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Abstract: A chemotherapeutic approach is crucial in malignancy management, which is often chal-
lenging due to the development of chemoresistance. Over time, chemo-resistant cancer cells rapidly
repopulate and metastasize, increasing the recurrence rate in cancer patients. Targeting these destined
cancer cells is more troublesome for clinicians, as they share biology and molecular cross-talks with
normal cells. However, the recent insights into the metabolic profiles of chemo-resistant cancer
cells surprisingly illustrated the activation of distinct pathways compared with chemo-sensitive or
primary cancer cells. These distinct metabolic dynamics are vital and contribute to the shift from
chemo-sensitivity to chemo-resistance in cancer. This review will discuss the important metabolic
alterations in cancer cells that lead to drug resistance.

Keywords: Warburg pathway; pentose phosphate pathway; OXPHOS; drug resistance; metabolic
reprogramming

1. Introduction

Conventional cancer management depends on surgery coupled with chemo- or ra-
diotherapy. In recent times, several kinase pathway blockers are also in use as anticancer
drugs [1,2]. Primarily, the conventional cancer therapy process can reduce the tumor mass
initially, but unfortunately, repeated treatment of the same anticancer drug does not re-
spond to the cancer cells at a later stage, due to genetic alterations in the cancer cells and
tumor microenvironment [3,4]. Thus, the development of drug resistance provides the
cancer cells with suitable conditions to repopulate and metastasize at the distal organs [5].
Several recent studies mentioned that therapy resistance against conventional anticancer
agents develops due to metabolic reorganizations in the cancer cells [6] (Figure 1).

The ability of cancer cells to modify their metabolism to meet the increased energy
demand caused by continuous growth, fast multiplication, and other traits distinctive
to neoplastic cells is known as metabolic reprogramming [7]. Metabolic reprogramming
is a major obstacle to cancer therapy because metabolite deprivation therapy not only
accelerates the growth of tumors but can cause immune cells to become dysfunctional in
the tumor microenvironment [8]. Most cancer cells upregulate glucose and/or glutamate
uptake to supply carbon for biosynthesis and cope with energy requirements even in
the presence of oxygen (Warburg effect). However, targeting this pathway eventually
turns on dormant metabolic pathways that can replace the Warburg pathway [9]. For
instance, silencing glycolytic genes can restrict the Warburg pathway, but leads to the
hyperactivation of the fatty acid oxidation (FAO) pathway and mitochondrial biogenesis in
cancer cells [10,11]. Therefore, singly targeting the Warburg pathway may not be enough
to supply therapeutic benefits.
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cells that have traits in common with stem or progenitor cells. Moreover, CSCs do not 
depend on metabolic pathways that are associated with conventional cancer cell 
populations; additionally, they hold similar metabolic signatures to noncancerous cells 
[12,13,14]. Through adaptation to and communication with the tumor microenvironment 
along with therapeutic pressures, dormant CSCs can activate and grow to form a 
secondary tumor [15]. More often, the molecular signatures of these secondary tumors 
vastly differ from the primary ones and are highly therapy-resistant (Figure 1).  

 
Figure 1. Primary tumors are metabolically dependent on the Warburg pathway for fast energy and 
carbon sources, and several oncogenic activations feed into it. The first line of cancer therapy with 
multiple pathway blockers can inhibit the oncogenic activations, but in turn, cancer cells reprogram 
themselves, and dependency upon the Warburg pathway shifts to other metabolic pathways. 
Moreover, the theory of CSC’s self-renewal is now a popular area of study, which might be a factor 
that controls tumor recurrence. The evolved drug-resistant tumors are more aggressive and do 
metastasize to distant sites in the human body and form secondary tumors. CSC: cancer stem cells, 
“↑” indicates upregulation and “?” indicates the probable pathway activation (This figure was drawn 
using the Bio Render app). 

Cells intake glucose from the extracellular space through glucose transporters 
(GLUT) [16]. Cancer cells upregulate these GLUT families to intake excessive amounts of 
glucose from the extracellular environment [17,18]. Normal cells use glycolytic pathways 
to metabolize glucose and produce pyruvate and acetyl-CoA to feed the tricarboxylic acid 
(TCA) cycle [19]. In cancer cells, the addiction to glucose modifies the glycolytic pathway 
to produce excessive amounts of lactate and lowers the pyruvate to acetyl-CoA production 
[20]. The altered glucose metabolism in cancer offers fresh explanations for medication 
resistance because the molecular mechanisms behind it are still poorly understood (Figure 
2A). This article supplies an update on the metabolic reprogramming pathways 
implicated in tumor resistance. 

Figure 1. Primary tumors are metabolically dependent on the Warburg pathway for fast energy
and carbon sources, and several oncogenic activations feed into it. The first line of cancer therapy
with multiple pathway blockers can inhibit the oncogenic activations, but in turn, cancer cells repro-
gram themselves, and dependency upon the Warburg pathway shifts to other metabolic pathways.
Moreover, the theory of CSC’s self-renewal is now a popular area of study, which might be a factor
that controls tumor recurrence. The evolved drug-resistant tumors are more aggressive and do
metastasize to distant sites in the human body and form secondary tumors. CSC: cancer stem cells,
“↑” indicates upregulation and “?” indicates the probable pathway activation (This figure was drawn
using the Bio Render app).

Another popular concept of drug resistance in cancer involves the reawakening of
dormant cancer stem cells (CSCs). The dormant CSCs are distinct populations of cancer cells
that have traits in common with stem or progenitor cells. Moreover, CSCs do not depend
on metabolic pathways that are associated with conventional cancer cell populations;
additionally, they hold similar metabolic signatures to noncancerous cells [12–14]. Through
adaptation to and communication with the tumor microenvironment along with therapeutic
pressures, dormant CSCs can activate and grow to form a secondary tumor [15]. More
often, the molecular signatures of these secondary tumors vastly differ from the primary
ones and are highly therapy-resistant (Figure 1).

Cells intake glucose from the extracellular space through glucose transporters
(GLUT) [16]. Cancer cells upregulate these GLUT families to intake excessive amounts of
glucose from the extracellular environment [17,18]. Normal cells use glycolytic pathways
to metabolize glucose and produce pyruvate and acetyl-CoA to feed the tricarboxylic
acid (TCA) cycle [19]. In cancer cells, the addiction to glucose modifies the glycolytic
pathway to produce excessive amounts of lactate and lowers the pyruvate to acetyl-CoA
production [20]. The altered glucose metabolism in cancer offers fresh explanations for
medication resistance because the molecular mechanisms behind it are still poorly un-
derstood (Figure 2A). This article supplies an update on the metabolic reprogramming
pathways implicated in tumor resistance.
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Figure 2. Glucose uptake and its catabolism take place through glycolysis. (A) The glycolysis 
pathway is linked with the tri-carboxylic acid pathway (TCA) for a full breakdown of glucose 
molecules. The cancer cells upregulate glycolytic enzymes, thus increasing pyruvate and lactate 
production. Pyruvate acts as an antioxidant, while lactate makes the cellular medium acidic, which 
helps in cancer growth. HIF-1a, MYC, KRAS, and several other oncogenic proteins are involved in 
accelerating the transcription of the much-needed glycolytic genes. The glycolysis in cancer cells 
differs from that in normal cells. In cancer cells, the breakdown of glucose is incomplete, and a large 
amount of lactate is generated (acronyms: GLUT1: glucose transporter 1, HK2: hexokinase 2, GPI: 
glucose-6-phosphate isomerase, PKM2: pyruvate kinase M2, LDHA: lactate dehydrogenase A, 
MTC: monocarboxylate transporters, TCA cycle: tricarboxylic acid cycle, HIF-1α: hypoxia inducible 
factor 1-alpha, red ↑ indicates upregulation). (This figure was drawn using the Bio Render app). (B) 
The aerobic glycolysis/ Warburg pathway is connected with several metabolic processes that sustain 
the cancer cells’ ability to survive in difficult environments. Other than the catabolic pathway, 
glycolysis is associated with cancer biomass synthesis and antioxidative mechanisms. The flow 
describes the association of glycolysis with various mechanisms. 

2. Warburg Effect on Cancer Cell Proliferation 
Glucose is the main macronutrient used as an energy source for proliferative cancer 
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is produced even aerobically in the presence of fully functional mitochondria. This 
mechanism of the respiration process is known as the Warburg effect, named after Otto 

Figure 2. Glucose uptake and its catabolism take place through glycolysis. (A) The glycolysis
pathway is linked with the tri-carboxylic acid pathway (TCA) for a full breakdown of glucose
molecules. The cancer cells upregulate glycolytic enzymes, thus increasing pyruvate and lactate
production. Pyruvate acts as an antioxidant, while lactate makes the cellular medium acidic, which
helps in cancer growth. HIF-1a, MYC, KRAS, and several other oncogenic proteins are involved in
accelerating the transcription of the much-needed glycolytic genes. The glycolysis in cancer cells
differs from that in normal cells. In cancer cells, the breakdown of glucose is incomplete, and a
large amount of lactate is generated (acronyms: GLUT1: glucose transporter 1, HK2: hexokinase 2,
GPI: glucose-6-phosphate isomerase, PKM2: pyruvate kinase M2, LDHA: lactate dehydrogenase A,
MTC: monocarboxylate transporters, TCA cycle: tricarboxylic acid cycle, HIF-1α: hypoxia inducible
factor 1-alpha, red ↑ indicates upregulation). (This figure was drawn using the Bio Render app).
(B) The aerobic glycolysis/Warburg pathway is connected with several metabolic processes that
sustain the cancer cells’ ability to survive in difficult environments. Other than the catabolic pathway,
glycolysis is associated with cancer biomass synthesis and antioxidative mechanisms. The flow
describes the association of glycolysis with various mechanisms.

2. Warburg Effect on Cancer Cell Proliferation

Glucose is the main macronutrient used as an energy source for proliferative cancer
cells. Therefore, the glucose uptake by the cancer cells exponentially increases and lac-
tate is produced even aerobically in the presence of fully functional mitochondria. This
mechanism of the respiration process is known as the Warburg effect, named after Otto
Warburg [21–23]. The process of aerobic glycolysis is not an optimum process of energy
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production, which is devoid of mitochondria from their function. Cancer cells adopt this
process of glucose metabolism for their need for fast energy sources and other metabolic
needs [24–26] (Figure 2B). As a result of the Warburg effect, ATP is produced less effi-
ciently for each glucose molecule; however, cancer cells reduce mitochondrial oxidative
phosphorylation (OXPHOS), and are thereby able to maintain a supply of carbon-based
building blocks otherwise lost as carbon dioxide [27,28]. The Warburg effect is practically
linked to the biosynthetic requirements for cancer cell proliferation (Figure 2B). The used
glucose serves as the carbon source for the anabolic process required for the proliferation
and de novo production of nucleotides for extensive DNA synthesis and lipid metabolism
in cancer cells [29–31].

Elevated glucose metabolism by the Warburg pathway concomitantly increases the
lactate production in the tissue microenvironment, making it acidic. Acidosis influences en-
hanced invasiveness to the cancer cells by altering the tumor–stroma interface [32]. The War-
burg pathway hinders the infiltration of immune cells to the tumor soma
(Figure 2B). Immune cells require glucose for their activity, the higher glucose uptake
capability makes the cancer cells upper-handed in the tumor microenvironment, which
limits the availability of glucose for tumor-infiltrating lymphocytes [33]. The Warburg
Effect is anticipated to give an overall advantage that promotes a tumor microenvironment
favorable to cancer cell growth. Collectively, due to high glycolysis utilization and high lac-
tate levels, cancer cells modulate immune cell infiltration and diminish the effectiveness of
immunotherapy [34–36].

The direct impact of altered glucose metabolism in cancer via signal transduction
influences other cellular processes such as the production and regulation of reactive oxygen
species (ROS), and the modification of chromatin states [37,38]. The Warburg effect alters
mitochondrial redox potential, leading to alterations in the production of ROS [33]. Reduced
nicotinamide adenine dinucleotide phosphate (NADPH) is produced via the glycolysis-
linked pentose phosphate pathway (PPP). Moreover, NADPH and glutathione, which
are produced through de novo serine metabolism, feed into one-carbon metabolism and
modulate ROS levels [39–41]. These findings establish direct biochemical linkages between
aerobic glycolysis and ROS availability, which might alter various signaling systems. The
signaling link between the Warburg pathway and histone acetylation can be connected via
acetyl-CoA. Acetyl-CoA levels may be sufficient to move cells into the development phase
via histone acetylation [42]. When glucose or ATP-citrate lyase is removed, acetylation on
numerous histones is reduced, resulting in the decreased transcription of genes involved in
glucose metabolism [43,44].

It has been shown that the extent to which the Warburg pathway is used by cancer
cells can influence their sensitivity to chemotherapeutic agents, and it is known that several
oncogenes and mutant tumor suppressors handle the Warburg effect in cancers. Among
these, sine oculis homeobox homolog 1 (SIX1), hypoxia-inducible factor 1-alpha (HIF-
1α), BHLH transcription factor (MYC), v-MYC avian myelocytomatosis viral oncogene
neuroblastoma derived homolog (MYCN), and Kirsten rat sarcoma virus (KRAS) are
notable transcription factors [45–49].

Oncogenic-driven glycolytic enzymes are switched on to ease the Warburg pathway.
The super-activation of the glycolytic enzymes in the glucose metabolism pathway makes
it the dominant pathway. Other metabolic pathways, including OXPHOS, go into recessive
mode to supplement the proliferation of cancer cells. The fast growth rate of the cancer
cells makes them vulnerable to chemotherapy. Studies in established cancer cell lines
demonstrated that resistant cells exhibit aerobic glycolysis and increased lactate levels,
which are elevated in drug-resistant or metastatic cancers [50]. Thus, the Warburg effect in
these cancers may reflect metabolic adaptations related to the emergence of resistance to
chemotherapy. Moreover, several glycolytic gene expressions and their activities escalate
in chemotherapy-resistant cancer cells. Recently, scientists discovered that lactate could
modulate DNA-damage repair processes in resistant cervical carcinoma cells [51].
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3. Transcriptional Regulation of Warburg Genes

Oncogenic transcription factors are essential for upregulating several genes that favor
cancer growth. From that point of view, researchers observed several Warburg genes being
transcribed by several oncogenic transcription factors such as the MYC transcription factors,
RAS family proteins, HIF-1α, mammalian target of rapamycin (mTOR), neurogenic locus
notch homolog protein 1 (Notch1), etc. (Figure 2A) [52].

HIF-1α is the most functional transcription factor in cancer, helping the cells to survive
and proliferate in stressful hypoxic conditions. HIF-1α upregulates transcription of all the
Warburg genes except for glucose-phosphate isomerase and monocarboxylate transporters
(glucose-6-phosphate isomerase (GPI) and SLC16 or SLC5 genes, respectively) [53]. Thus,
upregulated HIF-1α always correlates with higher glycolytic flux. Upon phosphorylation,
the signal transducer and activator of transcription 3 (STAT3) transcription factor can
alternatively activate HIF-1α during oxidative or hypoxic stress [54]. Therefore, STAT3 has
a passive role in maintaining the glycolytic flux in cancer cells. Transcriptional cofactors
such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)
are upregulated in hepatocarcinoma, glioma, and neuroblastoma. It shows an increase in
activity in the hypoxic regions of the tumors. PGC1α upregulates hexokinase 2 (HK2) and
GLUT4 in cancer cells [55], but the principal PGC1α targets are mitochondrial biogenesis
and OXPHOS genes in cancer cells [56].

The MYC proto-oncogene encodes transcription factors c-MYC and MYCN, which
bind to the gene promoter’s E-box region to either upregulate or repress transcription. In
previous research, we detected that MYCN can accelerate several glycolytic gene transcrip-
tions [10]. A similar instance was observed in glioblastoma with c-MYC. RAS family pro-
teins are also able to manipulate glycolytic genes positively through the RAF/MRK/ERK/c-
MYC and PI3K/AKT pathways [57]. A mutation in KRAS (G12V) may induce HIF-
1α stabilization. Similarly, c-MYC stabilizes HIF-1α at a normoxic state to alleviate
glycolysis [58].

4. Activation of Pentose Phosphate Pathway in Warburg Dominant Cancer Cells

The Warburg metabolism is distinguished by high glucose consumption and an in-
complete breakdown of lactic acid. With the Warburg pathway, the PPP (also known as the
hexose monophosphate shunt) serves many crucial roles in maintaining cancer cell home-
ostasis. The PPP branched from glycolysis at the first step of glucose-6-phosphate [59]. The
PPP is an integral part of the Warburg pathway for benefiting cancer cells and contributes
to cancer cells by operating in many ways, such as (I) to inhibit apoptosis by using the
reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) [60], (II) as an
alternative for energy maintenance via intermediates of the glycolytic products [27], (III)
by expanding the cellular pool of nucleic acid bases with genetic material [61], (IV) via
boosting glycolysis and therefore lactic acid generation to promote cancer cell survival [62],
and (V) by boosting cellular proliferation through nucleic acid, fatty acid, and amino acid
biosynthesis [60]. Reduced mitochondria-mediated metabolism with an increase in glucose
uptake leads to PPP activation in cancer cells. Activation of PPP is crucial for the cancer cells
in maintaining the NDPH/NADP+ ratio, which determines the redox state of the cells by
removing ROS elements and preventing cellular death [62]. For instance, the histone-lysine
N-methyl transferase 2 (NSD2)-driven tamoxifen-resistant cancers exhibit enriched PPP
that elevates NADPH production and reduces ROS levels [63]. Moreover, PPP produces
ribose-5-phosphate, which is important for nucleic acid synthesis [64]. According to studies,
cancer cells can directly or indirectly change PPP flux to enhance cell survival and prolif-
eration. In hepatocellular carcinoma, breast cancer, and lung cancer, multiple enzymes’
activity from PPP is elevated, and that refers to the poor survival probability [65]. For
example, silencing the PPP enzyme glucose-6-phosphate dehydrogenase (G6PD) reduces
cancer cell proliferation and migration by inhibiting STAT3 and epithelial-to-mesenchymal
transition (EMT) formation [62]. Further, BCL-2 (B-cell lymphoma 2)-associated athano-
gene (BAG1) can interact with and inhibit G6PD activity, reducing proliferation and DNA
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synthesis in hepatocellular carcinomas [66]. G6PD inhibition in breast cancer cells increases
glycolytic flux and glutamine uptake but reduces lipid biosynthesis [62,67]. G6PD silencing
in lung cancer can reduce cell migration and affect the enzymatic activity of multiple PPP
elements [68].

5. Flux Controlling between Warburg and Pentose Phosphate Pathway

HK and phosphofructokinase 1 (PFK1) are two rate-limiting enzymes in the glycolysis
pathway. The pentose phosphate pathway (PPP) and glycolysis are the two ways in which
the whole flux of glucose is diverted. The rate at which glucose enters glycolysis is regu-
lated by PFK1 [69]. In cancer cells, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase
(PFKFB) controls the cytoplasmic levels of fructose-2,6-bisphosphate and activates PFK1.
PFKFBs are often upregulated in pancreatic, colon, prostate, and breast cancers [70]. Protein
arginine methyltransferase 1 modifies PFKFB3 to become asymmetrically di-methylated
at R131 and R134. Reduced methylation of PFKFB3 suppresses fructose 2,6-bisphosphate
in cancer cells, diverting glucose utilization away from glycolysis and toward the pen-
tose phosphate route [71]. The post-translational modifications of the PFKFB isoform,
PFKFB3, enable glucose metabolism in response to the stress condition. Further, PFKFBs
are widely involved in cell cycle regulation, autophagy, and transcriptional regulation in
a non-glycolysis-dependent manner [72]. The fructose-6-phosphate and glyceraldehyde-
3-phosphate made in PPP can produce pyruvate by entering the glycolytic pathway [73].
NADPH and ATP are simultaneously produced in this flux mode, and mitochondria can
oxidize pyruvate to produce more ATP. Depending on their metabolic needs, cancer cells
alter the PPP and glycolysis pathways [64].

The metabolic flux diverts to PPP while an increase in ROS is observed. Higher ROS
accumulation shuts down GAPDH activity, and the reversibility of the glucose-6-phosphate
isomerase increases PPP flux [74,75]. Prolonged inhibition of GAPDH inhibits lactic acid
production and acidosis; however, those cells remain glucose-dependent and shift to lipid
metabolism. Altered metabolic flux through PPP implies fatty acid synthesis and NADPH
production [76–78]. It is noteworthy that blocking glycolytic flux rewrites the metabolic
signature of the cancer cells, and glucose compensates for the metabolic loss by increasing
fatty acid synthesis (FAS) through PPP [79–81]. It should be highlighted that cancer cells
have an unusual lipid metabolism, and FAS overactivation represents a distinguishing
characteristic. FAS is dependent on the energy of reducing equivalents such as NADPH,
which is mostly generated in PPP.

6. Metabolic Profiling of the Warburg Dominant Cells

Most cancer cells exhibit the Warburg effect, which is characterized by lactate fer-
mentation and excessive glucose absorption. The Warburg effect also causes a metabolic
rewiring that increases glutamine consumption and lipid production, both considered
cancer hallmarks [82].

The less-celebrated carbon source for cancer cells is glutamine. Many researchers
have emphasized the necessity of glutamine as a source of reduced nitrogen that maintains
nucleotide biosynthesis and non-essential amino acids [39]. Glutamine is taken up by cells
and may be utilized as an amino acid for protein synthesis; however, glutaminase converts
it largely to glutamate. Following that, glutamate is transformed into α-ketoglutarate [83].
Glutamine can also be metabolized to pyruvate and ultimately to lactate via malate in a
process known as glutaminolysis.

In the tumor microenvironment, the commensal relationships between tumor and
stroma need to be noted. The hypoxic tumor cells release lactate, and the more oxygenated
stromal cells recycle and are used as pyruvate for OXPHOS [84,85]. Aerobic glycolysis and
OXPHOS, or mitochondrial biogenesis, can be driven by a single oncogene, MYC, while
cells are located in the vicinity of blood vessels. Alternatively, while cancer cells are distal
from the oxygen source, MYC, in cooperation with HIF-1α can suppress mitochondrial
respiration without affecting the mitochondrial biogenesis process [86,87] (Figure 3). In the
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long run, MYC’s ability to promote mitochondrial biogenesis while inhibiting mitochondrial
respiration in proliferating cells is not unexpected. Because mitochondria are not only
responsible for efficient ATP production in the presence of oxygen, but also produce many
other building blocks of a growing cell, these include pyrimidines, the carbon backbone for
amino acids, whose synthesis is closely connected to the electron transport chain (ETC) via
the enzyme activity of dihydro-orotate dehydrogenase, and citrate, which is extruded into
the cytoplasm and transformed to acetyl-CoA for lipid biosynthesis [88].
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Figure 3. Commensal relationships between tumor cells. The hypoxic tumor cells release lactate,
which is recycled and utilized as pyruvate by the more oxygenated cells in OXPHOS. A single
oncogene, MYC, can induce aerobic glycolysis, OXPHOS, or mitochondrial biogenesis. Alternatively,
when cancer cells are far from an oxygen supply, MYC, in collaboration with HIF-1α, can decrease
mitochondrial respiration while not interfering with the mitochondrial biogenesis process (acronyms:
OXPHOS: oxidative phosphorylation, R1: tumor region 1, R2: tumor region 2, HIF-1α: hypoxia
inducible factor 1-alpha, MYC: BHLH transcription factor). (This figure was drawn using the Bio
Render app).

7. Reversing the Warburg Pathway

The Warburg effect is crucial to cancer. A way to alleviate the Warburg effect is to
convert pyruvate to acetyl-CoA, which could reduce the activation of both the PPP and the
glutamate pathway. On the other hand, mitochondrial biogenesis should be elevated to
generate ROS. Reversing the Warburg pathway can activate alternative pathway genes, such
as the fatty acid oxidation and glutamate pathways [89]. These pathways can supplement
acetyl CoA and alpha-ketoglutarate (α-KG) in the TCA cycle. Moreover, they can produce
nucleotides and evade ROS-mediated cellular damage (Figure 4).

To avoid the Warburg effect, scientists need to correct two intertwined phenomena. The
first is the metabolic bottleneck. The overexpressed pyruvate dehydrogenase kinase (PDK)
is the metabolic conjunction of the Warburg pathway, which makes it immortal in cancer
metabolism. The Warburg pathway is suppressed by PDK inhibition because it increases
the oxidation of glucose carbons in the TCA cycle at the expense of lactate fermentation [90].
The PDK negatively regulates pyruvate dehydrogenase (PDH) [91]. It has been proven
that genetically suppressing PDKs slows the growth of cancer cells in tumors and cultures.
Restoring PDH activity is essential for the conversion of pyruvate to acetyl-CoA [92]. In
cancer cells, PDK is upregulated and converts pyruvate to lactic acid [93]. Suppressing
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PDK can deliberately increase acetyl-CoA flux into the TCA cycle with simultaneous ATP
production. The most well-known inhibitor for PDK is dichloroacetate (DCA), which binds
to the pyruvate binding pocket of the PDK enzyme, leading to a change in the conformation.
Because of its capacity to activate PDC activity and improve oxidative elimination of lactate,
DCA is the most powerful lactate-lowering medication in clinical usage [94]. Because of the
role of lactate in tumor immunity, growth, and metastasis, as well as the well-established
inverse clinical association of lactate with survival, the ability of DCA to lower tissue and
circulating levels of lactate may be an underappreciated, but potent, antitumor action of
this and other PDK inhibitors [95]. Earlier reports showed that adding supplements of
α-lipoic acid (ALA) to the cancer cells could enhance the activity of PDH. ALA acts as a
cofactor for PDH; adding ALA to the cancer cells’ cultures reduces the growth of breast,
ovarian, colorectal, and lung cancer cells [96]. Therefore, it is logical to inhibit PDK activity,
which would partially restore PDH activity, thereby increasing the flux of pyruvate through
the TCA cycle while also inhibiting the production of lactic acid and, most significantly,
reducing the flux in the pentose pathway shunt.
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figure was drawn using the Bio Render app).

The second is the breakdown or elimination of mitochondria. The mitochondria are
damaged or destroyed by cytotoxic medicines. When treatment fails, there is a dramatic
increase in glucose absorption, as revealed on a positron emission tomography (PET)
scan. Chemotherapy resistance has been linked to mitochondrial activity, OXPHOS [97,98].
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Mitochondrial biogenesis is regulated by several factors in cancer cells, such as metabolic
status, tumor heterogeneity, tissue type, microenvironment, mitophagy, and tumor stage.
The most important mitochondrial biogenesis gene is PGC1α, which can be regulated by
several factors, as the mammalian target of rapamycin complex 1 (mTORC1) can stimulate
and c-MYC negatively regulates PGC1α [11]. PGC-1α-dependent mitochondrial biogenesis
may contribute to tumor metastatic potential [99]. The transcriptional networks governing
mitochondrial biogenesis affect treatment outcomes by providing cancer cells with the
metabolic flexibility to respond to targeted medicines and tumor microenvironments.
Resistance to mitogen-activated protein kinase kinase (MEK) inhibitors in V-RAF murine
sarcoma viral oncogene homolog B (B-RAF) or neuroblastoma RAS viral (V-Ras) oncogene
homolog (N-RAS) mutant melanomas was mediated by PGC-1α overexpression and could
be reversed by mTORC1/2 inhibition [100].

8. Metabolic Plasticity, a Switch between Warburg and Other Metabolic Pathways

Cancer cells, in contradiction to the Warburg theory, often retain functioning mitochon-
dria [101]. Mitochondria in cancer cells are essential for cell development and survival. The
tumor microenvironment promotes energy reprogramming via metabolic pathways such
OXPHOS, FAO, and glutaminolysis. This allows cancer cells to gain metabolic plasticity,
which is responsible for cancer cells shifting from chemo-sensitive to chemo-resistant. It has
been noted that the Warburg effect does not account for the energy production in cancer. It
has been proposed that metabolic symbiosis between cancer cells and stromal cells allows
cancer cells to produce ATP [102,103]. According to the “Reverse Warburg Effect” model,
stromal cells such as cancer-associated fibroblasts, adipocytes, and macrophages produce
and transfer metabolites to the cancer cells, where they are used for mitochondrial function
and OXPHOS [104,105] (Figure 4).

8.1. Warburg–Oxphos Switch

As we mentioned earlier, lactate produced by hypoxic cancer cells contributes to pyru-
vate synthesis, where the oxidative pathway remains dominant. This alternate metabolic
behavior sustains the cancer cells by communicating with each other and producing a
symbiotic niche in the tumor microenvironment, which is a profitable utilization and
re-utilization of the available substrate in a nutrient-constrained environment [106]. The
Warburg mechanism challenges mitochondrial activity—OXPHOS and cells divert the
glucose catabolic pathway into several aspects. However, the concept of metabolic plastic-
ity changes the scenario of Warburg dependency in several cancer cells, where OXPHOS
remains dominant. Aerobic glycolysis in cancer cells technically supports neighboring
tumor cells and permits the delivery of substrates to increase ATP generation, growth,
and proliferation via the OXPHOS pathway [27]. This process highlights the relevance
of interaction and molecular communication in cancer cell metabolism and shows that
the elevation of aerobic glycolysis is not an absolute standard in the tumor microenviron-
ment. The glucose-deprived cancer cells can sustain their metabolic plasticity through the
“reversed Warburg effect”, where the extracellular lactate is used up by the cells where
glucose deficiency occurs. Therefore, the lactate formed by the Warburg dominant cells
acts as the substrate for pyruvate production and is transformed to acetyl-CoA to feed the
TCA cycle [104,105].

Genetically, disruption of the Warburg pathway interrupts glycolytic metabolic flux
and reroutes the metabolism towards the OXPHOS pathway with little impact on cancer
cell growth. Therefore, what we understand is that (1) the constitutive active Warburg
pathway does not imply a loss in oxidative metabolism, and (2) mitochondria are capable
of taking the lead in adopting cancerous metabolism. Cancer cells depend significantly on
cytosolic aerobic glycolysis as well as mitochondrial respiration.

It has been clear that, in addition to the Warburg pathway, OXPHOS plays a critical
role in cancer progression [107]. Research on triple negative breast cancer exhibits both
enhanced OXPHOS and a high Warburg effect, with higher mitochondrial respiration and
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biogenesis activities [108]. It has been shown that HIF-1α, AMPK, and ROS are involved in
preserving the oxidative state of the cancer cells while the Warburg pathway is running
in the background [109]. Moreover, ROS-mediated activation of RAS, MYC, and cellular
sarcoma proto-oncogene tyrosine-protein kinase (c-SRC) restores the mitochondrial bio-
genesis process [110,111]. This hybrid phenotype enables cancer cells to adapt to different
microenvironments to promote tumorigenesis and metastasis, and the simultaneous ac-
tivities of oncogenes sustain the metabolic plasticity and shifts in cancer cells that incur
drug resistance.

8.2. Fatty Acid Synthesis and Oxidation

It should be noted that cancer cells have an unusual lipid metabolism, with hyper-fatty
acid synthesis constituting a distinguishing characteristic. Moreover, the cancer cells can
lose dependence on the Warburg pathway but remain dependent on glucose. Difficult
situations, including therapeutic stress, can inhibit the glycolytic flux in cancer cells. For
example, prolonged treatment with the GAPDH inhibitor koningic acid showed a reduction
in glycolytic flux in BT-549 but remained dependent on glucose as a carbon source. The
BT-549 cells alter the metabolic dependency toward fatty acid synthesis and oxidation
pathways [112].

Various cancer cells endogenously synthesize fatty acids for their proliferation and
survival; for instance, breast cancer cells synthesize 95% of their fatty acids through the
de novo lipogenesis process [113,114]. FAS-related enzyme expressions and activities are
upregulated in several cancers [115]. Aerobic glycolysis and PPP directly support the
de novo lipid biosynthesis process through the production of acetyl-CoA and NADPH,
respectively [27,116]. In PPP, glucose-6-phosphate diverts glucose to generate NADPH
and pentose surges. A large amount of NADPH is used during the FAS process. With
P53-associated TIGAR, there was a potential blockage against the glucose-6-phosphate
enzyme to limit PPP flux and the NADPH synthesis process [117,118]. Alternatively, PKM2
regulates the conversion of phosphoenolpyruvate (PEP) to pyruvate. PKM2 enhances
PPP by blocking glycolysis and decreasing metabolite transit through glycolysis, to create
additional NADPH [119,120]. PKM2 knockdown in human cancer cell lines and PKM1
replacement reduced tumor development in nude mouse xenografts, which was connected
with decreased lactate generation and increased oxygen consumption [121]. Likewise,
pyruvate generated from glucose enters the mitochondria and is decarboxylated to acetyl-
CoA by pyruvate dehydrogenase (PDH). Through the TCA cycle [122], oxaloacetate (OAA)
in mitochondria uses glucose-derived acetyl-CoA to form citrate [123,124]. A portion of the
citrate produced by the TCA cycle leaves the mitochondria and is converted by ATP citrate
lyase (ACL) to cytosolic acetyl-CoA, which serves as a precursor for fatty acid biosynthesis.

According to the Warburg effect, glycolysis is the source of ATP in tumors, yet ATP
levels do not change between cancer cells cultured in the presence and absence of glucose.
Several ideas, including metabolic reprograming in the tumor microenvironment, have
been presented to explain ATP supply in cancer. However, both hypotheses are dependent
on the TCA–OXPHOS route for producing ATP, which contradicts the Warburg effect.
Previous findings showed that inhibiting FAO in the presence of glucose significantly
reduced ATP synthesis in cancer cells. This confirms that the cancer cells rely on fatty acids
to produce ATP via FAO rather than glycolysis [81].

The concept of FAO reprogramming in cancer energy metabolism can be explained
by the symbiosis model and the reversed Warburg model (Figure 4), where the lactate
is taken up and reused to synthesize fatty acids. The fatty acids are transported to the
cancer cells to be utilized in energy production. It has been noted that various fatty
acid transporters are often overexpressed in cancer cells [125]. Moreover, increased FAO
in the cancer cells could be linked with various mutations and overexpression of the
KRAS and MYC oncogenes, respectively [126,127]. Targeting FAO markedly reduces
the oxygen consumption rate (OCR) and ATP production. Moreover, as our previous
study showed, inhibition of the glycolytic pathway through oncogenic silencing of MYCN
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reduces glycolytic parameters, but in turn, the FAO pathway becomes dominant for energy
reprogramming in the neuroblastoma cell lines. Dual inhibition of the Warburg and
FAO pathways (by inhibiting PPARD) reduces cancer cell growth significantly [10]. Thus,
metabolic reprogramming gives the cancer cells extra space to maintain energy homeostasis
for survival and proliferation. This shows that inhibiting FAO may be a possible treatment
method for cancer. Because FAO inhibition limits cancer-dependent catabolism, targeting
FAO with anti-proliferation therapies is predicted to have a synergistic therapeutic impact.
Because of the Warburg effect, cancer cells do not employ the TCA cycle with carbohydrates.
As a result, cancer cells must rely on ETC-OXPHOS to generate ATP from fatty acids.

8.3. Glutaminolysis

Other than glucose, glutamine is an alternative energy source and nitrogen donor in
cancer cells. It is noted that ample glutamine presence extracellularly promotes cancer cell
proliferation and growth. The glutaminolysis is the process of the conversion of glutamine
into the intermediates of the TCA cycle and that enables the energy production through
NADH [39,128]. Once in the TCA cycle, glutamine carbon skeletons contribute to a hybrid
TCA cycle that contains carbons from glucose as well as from glutamine. HIF-1α stimulates
pyruvate dehydrogenase kinase (PDK1), which inhibits pyruvate dehydrogenase and the
conversion of pyruvate to acetyl-CoA, shunting pyruvate to lactate. Hypoxia, which diverts
glucose to lactate, has little effect on glutamine catabolism via the TCA cycle in proliferating
cells [129]. Indeed, glutamine may contribute to citrate and lipid metabolism via TCA cycle
reversal or reductive carboxylation of α-KG by isocitrate dehydrogenase (IDH) to generate
citrate, or by glutamine carbon forward cycling [130–132]. Under glucose constraint, the
TCA cycle might be reprogrammed and driven purely by glutamine, resulting in citrate
composed entirely of glutamine carbons. It is worth noting that certain cells may also take
up free fatty acids from media to meet their macromolecular demands, whether for FAO or
direct insertion into the membranes of developing cells [133].

Ammonium ions are produced during glutaminolysis by a deamidation process me-
diated by glutaminase and glutamate dehydrogenase. The majority of ammonium ions
are utilized as a nitrogen source for nucleotide production and are eliminated by the urea
cycle; nevertheless, an excess of ammonium ions stimulates autophagy. Increased au-
tophagy promotes drug resistance by increasing aerobic glycolysis or the Warburg effect
and is important in cancer cell survival, progression, and metastasis [39] (Figure 5). It has
been noted that cancer cells that are driven by the MYC and KRAS require glutamine for
their survival. MYC can facilitate the glutamine transporter SCL1A5 and GLS enzyme
for glutamine uptake and glutaminolysis, respectively [134,135]. Tumorigenic PIK3CA
promotes cancer cell glutamine reliance via overexpressing mitochondrial GPT2 activity
in colorectal cancer [136]. GLS upregulation has been detected in several tumors, and
these enzymes have been discovered to play a role in the metabolic reprogramming of
glutamine addiction in cancer. GLS inhibitor, CB-839, is the only one to enter clinical
trials; nevertheless, its selectivity for GLS1 and inability to suppress the compensating
effect of GLS2 necessitate more investigation [137]. Despite the fact that medicines tar-
geting glutaminolysis have been discovered, none have yet been employed in advanced
clinical trials.
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Figure 5. Aerobic glycolysis is a defining feature of cancer metabolism. The majority of the glucose-
derived pyruvate is released extracellularly as lactate during this process, and glutamine becomes
a conditionally necessary amino acid. Glutaminolysis maintains mitochondrial activity by de-
livering TCA cycle metabolites such as α-KG and producing a variety of biomolecules such as
NEAAs, NADPH, and nucleotides. Increased glutamine flow into the mitochondrial matrix causes
metabolic reprogramming toward increased aerobic glycolysis (acronyms: GLUT: glucose trans-
porters, MTC: monocarboxylate transporters, TCA cycle: tricarboxylic acid cycle, α-KG: alpha
ketoglutarate, SLC1A5: solute carrier family 1 member 5). (This figure was drawn using the Bio
Render app).

9. Glucose Metabolism-Based Drug Development

The Warburg and PPP are coincidentally regulated by several rate-limiting steps.
These rate-limiting steps remain excitable targets for cancer targeting. Several specific
metabolic inhibitors could be used as specific suppressors of enzymatic activity [78]. The
small molecule inhibitors that have been reported to target glucose metabolism pathways
and that have in vivo potency for reducing tumor volume will be discussed in this section
(Figure 6).

GLUT inhibitor STF-31 can inhibit glucose transport by blocking the GLUT1 receptor.
This small molecule inhibitor shows efficiency in inhibiting tumor xenografts. STF-31 has
an off-target effect on nicotinamide phosphoribosyl transferase, thus making it insufficient
for clinical application [138]. Another GLUT inhibitor, Glutor, has an inhibitory function
on pan-GLUT receptors. Studies showed that Glutor can reduce glucose uptake in cancer
cells and reduce ATP production [139]. BAY-897 is another pan-GLUT receptor inhibitor,
which showed positive efficacy against triple-negative breast cancer cells [140].

Hexokinase serves as the first enzymatic reaction in the glycolysis pathway. Cancer
cells especially upregulate HK2 expression. Many studies showed that loss of HK2 de-
creased tumor growth in vivo [141,142]. Thus, HK2 serves as a favorable target for cancer
therapy and a rate-limiting step for the glycolysis pathway. A specific inhibitor of HK2, 3BP,
showed a promising effect against various cancer models but possessed cross-reactivity
with other pyruvylated proteins [143,144].

Pyruvate kinase is another potent target for inhibiting glycolysis in cancer cells. Lower
PKM2 activity slows down the glycolytic flux in the cancer cells and thus serves as a
rate-limiting enzyme for this pathway [145]. Loss of PKM2 shows a reduction in lactate
formation, tumor volume, and an increase in infiltration of immune cells. It must be noted
that deletion of PKM2 is not always tumor-inhibitory. In the colon and pancreatic cancer
models, PKM2 deletion indeed increased tumorigenesis [146,147]. Thus, targeting PKM2
needed to be studied further for a better targeting effect. Shikonin, a small molecule isolated
from Lithospermum erythrorhizon, confers an anticancer effect by inhibiting PKM2 activity in
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multiple cancer types [148,149]. PKM2 inhibition is also accompanied by ROS production,
which induces cell death [150].
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Figure 6. Cancer cells utilize glucose through aerobic glycolysis and the pentose phosphate path-
way; both pathways are interlinked and dominant in cancer cells. Aerobic glycolysis is meant to
produce fast energy, and the pentose phosphate pathway is used for the biosynthesis of nucleotides
and lipids. NADPH and pyruvate can act as antioxidants to regulate ROS generation and evade
apoptosis in cancer cells. Inhibition of glycolysis reduces acetyl-CoA production, which could be
compensated for by the fatty acid oxidation pathway. Alternatively, inhibition of glycolysis activates
the compensatory glutamate pathway. The glutamate pathway has an antioxidative role and can
supplement α-ketoglutarate into the TCA cycle. Cancer cells modify metabolic pathways to fulfill
their metabolic needs. The alternative pathway activations sustain metabolic homeostasis, which
helps in developing drug resistance. Therefore, targeting multiple metabolic pathways is attracting at-
tention for cancer therapy. The pathway inhibitors are indicated in red and enzymes are in blue letters
(acronyms: GLUT: glucose transporters, MTC: monocarboxylate transporters, TCA cycle: tricarboxylic
acid cycle, α-KG: alpha ketoglutarate, SLC1A5: solute carrier family 1 member 5, HK: hexokinase,
PGI: phosphor glucose isomerase/phosphor glucoisomerase, LDHA/B: lactate dehydrogenase
A/B, PDH: pyruvate dehydrogenase, PDK: pyruvate dehydrogenase kinase, PPP: pentose
phosphate pathway, FAO: fatty acid oxidation, G6PD: glucose 6-phosphate dehydrogenase,
F-6-P: fructose-6-phosphate, R-5-P: ribose 5-phosphate, G-3-P: glyceraldehyde 3-phosphate,
6PGD: 6-phosphogluconate dehydrogenase, 6-PG: 6-phosphogluconate dehydrogenase, GLS: glutam-
inase, FCCP: carbonyl cyanide p-(tri-fluromethoxy) phenyl-hydrazone, OXPHOS: oxidative phospho-
rylation, ROS: reactive oxygen species, ATP: adenosine triphosphate, ADP: adenosine diphosphate)
(This figure was drawn using the Bio Render app).
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Lactate dehydrogenase, LDHA, and LDHB are important targets for cancer therapy.
LDHA is upregulated in many cancer types. Silencing of LDHA reduces tumor mass
irrespective of cancer xenografts [151,152]. The efficacy of the small molecule inhibitors of
LDHA showed less potency due to low in vivo pharmacokinetic exposure. For instance,
GSK2837808A physically has no efficacy in vivo, but makes the cancer cells more susceptible
to tumor-infiltrating lymphocyte killing [153]. GNE-140, another LDHA inhibitor, acts
on the pyruvate pocket of the LDHA enzyme. GNE-140 treatment increases OXPHOS
levels driven by the AMPK (adenosine monophosphate-activated protein kinase)–mTORC1
pathway [154]. Possibly, GNE-140 would be effective in combination with AMPK or
mTORC1 inhibitors. Studies showed LDHA and LDHB both function redundantly in
cancer, so targeting both would be more advantageous for therapeutic purposes [155],
In melanoma, cas9-mediated deletion of both isoenzymes showed favorable effects on
tumor mass shrinkage. The drawback of targeting LDHA is the induction of hemolysis, as
erythrocytes rely more on the glycolysis pathway [156,157].

Pyruvate dehydrogenase mediates the conversion of pyruvate to acetyl-CoA. The
glucose uptake in melanoma cells was liaised by physiologically hyper-active pyruvate
dehydrogenase kinase. PDK inhibitor DCA treatment in melanoma reduces cellular prolif-
eration in vitro [158]. Until now, the use of DCA is not suitable for cancer clinical study. It
is uncertain if previously investigated dosage ranges will result in cytotoxic intra-tumoral
DCA concentrations. However, it has multiple clinical trial experiences with various other
diseases with the consequences of lactic acidosis. Many additional mono- or di-halogenated
short-chain fatty acid derivatives have been developed to activate PDC by inhibiting PDKs
and to bind to the pyruvate site. In rat cardiac mitochondria, 2-chloropropionate has
potency comparable to DCA, but it is too toxic for therapeutic application [95].

Inhibition of the lactate transporter has shown a greater possibility of therapy with
various redundant side effects, such as elevation of urinary lactate levels. AZD3965, an
MCT1 blocker, is now in phase 1 trials for advanced cancer stages. This small molecule
showed promising inhibitory effects on MCT1 and 4 in pre-clinical studies [159,160].

Drug repositioning (DR), or screening for anticancer therapy properties of regularly
prescribed pharmaceuticals for non-malignant illnesses, has attracted a lot of interest be-
cause the safety and frequency of side effects of these treatments have previously been
established. The potential anticancer role of metformin is widely studied, but the mode
of action of metformin in cancer is misleading. Several cancer-bound studies indicate
that (I) metformin decreases blood glucose levels by decreasing hepatic glucose production
(also called gluconeogenesis); (II) metformin inhibits mitochondrial complex I activity; and
(III) metformin activates AMPK and phosphorylates two isoforms of the acetyl-CoA car-
boxylase enzyme, thereby inhibiting fatty acid synthesis and leading to fatty acid oxidation.
Thus, metformin-induced energy deprivation inhibits proliferation in cancer [161–163].

Activation of G6PD produces NADPH. NADPH, in turn, has a role in fatty acid and
steroid synthesis, as well as the maintenance of lowered GSH levels for antioxidant function.
The PPP enzyme G6PD is another fruitful target for cancer therapy, as it maintains the redox
balance and PPP flux in the cells. Studies showed that G6PD deficiency reduced cancer
incidence and mortality in patients [164,165]. The natural molecule polydatin showed
efficacy in inhibiting G6PD, followed by cell cycle block and apoptosis induction in cancer
cells. Polydatin also makes the cells susceptible to ROS-mediated damage, which is a
hallmark of G6PD inhibition [166].

10. Glucose Metabolic Reprogramming and Therapy Resistance

Tumor cells proliferate and grow in the presence of glucose in the tumor microen-
vironment. Cancer cells using glucose for growth and survival mainly develop therapy
resistance and recurrence. In cervical cancer, cisplatin resistance develops due to elevated
lactate levels [167]. Further, AMPK mediates metabolic reprogramming in therapy-resistant
cancer cells by promoting the Warburg pathway and mitochondrial biogenesis [168]. As
stated earlier, several oncogenic transcription factors (MYC, SIX1, etc.) act as inducers of
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glucose uptake and are used through aerobic glycolysis and the PPP process to promote
DNA repair and apoptosis resistance.

Metabolic reprogramming in cancer cells supports DNA repair and suppresses ox-
idative stress and the immune system in the tumor microenvironment [169–171]. Further-
more, Warburg and PPP benefit cancer cells by evading anti-apoptosis by augmenting the
autophagy pathway [172–174]. These are the basis for developing cancer therapy resis-
tance. Chemo and radiotherapy primarily persuade oxidative burden in the cancer cells
and eventually do irreversible damage to the DNA repair machinery [175,176]. Recent
studies show breast cancer and mesothelioma cells upregulate aldehyde dehydrogenase
(ALDH) to make the nucleotide pools available for DNA repair [177]. G6PD from PPP
produces ribose-5-phosphate to enhance nucleotide synthesis. Both glycolysis and PPP
can limit ROS production by accumulating pyruvate flux and NADPH production, re-
spectively [150]. TP53-induced glycolysis and apoptosis regulator (TIGAR) (p53-target
gene) has domain similarity with fructose-2,6-bisphosphatase (FBPase-2), and transforms
fructose-2,6-bisphosphate to fructose-6-bisphosphate, thus limiting the activity of PFK1
and diverting glycolytic flux towards PPP for nucleotide production and DNA damage
repair [178]. Oncogene MYCN can regulate G6PD through p53 inactivation and facilitate
nucleotide synthesis and DNA repair in MYCN-amplified neuroblastoma [179]. DNA
damage repair mediated by glucose metabolic reprogramming is a complex operation that
involves the activation of multiple oncogenes, as well as the activation or inactivation of
signaling pathways.

Induction of autophagy is another mechanism of cell survival in “chemotherapeutic”
stressed conditions. Glucose deprivation therapy or 2-deoxy-D-glucose (2DG) treatment
can block the glycolytic flux, but alternatively, it activates AMPK signaling-mediated
autophagy [180]. Activated autophagy blocks apoptosis in cancer cells, and cells deplete
intracellular energy reserves such as glycogen and proteins for survival. Autophagy
upregulation driven by metabolic dysfunction may contribute to a common mechanism
of resistance to chemotherapy and radiation by reducing apoptosis and acting as a pro-
survival mechanism. Although autophagy induced by glucose dysfunction acts as a pro-
survival mechanism, it remains controversial, as the autophagy inducer rapamycin shows
treatment synergy with the metabolic inhibitor ponatinib against multiple myeloma [181].

The tumor microenvironment is crucial for tumor cells; they adapt to the available
conditions and resources. For example, in hypoxia, HIF-1α transcriptionally controls
multiple glycolytic and PPP pathway gene expressions, which sustain cells’ metabolic
viability in adverse conditions. Moreover, HIF-1α can trigger the PD-L1 expression by
binding to the hypoxic response element at PD-L1 gene promoter [182,183]. Higher PD-
L1 on the cancer cells mask the T cell immunity to act on them [184]. Regardless of the
complexity of the tumor microenvironment and the positive involvement of factors such
as AKT-mTOR-HIF-1α in modifying glucose metabolism, this topic is still vastly open to
novel research for a complete understanding.

11. Metabolic Alterations in Cancer Cells at Low Glycolytic State

Several anti-Warburg therapies are attracting attention in the research. Histone deacety-
lase (HDAC) inhibitors are capable of downmodulating the super-enhancer regions of
several glycolytic enzymes, including HK2, GPI, glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH), etc., but inhibition of the glycolytic pathway by HDAC inhibitors leads to
the activation of alternative pathways to maintain the cellular energy homeostasis [11,185].
Certain other glycolytic targeting drugs, such as 2DG and lonidamine, have not been
effective in clinical trials. In this section, we will briefly describe the alternative pathways
that become dominant in Warburg’s suppressed condition.

In tumors, mitochondria perform a variety of critical activities, such as the dynamic
regulation of all malignant cellular processes via a metabolic rewiring technique. Cancer
cells use mitochondria as metabolic machinery to meet increased bioenergetic necessities
through ATP generation, as well as increased anabolic requirements and the biosynthesis of
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nucleotides, lipids, and proteins. Furthermore, it has been established that glycolytic neo-
plastic cells preserve OXPHOS under glycolysis-inhibited circumstances [186]. The cancer
cells use alternative carbon sources, such as glutamine, serine/glycine, and fatty acids, to
feed the TCA cycle [27]. It has been demonstrated that the melanocyte-specific transcription
factor (MITF) regulates the PGC-1 gene, resulting in higher PGC-1-dependent mitochon-
drial respiration. Maintaining an increased OXPHOS rate promotes tumor development
and dissemination. Several kinds of cancer have been found in recent investigations to
develop a greater OXPHOS dependency and an increase in aggressiveness [187]. Therefore,
to maintain a constant energy source, cancer cells shift to the alternative pathway for
energy homeostasis. By keeping the OXPHOS rate high, cancer cells promote tumor de-
velopment and metastasis. From a therapeutic point of view, inhibition of OXPHOS along
with Warburg inhibition is gaining attention. The carbonyl cyanide p-(tri-fluromethoxy)
phenyl-hydrazone (FCCP), an inhibitor or uncoupler of OXPHOS, has been used to induce
cell death. FCCP is also able to depolarize mitochondrial membrane potential [188]. The
F0F1-ATP synthase activity blocker s-Gboxin also serves as an OXPHOS inhibitor and
induces apoptosis in various cancers [189]. FAO produces acetyl-CoA units from fatty
acids. Cancer cells with fast growth rates rely on the FAO pathway linked with lower
glucose availability [81,127]. It has been noted that activation of the FAO pathway can
actually elevate mitochondrial membrane potential and induce paclitaxel resistance in
TNBC cells. Targeting the FAO component ASCL4 showed promising effects on tumor re-
duction in vitro and in vivo [190]. A recent finding showed that induced myeloid leukemia
cell differentiation protein (MCL-1)-driven cancer cells are sensitive to FAO inhibition,
and genetic deletion of MCL-1 induces global downregulation of the FAO pathway [191].
Therefore, the FAO pathway is very active in Warburg-inhibited cells and is responsible
for apoptosis resistance. Researchers previously used clinically approved trimetazidine
to counteract the FAO pathway. It decreases long-chain fatty acid oxidation by inhibiting
3-ketoacyl-CoA thiolase [192] and induces cell death in various cancers [193,194]. Alterna-
tively, many amino acids activate mTOR in the form of the mTORC1 complex. mTORC1
regulates protein translation by activating the S6K kinase and inhibiting 4EBP1 to activate
the protein synthesis complex [195].

12. Therapeutic Strategies

Targeting metabolism aims to inhibit glucose consumption to decrease the amount
of ATP, reducing amino acids and nucleotide synthesis in the cancer cells. Treatment with
the HK2 inhibitor 3-bromopyruvate reduces the aerobic glycolysis flux in cancer cells
and destabilizes the redox state of the cancer cells [196]. The PFKFB3 glycolysis inhibitor,
3PO, can decrease glycolysis in nintedanib- and sunitinib-resistant tumor cells by causing
cell-cycle arrest and death [197].

Glycolytic-inhibited cells are prone to OXPHOS addiction [198]. Metabolically altered
cells are sensitive to OXPHOS inhibitors. The electron transport chain inhibitors could
be used in combination to control OXPHOS levels in the cells. This could dismantle the
energy balance of the cells. Metformin targets the electron transport complex and reduces
the aggressiveness of the tumor. On the other hand, mTORC1 inhibitors are in the clinic
as anticancer drugs. Rapamycin targets mTORC1 and, in turn, inhibits PGC1α activity
to reduce FAO and OXPHOS pathways in cancer cells. By enhancing ROS generation,
newly designed nanoparticles having metals (arsenic, iron oxide, and manganese) can
lower mitochondrial function and OXPHOS, which efficiently trigger cancer cell death.
Therefore, inhibiting OXPHOS may ensure anticancer medication effectiveness and reverse
treatment resistance. Therapeutic targeting of electron transport chain components has
been shown to enhance the anticancer efficacy of alisertib and cause severe energy drops in
ATP-dependent mitotic cells. In vivo, tumor development is also reduced when metformin
and alisertib are used together [199].

The metabolic inhibitors can reach their best biological activity only when they are
paired with specific pathway inhibitors, cellular immune agonists, and agonists or inhibitors
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connected with alternative metabolic pathways. Furthermore, most metabolic inhibitors
lack selectivity, meaning they cannot target tumor cells without also affecting normal cells.
As a result, metabolic inhibitor research has strong development possibilities.

13. Future Directions

The enzymes in glucose metabolism are well studied as cancer targets. Many small-
molecule inhibitors of glucose metabolism are either in the preclinical or clinical stages.
However, susceptibility to specific inhibitors as single treatments or in combination with
chemotherapy, radiotherapy, targeted therapy (such as kinase inhibitors), and/or im-
munotherapy remains unknown. Several clinical studies are now underway that consider
various metabolic inhibitors combined with FDA-approved chemo- or kinase-inhibitor
molecules (Table 1). For instance, saxagliptin and metformin, which control type 2 diabetes
through AMPK activation and acetyl-CoA inhibition, are now under clinical trials as a ther-
apy for PCOS women with impaired glucose homeostasis [200]. Likewise, a kinase inhibitor,
selumetinib, used for treating neurofibromatosis type 1, in combination with the mTORC1
blocker sirolimus, was under phase 2 trial [201]. Paclitaxel, a chemotherapy drug, is now
being used in combination with telaglenastat, which is an investigational, first-in-class,
selective, oral glutaminase inhibitor (study number NCT03057600). Combinations with
dabrafenib (BRAF inhibitor), trametinib (MEK kinase inhibitor), and pembrolizumab (hu-
manized antibody for cancer immunotherapy) are now in use with rosuvastatin (HMG-CoA
reductase inhibitor (statins)) or BP-101 (polyamine metabolic inhibitor) against multiple
cancers (Table 1). The future avenue of research could focus on identifying the metabolic
targets of interest through unbiased CRISPR-Cas9 synthetic lethality screening of metabolic
genes that can possess an antitumor response, particularly in vivo. These findings may
further translate to the clinical phase for understanding the efficacy and toxicity to provide
better support for cancer management.

Table 1. List of clinical trials of metabolic inhibitors in cancer patients. The list of studies was obtained
from https://clinicaltrials.gov (accessed on 15 August 2023). The therapy was either single-dose or
in combination with other anticancer drugs.

NCT Number Study Drug Phase

NCT02022007 PCOS Women with Impaired Glucose
Homeostasis Metformin XR, Saxagliptin 3

NCT03433183 Malignant Peripheral Nerve Sheath Tumors Selumetinib, Sirolimus 2

NCT03057600 Advanced Triple Negative Breast Cancer
(TNBC) Paclitaxel, Telaglenestat (CB-839) 2

NCT02858921 BRAF Mutant Stage III Melanoma Dabrafenib, Trametinib, Pembrolizumab 2

NCT04776889 Castrated Egyptian Prostate Cancer Patients Rosuvastatin and surgical castration 4

NCT03428217 Metastatic Renal Cell Carcinoma CB-839, Cabozantinib 2

NCT05254171 Pancreatic Cancer SBP-101, Nab-paclitaxel, Gemcitabine 2/3

NCT03965845 Solid Tumors CB-839, Palbociclib 1/2

NCT02771626
Melanoma, Clear Cell Renal Cell Carcinoma
(ccRCC), and Non-Small Cell Lung Cancer

(NSCLC)
CB-839, Nivolumab 1/2

NCT00859495 Pleural Mesothelioma Doxorubicin, Cisplatin, Pemetrexed and
Radiotherapy 2

NCT03163667 Renal Cell Carcinoma (RCC) CB-839, Everolimus 2

NCT04207086 Stage III Melanoma Pembrolizumab, Lenvatinib 2

NCT02903914 Advanced/Metastatic Solid Tumors INCB001158, Pembrolizumab 1/2

https://clinicaltrials.gov
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Table 1. Cont.

NCT Number Study Drug Phase

NCT00360828
Recurrent Anaplastic Astrocytomas, Mixed

Malignant Gliomas, and
Oligodendrogliomas

Irinotecan Hydrochloride 2

NCT03449901 Soft Tissue Sarcoma, Osteosarcoma, Ewing’s
Sarcoma, and Small Cell Lung Cancer

pegylated arginine deiminase,
Gemcitabine, Docetaxel 2

NCT05796570 AML, MDS, and Related Myeloid
Malignancies Decitabine, Filgrastim 2

NCT03875313 Solid Tumors CB-839, Talazoparib 1/2

NCT00634270 Plexiform Neurofibromas Sirolimus 2

14. Concluding Remarks

Metabolic plasticity is key for cancer cell growth and metastasis. Most cancer cells
rely on aerobic glycolysis, or the Warburg process, for fast energy production. PPP is
coupled with the glycolysis process to work on nucleotide synthesis. Targeted drugs or
molecules for PPP do not exist in the clinic, but targeted inhibitors for Warburg pathways
are now available. Unfortunately, the inhibition of glycolysis can reactivate alternative
pathways that are recessive in normal conditions. Presently, novel strategies are being
adopted to target multiple metabolic pathways to inhibit cancer growth and recurrence. As
we discussed, targeting OXPHOS and the Warburg pathway together would be a practical
therapeutic strategy to inhibit cancer aggressiveness.
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