre-
sent minor alleles and other variations between human genomes. In the top-level assembly,
these extra-chromosomal contigs are not part of the 24 chromosomal contigs/scaffolds
representing the 22 autosomes and the X and Y chromosomes, but they are annotated and
numbered separately. The primary assembly contains only the assembled chromosomes for
the consensus, haploid human genome (24 contigs/scaffolds). ART was used separately on
both assemblies to generate sequence reads, and the SAM files generated by ART (Perfect
Alignment) were compared to the SAM files generated by the alignment programs using
custom python programs available at the GitHub address provided below. We performed
this analysis in triplicate. For each read length (150-nucleotide × 2, 100-nucleotide × 2,
50-nucleotide × 2, and 25-nucleotide × 2), three separate libraries were generated with
ART, and then each library was aligned individually and compared to the perfect alignment
data. The output of these analyses showed which reads the aligners mapped correctly,
half-correctly, incorrectly, and did not map (unmapped).

2.3. Accuracy

The average percentage of reads across the three replicates that aligned correctly,
aligned half-correctly, aligned incorrectly, and were unmapped for each program at each
read length is shown in Figure 3. Panel A of Figure 3 shows reads generated from and
aligned to the top-level human genome assembly, while panel B shows reads generated
from and aligned to the Primary human genome assembly. Bowtie2 and BWA show a 5%
increase in correctly mapped reads from the top-level assembly to the primary assembly.
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Gsnap shows a 4–6% increase depending on the read length. Chromap shows a 9% increase
and Subread shows a 6% increase. Other than the overall better performance with the
primary assembly, the general trends remain the same between the two genome assemblies.
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Unsurprisingly, Figure 3 shows that as the read length increases, so does the percent
of correctly mapped reads, while the percent of incorrectly mapped and unmapped reads
decreases. Using the Top-level Assembly, Bowtie2 shows 85.9%, 89.2%, 91.2%, and 91.7%
of reads correctly mapping at 25 nt, 50 nt, 100 nt, and 150 nt, respectively. It also shows
12.9%, 9.6%, 8.3%, and 7.9% of reads incorrectly mapping at 25 nt, 50 nt, 100 nt, and 150 nt.
The BWA output is extremely close to that of Bowtie2 with 85.9%, 89.5%, 90.9%, and 90.3%
of reads correctly mapping and 12.2%, 9.2%, 7.6%, and 7.2% incorrectly mapping at 25 nt,
50 nt, 100 nt, and 150 nt, respectively. Chromap shows 50.4%, 78.2%, 81.4%, and 82.0% of
reads correctly mapping and 0.2%, 0.05%, 0.002%, and 0.001% of reads incorrectly mapping
at 25 nt, 50 nt, 100 nt, and 150 nt, respectively. Gsnap shows 57.3%, 83.4%, 84.1%, and 86.9%
of reads correctly mapping and 10.9%, 9.8%, 8.6%, and 8.1% of reads incorrectly mapping
at 25 nt, 50 nt, 100 nt and 150 nt, respectively. These trends are seen in all aligners except
Subread, which shows a dramatic decrease in unmapped reads as the read length increases;
however, Subread, like the other aligners, also shows a substantial decrease in incorrectly
mapped reads as the read lengths increase. With the Top-level Assembly, Subread shows
48.9%, 71.4%, 66.5%, and 57.6% of reads correctly and 0.9%, 2.1%, 0.9%, and 0.5% of reads
incorrectly mapping at 25 nt, 50 nt, 100 nt, and 150 nt. While Bowtie2 and BWA performed
similarly, we see that the amount of half-correct reads was greater in the BWA data set. In
the Top-level Assembly, Bowtie2 shows half-correct-mapping reads decreasing from 3% at
25 nt to 0.2% at 150 nt of the reads, while BWA shows 9% decreasing to 1.9% of the reads
being half-correct as the read lengths increase from 25 to 150 nt. It is noteworthy that the
increase in half-correct reads in BWA is approximately the same percent as the difference
between the incorrectly mapping reads between Bowtie2 and BWA. Finally, Chromap had
very few incorrectly mapping reads, from 0.2% for the 25 nt read length to 0.001% for the
150 nt read length, using the Top-level Assembly.

2.4. Further Analysis

We suspected and wanted to test if the incorrectly mapped reads were caused by errors
in the sequencing. ART builds in errors at a rate similar to known Illumina error rates and
records these “sequencing errors” in the Perfect Alignment SAM file in the CIGAR score
column. Thus, using custom scripts, we determined which of the sequence reads that did
not align correctly (the incorrectly mapped reads) had “sequencing errors”. Figure 4 shows
the percentage of the incorrectly mapped reads that have errors in the sequences, and we
see that all the aligner programs reported similar rates. Chromap shows higher rates of
incorrectly mapped reads that have errors. As might be expected, there is a trend that all
aligners show that with longer reads come higher rates of incorrectly mapped reads that
have errors, and that at the 150 bp read length, about 90% of the incorrectly mapped reads
had “sequence errors,” confirming that as the read length increases, the propensity for
error-free reads to align incorrectly drops dramatically.

A genomic analysis of incorrectly mapped reads did not provide conclusive evidence
for or against specific genomic elements that were more likely to have these incorrectly
mapped reads mapped to them. When viewed at the whole genome level, incorrectly
mapped reads do pile up at distinct genomic loci but do not result in localized peaks when
analyzed with MACS2 (data not shown). These read piles are well conserved between
Bowtie2 and BWA, which is unsurprising because of the similarities in the ways these
programs map reads (Supplemental Figure S2). When these piles are compared to all the
ART-generated reads (not mismatched but mapped to their loci of origin), we observe that
these piles seem to be frequently flanking areas of the genome that were masked both in the
generation of reads and in the mapping of reads (Supplemental Figure S2). When looking at
incorrectly mapped reads and a base pair resolution, there is little to no difference between
the ART reads and the aligner mapped reads (Supplemental Figure S3). Thus, it is hard to
conclude that incorrectly mapped reads are due to some genomic elements.
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2.5. Accessibility

Finally, as part of the purpose of this study was to see which of our tested aligners
would be easiest for new informaticians to work with, we assessed the ease of use based
on the following: (1) the quality of the documentation provided by the program, (2) if the
program is still being supported, and (3) if the program was able to work with little to no
help. We realize that this is anecdotal data and would vary based on the experience of the
user. BWA, Bowtie2 and Chromap were all very well-documented, very well supported,
and extremely easy to use. The rest of the aligners were well-documented, somewhat
supported, and moderately easy to use. In general, based on ease of use, we would
recommend BWA, Bowtie2 and Chromap for novice users, and we would recommend the
other aligners to those that have some experience with computational biology.

3. Discussion

Overall, the aligners did well in correctly mapping short reads. With longer read
lengths, the aligners, generally, mapped more reads correctly. While this is expected, the
increase in accuracy is quite dramatic: from 85.9% to 91.7% in Bowtie2 and similar in the
other aligners, except Subread. When possible, we recommend using paired end reads of
at least 100 nt, and we observe that the gains associated with 150 nt reads are minimal. Our
ART-generated reads were derived from DNA with a 251 bp fragment size. This size was
used because it more closely follows typical fragment lengths found in ChIP-seq data sets.
We do recognize that ATAC-seq data sets consist of mostly shorter DNA fragments, and
read lengths of 100 nt may not yield any better accuracy for those shorter fragments but
could substantially increase the accuracy of the alignment for reads from longer fragments.

We see an increase in accuracy in aligned reads with the reads generated from the
Primary genome assembly when compared to those generated from the Top-level genome
assembly. This is likely due to the primary assembly not having confounding contigs
to which reads can be mismatched. The top-level assembly contains non-chromosomal
contigs, patches, and haplotypes that represent minor alleles and other variations between
human genomes, whereas the primary assembly contains only the assembled chromosomes
for the consensus human genome. Thus, in some instances, reads with “sequence errors”
derived from one chromosome or non-chromosomal contig in the top-level assembly could
map better to the orthologous sequence (the contig or chromosome sequences, respectively)
and be classified as mapped incorrectly. For ATAC-seq, ChIP-seq and MNase-seq-type
experiments, aligning to the top-level assembly could therefore result in two peaks called
when in biological terms, there is only one. We recommend using the primary assembly for
these types of experiments to avoid this issue.

When looking at the half-correct alignments, we see varied results. Bowtie2 and
Chromap have low numbers of half-correct reads, around 0.3% and 0.1%, respectively.
BWA is slightly higher at 1%, and Gsnap and Subread have significant half-correct subsets,
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each at around 5%. As previously stated, each of these programs was run with default
parameters, and each program handles fragment sizes differently. This variable is possibly
the cause of the large half-correct subsets in BWA, Gsnap and Subread. We strongly
encourage understanding aligners’ parameters so that the best results can be achieved
for specific experimental conditions. We also suggest using our provided custom python
programs and ART to mimic specific data sets and experiment with parameters that could
result in better accuracy for each experiment. We did not adjust parameters in this study
because default parameters are set as default by the program designers because they are
expected to be the most likely used and thus most useful in general circumstances. Also,
given the number of potential parameter combinations, it was not practical for us to even
begin to test them.

Chromap produced incredibly low amounts of incorrect reads. For example, in the
150 nt data set, Bowtie2, BWA and Gsnap had hundreds of thousands of incorrect reads.
Subread had tens of thousands of incorrect reads, and Chromap had hundreds of incorrect
reads. While there is a substantial increase in unmapped reads, the overall accuracy of
Chromap makes it a compelling program to use. The large number of unmapped reads
(and potentially missed biological data) from Chromap most likely can be compensated
for by deeper sequencing unless Chromap shows some bias in the reads it does not map
(which we did not detect). It should also be noted that Chromap did not allow for reads
below 36 nt without altering the default parameters (denoted by * in Figure 3). This could
explain why only ~50% of the 25 nt reads mapped correctly.

In our study, the telomeric and repeat regions of the human reference genome used to
generate the ART reads were annotated as non-specific nucleotides (N); in other words, a
hard masked reference genome was used. For this reason, ART excluded these regions in the
generation of the NGS libraries. We recommend that reads mapped to regions identified in
the ENCODE blacklist should not be used in downstream analysis in ATAC-seq, ChIP-seq,
or MNase-seq experiments [14].

The high rates of reads with errors in the incorrectly mapped read sets indicate that
the aligner program is incorrectly mapping reads because of the sequencing errors. There
are two ways in which the potential problems from these incorrectly mapped reads could
be overcome: first, with better sequencing quality, and second, with increased sequencing
depth. More reads would not change the rate of errors, but if sequencing errors are
near-random events, it would dilute the effect that the incorrectly mapped reads have on
downstream analysis. When we look at the incorrectly mapped reads with errors (Figure 4),
we see that Chromap has a slightly higher rate than the other aligners and that the rates
go up as the read length increases. The number of incorrectly mapped reads generated
from Chromap was extremely small compared to the other aligners, while the number of
reads not mapping was proportionally much higher. This likely indicates that Chromap has
very stringent read quality control and will not even attempt to map reads that are suspect,
due to their quality scores, of having sequencing errors. But when reads are incorrectly
mapped by Chromap, it is usually (over 90%) due to sequence errors. Since the numbers
of incorrectly mapped reads with Chromap at 100 nt and 150 nt lengths are so incredibly
low (0.002% and 0.001%), these incorrectly mapped reads are of little biological concern,
especially if complemented with increased sequencing depth.

Finally, we were not able to conclusively determine if incorrectly mapped reads
mapped to particular genomic elements or loci. These inclusive results are likely due to
the relatively low depth of coverage used in our simulated read analysis. Whereas it is
possible to do much deeper coverage analysis on biological data from MNase-seq, ChIP-seq
or ATAC-seq data (due to the vast majority of reads mapping to only a small subset of the
genome) and thus see peaks, a deep-coverage analysis is not practical with simulated ART
reads, as ART generates reads across the entire non-masked portion of the genome and not
a small subset of it. Such an analysis will most likely not be possible until a read generator
is developed to specifically simulate short-read data sets (i.e., MNase-seq, ChIP-seq or
ATAC-seq data sets).
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4. Materials and Methods

The five alignment programs used for comparison were chosen based on several
criteria. We included only aligners that specialize in short reads, as this study is concerned
with finding the best program for ChIP-seq, ATAC-seq, and MNase-seq experiments.
Aligners that required read lengths longer than 50 nt were omitted. Furthermore, aligners
that are not equipped to handle indels and substitutions were not included, as those are
the most common sequencing errors with Illumina sequencing [15].

In addition to the criteria listed above, aligner programs were also vetted based on
popularity and ease of use. With the exception of Chromap, we chose commonly (meaning
the aligner has been cited at least 100 times) used aligners. Chromap was originally
published in 2021 and was included because it was designed specifically for ATAC-seq and
ChIP-seq data. Also, aligners whose documentation was no longer available or was deemed
insufficient were omitted. Furthermore, each aligner was used with default parameters, or
close to default, when user-designated parameters were required. A complete set of aligner
usage is found in the supplemental section (Supplemental File S1).

Raw ChIP-seq data were aligned with each of the individual alignment programs.
Following the alignment step, SAM files were converted to BAM with Samtools [16], and
duplicate reads were removed with Picard MarkDuplicates [17]. Peaks were called with
MACS2 with the default parameters except: no control, paired end bam, and nomodel.
BED files were visualized using the IGV genome browser [18–21]. The number of peaks
is reported in Table 1. To calculate the number of unique peaks generated from each
alignment, peaks were called again with MACS2 with the same parameters as above but
this time with the other alignments as a control (Table 2). This shows the differential peak
number between any two alignments or more specifically the number of peaks that are in
the test alignment that are not in the control alignment.

Table 2. Number of unique peaks from each alignment.

Aligner: Control Number of Unique Peaks

Bowtie2: BWA 340
BWA: Bowtie2 195

Bowtie2: Subread 6315
Subread: Bowtie2 351

Bowtie2: Chromap 6020
Chromap: Bowtie2 140

We used the program ART to generate Illumina-type sequence reads. Illumina-type
reads were chosen because of the prevalence of Illumina sequencing currently in the
chromatin field. We generated reads with an average fragment length of 251 bp with a
10 bp standard deviation. This length was used to mimic the length of fragments found in
ChIP-seq experiments. Furthermore, for the same reason, read lengths of 25, 50, 100 and
150 nt were used, and all reads were paired end.

When generating reads, ART incorporates errors, both substitutions and indels, into
the reads. The amount of substitution errors can be set manually or by built-in algorithms
that follow typical read error rates for different platforms. For this study, we used error rates
that follow the Illumina HiSeq 2500 platform. These substation error rates were increased
by one-tenth to ensure that there were enough errors to analyze without making the data
unrealistic. The number of indels was set to follow typical Illumina indel error rates.

The number of reads generated was set to adequately cover the human genome while
keeping the computational workload within working limits. We chose the Homo sapiens
genome because of the large amount of available data generated from ATAC, MNase, and
ChIP-seq projects completed with human samples and because of the complexity of the
human genome. For the analysis, the desired fold-coverage was used to generate the
number of reads instead of total read count to allow for even coverage across the entire
genome for the various read lengths tested. When generating ART reads by total read
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count, each chromosome in the reference file will have the same total number of reads
regardless of chromosome size. This would have been a problem with the human genome
because chromosome size varies greatly. A complete set of ART usage and parameters can
be found in the supplemental section (Supplemental File S1).

ART generates a SAM file with the generated reads perfectly aligned to their genomic
loci of origin. We compared the SAM file generated by ART to the SAM files generated
by the alignment programs using custom-made Python programs. These programs look
at the locus of the read from the aligner SAM file and determine if it is the same locus as
the ART SAM file. The output of these programs classified the reads the aligners mapped
as correctly mapped, half-correctly mapped, and incorrectly mapped. The unmapped
classification was taken from the FLAG scores in the aligner SAM files. In the case of
Chromap, the SAM file did not report unmapped reads. This is because the SAM output is
not the default for Chromap, BED is, and there is no way to report unmapped reads in a
BED file. Therefore, unmapped reads for Chromap were calculated by subtracting the sum
of incorrect, correct, and half-correct reads from the total number of reads in the fastq files.
The custom-made Python programs are available at the provided GitHub address.

In order to analyze where incorrectly mapped reads were mapping to the genome, ART-
generated SAM files (perfect alignment reads) and aligner program-generated SAM files of
incorrectly mapped reads were converted to BigWig files with DeepTools version 3.5.2 [22]
and viewed with the IGV genome browser.

5. Conclusions

We recommend the use of Bowtie2, BWA and Chromap, as they have all performed
well under default parameters, even to the point that a novice should feel comfortable
using them. However, as with all science, it is still necessary to do due diligence and not
take these programs for granted. We recommend first understanding the parameters of the
programs and then testing them to see what settings work best for specific data sets using
ART to simulate reads. Furthermore, when at all possible, read lengths of 100 nt or larger
should be used.

Here, we have provided a methodological overview and custom Python scripts that
should enable a neophyte to use ART to produce simulated reads that match the character-
istics of their biological data, use the tested aligner programs to map the reads, and then use
our custom Python scripts to evaluate the effectiveness of each aligner. By doing so, one can
make a data-based decision on which aligner program to use to map their biological reads.
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