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Abstract: Regeneration of functional naïve T lymphocytes following the onset of human immunode-
ficiency virus (HIV) infection remains a crucial issue for people living with HIV (PLWH), even when
adhering to antiretroviral therapy (ART). Thus far, reports on the impact of HIV-1 infection on the
entry of thymic precursors and the egress of functional naïve T lymphocytes to and from the thymus
are limited. We examined the impact of HIV-1 on Sphingosine-1-phosphate (S1P) signaling, which
governs the egress of functional naïve thymocytes from the thymus to the periphery. Using in vitro
experiments with primary human thymocytes and in vivo and ex vivo studies with humanized mice,
we show that HIV-1 infection results in upregulation of the expression of S1P receptor 1 (S1PR1) in the
human thymus. Intriguingly, this upregulation occurs during intrathymic infection (direct infection
of the human thymic implant) as well as systemic infection in humanized mice. Moreover, consid-
ering the dysregulation of pro- and anti-inflammatory cytokines in infected thymi, the increased
expression of S1PR1 in response to in vitro exposure to Interferon-Beta (IFN-β) and Tumor Necrosis
Factor-Alpha (TNF-α) indicates that cytokine dysregulation following HIV infection may contribute
to upregulation of S1PR1. Finally, an increased presence of CD3hiCD69− (fully mature) as well as
CD3hiCD69+ (less mature) T cells in the spleen during HIV infection in humanized mice, combined
with earlier expression of S1PR1 during thymocyte development, suggests that upregulation of S1PR1
may translate to increased or accelerated egress from the thymus. The egress of thymocytes that
are not functionally mature from the thymus to peripheral blood and lymphoid organs may have
implications for the immune function of PLWH.

Keywords: sphingosine-1-phosphate; sphingosine-1-phosphate receptor; HIV; thymus; humanized
mice

1. Introduction

A significant issue for people living with HIV (PLWH) is the regeneration of functional
naïve T lymphocytes following the onset of infection. T cell reconstitution following
the acute phase of HIV-1 infection is incomplete in many individuals despite successful
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antiretroviral therapy [1,2] and is associated with persistent immune activation [3–5].
Increased levels of pro-inflammatory cytokines, such as Interleukin (IL)-6, IL-7, IFN-α, and
TNF-α; increased chemokines, such as IP-10 (CXCL10); and the expression of the activation
markers CD69 and CD38/HLA-DR on T cells during HIV-1 infection are characteristic
signs of continuing immune activation and may contribute to mechanisms hindering T cell
reconstitution [4,6,7].

There are limited reports on the mechanisms regulating the entry of progenitor cells
into the human thymus and the egress of mature T cells to the periphery, and to date, no
data exist describing the impact of HIV-1 infection on these processes. Murine studies first
showed that sphingosine-1-phosphate (S1P) and one of its G-protein-coupled transmem-
brane receptors, S1P receptor 1 (S1PR1), play essential roles in the egress of naïve T cells
from the thymus to the periphery [8,9] as well as the egress of memory T cells from the sec-
ondary lymphoid tissues [10,11]. We described an analogous role for S1PR1 in the human
thymus, showing that S1PR1 is the main receptor expressed in the human thymus and is
thereby likely responsible for the S1P-mediated exit of mature human T lymphocytes from
the thymus to the blood. We determined that the CD3hiCD27+CD69−CD45RA+CD62L+
subset of mature human thymocytes expresses S1PR1 and responds to S1P [12]. Whether
HIV infection of the thymus compromises S1PR1 expression and signaling has not been
examined to date.

S1P, a lysophospholipid intra/intercellular signaling molecule, plays a myriad of roles
in the human body, many of them in immune function. Its functions in inflammation,
migration, the apoptosis/proliferation balance, membrane integrity, cellular adhesion, and
cytoskeletal rearrangement are modulated by binding of the ligand (S1P) to S1PR1-5, which
are expressed to various degrees across different cells and tissues (reviewed in [13]). In this
work, we built upon our earlier studies and utilized well-established humanized mouse
models [14,15], in conjunction with ex vivo and in vitro assays, to examine the expression
and function of S1PR1 in human thymic implants in mice following HIV infection. We
examined the expression of S1PR1 mRNA and expression of the receptor’s transcriptional
regulator, Krüppel-Like Factor 2 (KLF2), in thymocytes by real-time quantitative RT-PCR
and examined thymic S1PR1 by flow cytometry in the context of HIV infection, which we
have previously characterized in non-infected thymocytes [12]. Moreover, we investigated
the potential involvement of Type I interferons in S1PR1 changes by anti-interferon receptor
antibody treatment of HIV-infected humanized mice. We examined the functional responses
to S1P as well as the impact of inflammatory cytokines on the expression of S1PR1. Finally,
we assessed the potential impacts on T-cell egress in a humanized mouse model.

Our studies show that HIV-1 infection alters S1P receptor expression in the human
thymus. Assessment of pAkt signaling by the mature CD3hiCD69− subset following
exposure to S1P suggests that S1PR1 on total and mature CD3hiCD69− human thymocytes
appears to remain functional during HIV infection. We also observed an increase in mature
and less-mature T cells in the spleen of HIV-infected humanized mice. Thus, the increase
in S1PR1 protein expression in the less-mature CD3hiCD69+ thymocyte population in
the context of infection may result in increased egress from the thymus to the peripheral
blood and lymphoid organs of S1PR1+ cells that are likely less functionally mature in
HIV-infected individuals than in non-infected individuals.

2. Results
2.1. Dysregulation of S1P Receptor 1 Expression Is Observed in Human Thymocytes in
HIV-Infected Humanized Mice

To determine whether HIV-1 infection causes changes in S1PR1 expression in the
human thymus, we utilized Human Immune System (HIS)-Rag2−/−γ-chain−/− mice
implanted with human fetal thymus/liver (thy/liv) tissue. HIS mice were infected in-
trathymically (direct injection of virus into the implant) with CXCR4-tropic (NL4-3) or
mock (empty vector) HIV-1 and sacrificed at 5 or 9 weeks post-infection. Well-established
infection was verified by real-time quantitative reverse transcription PCR (RT-qRT-PCR)
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for multiply spliced tat/rev mRNA in thymocytes. We performed RT-qRT-PCR for S1PR1
messenger RNA (mRNA) relative to the housekeeping gene GAPDH on total mock and
HIV-infected thymocytes at weeks 5 and 9 post-infection (Figure 1A,D; schematics). Further,
we examined the expression of the anti-proliferative transcriptional regulator Krüppel-
Like Factor 2 (KLF2) [16–18] which is involved in the regulation of T cell egress from
the thymus [19] and has been shown to regulate the expression of S1PR1, CD62L, CCR3,
and CCR5 [20]. There was a trend toward increasing S1PR1 mRNA expression in NL4-
3-infected thy/liv implants of HIS mice relative to mock-infected implants at 5 weeks
(Figure 1B) and a statistically significant elevation (p = 0.0381) in NL4-3-infected mice at
9 weeks (Figure 1E). We also found a trend toward the increasing expression of KLF2 in
total thymocytes from NL4-3-infected implants at 5 weeks (Figure 1C) and a significant
elevation of KLF2 (p = 0.0061) in total thymocytes from NL4-3-infected implants at 9 weeks
(Figure 1F).
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media with increasing concentrations (3-300U) of recombinant IFN-β for 24–48 h. S1PR1 ex-
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Figure 1. S1PR1 and KLF2 are increased during HIV infection in the thymus at 5 and 9 weeks.
(A) Schematic of HIS mouse model including infection with NL4-3 (n = 5) or mock-infected (n = 4) and
ex-vivo assays performed at 5 weeks post-infection. (B) and (C) S1PR1 and KLF-2 mRNA expression
increase at 5 weeks post-infection. The expression of each gene relative to the housekeeping gene
(GAPDH) expression is shown. (D) Schematic of the HIS mouse model including infection with
NL4-3 (n = 7) or mock-infected (n = 4) and ex-vivo assays performed at 9 weeks post-infection. (E) and
(F) S1PR1 and KLF2 mRNA expression increase at 9 weeks post-infection. The expression of each
gene relative to the housekeeping gene (GAPDH) expression is shown. In Figure (B,C) and (E,F), the
mean with the standard error of the mean (SEM) is shown and two-tailed unpaired t-tests were used
for all comparisons.

2.2. Interferon-Beta (IFN-β) Increases S1PR1 Expression in Thymocytes

Interferons and interferon-stimulated genes are upregulated in peripheral blood and
lymph nodes in treatment-naïve HIV-1 infected individuals [21–24]. We expanded on the
current body of knowledge by first examining the effect of IFN-α2 on S1PR1 expression,
exposing postnatal thymocytes in vitro to two concentrations of IFN-α2 for 18 h (1000
and 10,000 U/mL) and examining S1PR1 expression by RT-qRT-PCR. Following 18 h
of treatment, S1PR1 mRNA was downregulated on total thymocytes when exposed to
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the higher concentration of IFN-α. Consequently, we examined whether another Type I
interferon, IFN-β, impacts the expression of S1PR1. Postnatal thymocytes were cultured
in serum-free media with increasing concentrations (3-300U) of recombinant IFN-β for
24–48 h. S1PR1 expression was then quantified on mature CD3hiCD69− and CD3hiCD69+
thymocyte subsets. As shown in Figure 2A,B, IFN-β increased S1PR1 expression on mature
CD3hi thymocytes at 48 h in a dose-dependent manner (n = 8). A one-way ANOVA test
was used to assess the effect of IFN-β on S1PR1 expression. Tukey’s HSD Test for multiple
comparisons showed that there was a statistically significant increase in S1PR1 expression
on mature CD3hiCD69− thymocytes in the presence of 300U of IFN-β (p = 0.0078) as well
as on the CD3hiCD69+ thymocyte subset (p = 0.0078). These results reflect one potential
contributing factor to the effect of HIV-1 on S1PR1 expression that we observed in mature
thymocyte subsets ex vivo from infected and mock-infected thy/liv implants (presented
in Figure 1).
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Figure 2. Exogenous IFN-β increases S1PR1 protein expression in CD3hiCD69+ and CD3hiCD69−
thymocytes in vitro. Thymocytes were cultured with different concentrations of IFN-β or media alone
for 48 h (n = 8 individual thymus donors). S1PR1 expression in thymocyte subsets was measured by
flow cytometry in eight different thymus tissues. (A) S1PR1 expression in CD3hiCD69+ thymocytes
with different concentrations of IFN-β or media alone; (B) S1PR1 expression in mature CD3hiCD69−
thymocytes with different concentrations of IFN-β or media alone. The mean with the standard error
of the mean (SEM) is shown. Data were analyzed by one-way ANOVA using a Tukey HSD test for
multiple comparisons. Overall, the data are statistically significant with p < 0.001. Tukey’s HSD Test
for multiple comparisons found that the mean value of S1PR1 expression was significantly different
between 300U and untreated (p = 0.0078 for both thymocyte populations).

We next examined whether the expression of the IFN receptors (IFNAR1/2) may
contribute to the observations reported above. IFN-α and IFN-β utilize the same receptors
(IFNAR1/IFNAR2) but have different binding affinities and functions; IFN-β has a higher
affinity (50-fold higher) for IFNAR1 than IFN-α2 [25,26]. To determine the thymic expres-
sion of IFNAR1/2, primary human postnatal thymocytes were stained with antibodies to
IFNAR1 and IFNAR2 in combination with cell surface markers to distinguish immature
and mature thymocyte subsets. We found that human thymocytes express lower levels of
IFNAR1 than IFNAR2 across all four thymocyte subsets examined. Although the expres-
sion of IFNAR2 was higher than that of IFNAR1 in subsets reflecting all stages of thymocyte
maturation, IFNAR1 was also detected in all subsets (Supplementary Figure S1). IFNAR2
expression was statistically significantly greater in the most immature thymocyte subset
than IFNAR1 expression (p = 0.0159). Thus, our in vitro experiments with exogenous IFN-α
and IFN-β suggest that the increase in S1PR1 that we observed on thymocytes during HIV
infection may be more related to endogenous IFN-β than IFN-α and may be mediated to a
greater extent by IFNAR2 than IFNAR1.
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2.3. Systemic HIV Infection Results in Increased S1PR1 Expression on Thymocytes That Is
Abrogated by Blocking IFNAR2 In Vivo

To consolidate the ex vivo and in vitro findings described above, we used NSG-BLT
humanized mice systemically infected with dual-tropic HIV 89.6 for 12 weeks, from which
we examined human thymic implants (generously provided by Dr. Anjie Zhen at UCLA, ex-
perimental schematic Figure 3A). To elucidate the possible thymocyte populations in which
S1PR1 expression was upregulated in our earlier observations, thymocytes were analyzed
by flow cytometry for expression of S1PR1 and several additional thymocyte phenotyping
markers corresponding to stages of human thymocyte development: CD69, CD27, CD45RA,
CD8, CD4, CD3, CD25, and CD62L, plus viability dye, as previously done [12]. We gated on
CD3−CD69− and CD3loCD69+ populations within CD27- (cortical) thymocytes as well as
CD3hiCD69+ and CD3hiCD69− thymocytes within CD27+ (medullary) thymocytes (gating
schematic, Supplementary Figure S2). We have previously described that the highest S1PR1
expression is observed on CD3hiCD69− human thymocytes in uninfected fetal, postnatal,
and adult thymi [12]. Therefore, we hypothesized that the CD3hiCD69− population would
be responsible for the observed overall increase in S1PR1 in HIV-infected thy/liv implants.
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Figure 3. S1PR1 protein expression is increased in BLT mice systemically infected with dual-tropic
HIV-1 and is abrogated by IFNAR2 blockade. (A) Schematic of infection of BLT mice with dual-
tropic HIV (89.6) and analysis of thymic implants (n = 3–7 depending on treatment; n = 22 total).
(B) S1PR1 expression is increased in two CD3/69 subsets in BLT mice infected with dual-tropic HIV-1
for 12 weeks. Expression was quantified by flow cytometry on CD3hiCD69+ and CD3hiCD69−
thymocytes. Shown are three representative animals (mock, HIV and HIV + αIFNAR2) of a total
n = 3 mock, n = 7 HIV-infected, n = 4 HIV + αIFNAR2-treated, n = 4 HIV + ART-treated, and n = 4
HIV + ART + αIFNAR2-treated mice. Gates for each condition were set based on isotype controls.
(C,D) Summary of S1PR1 expression in CD3/69 thymic subsets in BLT mice infected with dual-tropic
HIV-1 at 12 weeks post-infection. The mean with the standard error of the mean (SEM) is shown.
Data were analyzed by one-way ANOVA using a Tukey HSD test for multiple comparisons. Overall,
the data are statistically significant with p < 0.001.

In these systemically infected animals, we observed upregulation of S1PR1 by flow
cytometry in human thy/liv implants in both the CD3hiCD69+ and CD3hiCD69− human
thymocyte subsets (Figure 3B–D). A one-way ANOVA was performed to compare the
effects of different treatment groups on S1PR1 expression. In contrast to the experiments
described above, these animals were infected systemically, not intrathymically, which
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suggests that the effect on receptor expression likely stems from a systemic, cytokine-
mediated effect of HIV-1 rather than only localized effects in the thymus. Interestingly, the
increase in S1PR1 was abrogated by the administration of an IFNAR2 blocking antibody
(αIFNAR2, [15]), with the greatest reduction in S1PR1 expression observed with dual
treatment of ART (tenofovir/emtricitabine/raltegravir) and αIFNAR2 (p = 0.0003 for HIV
vs. ART + αIFNAR2 in CD3hiCD69+ and p < 0.0001 for HIV vs. ART + αIFNAR2 in
CD3hiCD69−, Figure 3B–D). This supports a key role for interferons in the modulation of
S1PR1 expression during HIV infection and, considering our in vitro data characterizing
IFNAR2 in the human thymus, supports a potential role for IFN-β in increasing S1PR1
expression via IFNAR2. Further studies will be needed to understand the roles of IFN-α,
IFN-β, and IFNAR1/2 in modulating the expression of S1PR1 in the context of HIV-
1 infection.

Unexpectedly, we noted upregulation of S1PR1 in a population of less mature thy-
mocytes that normally have limited expression of the receptor, the CD3hiCD69+ popu-
lation (Figure 3B,C). Thy/liv implants from mock-infected animals expressed minimal
levels of S1PR1 within this population. Implants from HIV-infected animals, when com-
pared to implants from mock mice, had notably higher levels of S1PR1+ cells within the
CD27+CD3hiCD69+ population (Figure 3C). The expression of S1PR1 on a less mature
CD3hiCD69+ thymocyte subset that is normally not prepared to egress the thymus suggests
that HIV infection may induce more rapid T cell differentiation, as has been observed in
acute SIV infection in Rhesus Macaques [27]. Therefore, this is of potential importance for
understanding T cell regeneration in HIV infection. Thus, expression of S1PR1 is enhanced
during acute HIV infection; moreover, it is enriched in populations in which the receptor
is normally not expressed, suggesting that immature thymocytes may have the ability to
emigrate from the thymus before maturation is complete.

2.4. Tumor Necrosis Factor Alpha (TNF-α) Likely Contributes to S1PR1 Upregulation in HIV
Infection along with IFN-β

We examined HIV-infected and mock-infected thy/liv implants by RT-qRT-PCR to
determine whether additional cytokines were perturbed during persistent infection of the
thymus, as reports of cytokine dysregulation in the thymus during HIV-1 vary by model
system [27–31]. We found that in addition to IFN-α, tumor necrosis factor alpha (TNF-α)
mRNA was elevated by 5 weeks in NL4-3-infected thy/liv implants and remained elevated
at the 9-week time point (p = 0.023, Supplementary Figure S3A). In addition to IFN-α, IFN-
β, and TNF-α are cytokines that are constitutively produced in the thymus and participate
in the well-documented cytokine storm during HIV infection [32]. As described above,
IFN-α2, one of the IFN-α subtypes, did not upregulate S1PR1, but IFN-β did upregulate
S1PR1 in our model. To determine whether TNF-α may also influence S1PR1, we exposed
human postnatal thymocytes to TNF-α in vitro for 18 h and examined S1PR1 mRNA by
RT-qRT-PCR. We found that following the 18 h incubation with TNF-α, S1PR1 mRNA was
upregulated relative to the untreated donor-matched control with three concentrations of
TNF-α: 50, 100, and 500 ng/mL, with the greatest effect observed at 100 ng/mL. As TNF-α
appeared to influence S1PR1 expression at the mRNA level, we examined S1PR1 protein
expression by flow cytometry following 24 h of exposure to exogenous TNF-α at the same
three concentrations. TNF-α-treated human postnatal thymocytes (CD27+CD3hiCD69−)
demonstrated a statistically significant fold increase in S1PR1 mean fluorescence intensity
(MFI) at 100 and 500 ng TNF-α, but not at 50 ng TNF-α (n = 7, p = 0.0312 for 100 ng
and p = 0.0156 for 500 ng). Interestingly, S1PR1 percent expression was not consistently
increased within this subset; however, the MFI of the mature S1PR1-expressing subset was
consistently increased (Supplementary Figure S3B).

As discussed, we observed that exogenous IFN-β resulted in upregulation of S1PR1
protein on thymocytes (Figure 2A,B). The greatest upregulation was observed at 300U
of exogenous IFN-β and was within the CD3hiCD69− mature thymocyte population,
as well as the CD3hiCD69+, slightly less mature thymocyte population, as we noted in
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HIV-infected thy/liv implants. Taken together, these results indicate that IFN-β and TNF-
α likely contribute to the heightened S1PR1 expression we observed in infected thy/liv
implants. A potential mechanism is that cytokines other than IFN-α that are elevated in HIV-
infected thy/liv implants may override the requirement for downregulation of CD69 prior
to S1PR1 expression, considering our observation that CD27+CD3hi thymocytes in infected
thy/liv implants had increased S1PR1 while CD69 was still expressed (CD27+CD3hiCD69+;
Figure 3B,C), while only a small percentage of this population in mock-infected thy/liv
implants expressed S1PR1.

2.5. Neither Total Nor Mature CD3hiCD69− Thymocytes from Infected Thy/Liv Implants Have
Impaired Akt Signaling in Response to S1P Ex Vivo Stimulation

We further examined whether populations in the human thymus that upregulate
S1PR1 during HIV infection respond to S1P. We assessed phosphorylated Akt (pAkt) in
total and mature (CD3hiCD69−) thymocyte populations following S1P exposure, as pAkt
has been previously utilized as a proxy measurement for S1PR1 downstream signaling [33].
Total thymocytes prepared from human fetal thy/liv implants from NSG-BLT mice infected
with dual-tropic HIV-1 (89.6) for two weeks were exposed to the approximate physiological
concentration of S1P, 100 nM [34–36], or serum-free medium alone for 30 min. Following
S1P exposure, thymocytes were immediately placed on ice and stained with human thymo-
cyte surface markers. Cells were then briefly fixed with 1.6% paraformaldehyde prior to
permeabilization with cold methanol and subsequent staining with anti-phosphorylated
Akt (pAkt). We gated on mature thymocytes using surface expression of CD3 and CD69 to
examine pAkt signaling by mature thymocytes (the population that expresses S1PR1). We
attempted to stain for S1PR1 as well in separate experiments, but as this did not produce re-
liable, distinct populations once cells were permeabilized, we focused on mature CD3hi69−
thymocytes, which comprise the main population of S1PR1-expressing human thymocytes.

We determined the fold change in pAkt following S1P exposure in total thymocytes
as well as in mature CD3hiCD69− thymocytes. Following S1P exposure, there was no
significant difference in fold change of pAkt between HIV-infected vs. uninfected total
or mature thymocytes (Figure 4A,B). This suggests that the population of thymocytes
that upregulates S1PR1 likely retains Akt signaling activity and that these thymocytes are
functionally responsive to S1P during HIV infection.
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2.6. HIV Infection Increases the Egress of Thymocytes to the Spleen in Humanized Bone Marrow
Thymus/Liver Triple Knockout (BLT-TKO) Mice

To determine whether HIV infection affects the egress of S1PR1+ thymocytes to
the periphery, we used the triple knock-out (TKO) HIS mouse model, the C57BL/6
Rag2−/−CD47−/−ILRG−/− line [37]. The TKO bone marrow/liver/thymus BLT human-
ized mice develop peripheral lymphoid tissues with human cell subsets and human im-
munohistochemistry. These mice can be infected with CCR5-tropic HIV by intraperitoneal
and mucosal routes and develop T and B-cell immune responses to HIV [37]. They were
therefore useful in addressing our question of the effect of CCR5-tropic HIV-1 infection on
the egress of thymocytes to peripheral lymphoid organs while mimicking a physiologi-
cal setting.

Egress of thymocytes to the periphery in mock and HIV-infected TKO mice was
measured via flow cytometry by gating on human CD45+ cells in the spleens of mice at
10 weeks post-infection (Figure 5A). At this point, there was no statistically significant
change in S1PR1 levels or the proportion of mature human CD3hiCD69+ or CD3hiCD69−
T cells in the thymus in TKO mice infected with CCR5-tropic HIV as compared to mock-
infected TKO mice (p = 0.8571 and p > 0.9999, CD3/69 populations, Figure 5B,C). However,
there was a statistically significant increase in the presence of mature human CD3hiCD69+
cells as well as CD3hiCD69− T cells (p = 0.0357 and p = 0.0357, Figure 5D,E) in the spleen
of HIV-infected mice as compared to mock-infected mice. No significant changes in other
human thymocyte subsets in the spleen of HIV-infected mice were observed. These results
demonstrate that HIV infection results in an increased number of mature and less mature
human T cells in the periphery, likely as a result of elevated egress from the thymus, as
was reported in acute SIV infection in Rhesus macaques [27]. These results strengthen our
observations of dysregulation of S1PR1 expression and signaling in thymic egress during
acute HIV infection.
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Figure 5. Dynamics of lymphocyte egress in HIV-infected BLT-TKO mice. (A) Schematic of TKO
mouse model of infection with CCR5-tropic HIV (Bal) and analysis of thymic and splenic human
CD45+ T cell subsets at 10 weeks post-infection (n = 3 mock and n = 5 HIV-1; n = 8 mice total).
(B) CD3hiCD69+ T cells in the thymus of Bal (n = 5) and mock (n = 3) infected BLT TKO mice.
(C) CD3hiCD69− T cells in the thymus of Bal and mock-infected BLT-TKO mice. (D) CD3hiCD69+ T
cells in the spleen of Bal and mock-infected BLT TKO mice. (E) CD3hiCD69− T cells in the spleen
of Bal and mock-infected BLT-TKO mice. The mean with the standard error of the mean (SEM) is
shown. All comparisons were done by unpaired t-test.

3. Discussion

The identification of factors that promote the egress of mature single-positive thymo-
cytes to the periphery is crucial to the study of T cell reconstitution during HIV infection. A
transient increase in thymic output following acute HIV infection [38] and SIV infection
has been reported [27], as well as an increase in T cell differentiation, along with a lack
of proliferation, which was observed in acute SIV infection [27]. Whether an increase
in thymic output is maintained for a significant period is unknown, although data from
adolescents who were perinatally infected suggest a continuing increase in thymic out-
put [39]. Further, the receptors and chemokines responsible for changes in egress during
HIV infection are understudied. We examined the expression and function of S1P receptor 1
(S1PR1), which have thus far not been explored in the context of T cell reconstitution during
HIV infection. To perform these studies, we employed various humanized mouse models.
Importantly, these advanced in vivo models involve essentially complete humanization of
the immune system with primary human cells that reside in several anatomic locations and
thus closely mimic the physiological environment of HIV-infected humans. We observed an
increase in expression of the chemotactic signaling receptor S1PR1 in HIV-infected thymic
implants in humanized mice at 5 and 9 weeks post-infection, as well as in the thymus
of systemically infected humanized mice at 12 weeks, which raises the critical question
of whether upregulated S1PR1 translates to enhanced egress of functional thymocytes
or, alternatively, a detrimental egress of less-functional naïve T cells due to more rapid
intrathymic differentiation, as reported in studies of SIV-infected Rhesus macaques [27].
Increased egress of mature thymocytes to the periphery during HIV infection was con-
firmed in the BLT-TKO humanized mouse model where we observed an increase in human
T cells in the spleen of both CD3hiCD69− (fully mature) and CD3hiCD69+ (less mature)
T cells 10 weeks post-infection with CCR5-tropic HIV. The increased egress of mature
thymocytes to the periphery was not reflected in the thymus, likely due to the relatively
low percentage of mature thymocytes within the total population; it is also possible that
we may have observed altered S1PR1 expression on thymocyte populations at a different
time point. These findings should be further explored to potentially inform the develop-
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ment of novel therapies for HIV patients who do not recover optimal CD4 levels with
antiretroviral therapy.

We have previously shown by flow cytometry and RT-qRT-PCR that S1PR1, one of the
five S1P receptors, is prevalent in the human thymus and is expressed on mature CD3hiCD
69−CD27+CD45RA+CD62L+ thymocytes that are preparing to egress the thymus to the
periphery [12]. Our data show that S1PR1 is upregulated in human thymocytes during
intrathymic HIV-1 infection at two time points post-infection as well as in mature thymocyte
populations during systemic HIV-1 infection. Interestingly, within a less mature population
of thymocytes, the CD3hiCD69+ thymocytes, S1PR1 was also increased in HIV-infected
thymi relative to mock-infected thymi. This implies that mechanisms that control S1PR1
expression may be modified during HIV infection, permitting S1PR1 to be expressed at an
earlier stage of development than is observed in the non-infected thymus. As mentioned, a
transient increase in thymic output during SIV infection of Rhesus macaques, characterized
by reduced intrathymic proliferation and a change in the cytokine profile of the thymus
allowing for more rapid progression through the thymus microenvironment and egress
to the periphery, has been reported [27]. Our observation that S1PR1 is increased during
HIV infection of the human thymus and expressed at an earlier stage of development than
is normally observed may support the possibility of enhanced thymic output resulting
from speedier development in the thymus. Moreover, we observed that KLF2, an anti-
proliferative transcription factor [16–18] that is also necessary for the regulation of T cell
egress from the thymus [19] and has been shown to regulate the expression of S1PR1 as
well as other receptors such as CD62L, CCR3, and CCR5 [20], was also upregulated in the
HIV-infected thymus at both 5 and 9 weeks post-infection. As KLF2 dampens proliferation
and upregulates S1PR1, it is a strong candidate for influencing the changes we observed in
S1PR1 expression in HIV infection as well as the changes observed by others in intrathymic
proliferation time [38]. We are currently exploring the possibility that KLF2 may be directly
activated by HIV accessory proteins and that this mechanism may contribute to elevated
S1PR1 in the infected thymus.

Others have shown in murine models that IFN-α, induced following immune activa-
tion or viral infection, interferes with the egress of mature thymocytes [11]. In HIV-induced
immune activation, increased levels of IFN-α and CD69 are present [6], which are likely to
influence S1PR1 receptor expression and thereby the entry of hematopoietic stem cells into
the thymus and the exit of naïve T cell subsets to the periphery. Although we hypothesized
that interferon elevation during HIV-1 infection would maintain CD69 expression and
low levels of S1PR1, we observed, to our surprise, that both S1PR1 mRNA and protein
were significantly elevated and not decreased during HIV infection, expanding upon the
current understanding of negative regulation of S1PR1 by CD69. Therefore, there appears
to be a mechanism that overrides the requirement for the downregulation of CD69 for
S1PR1 to be expressed in our models of HIV-1 infection of the human thymus as well as
systemic infection. Our observation of S1PR1 upregulation in the less mature CD3hiCD69+
thymocytes corroborates this possibility. We are currently examining the role of KLF2 in
superseding the requirement for CD69 downregulation prior to S1PR1 expression.

We tested additional cytokines that are constitutively expressed in the thymus for their
ability to change the expression of S1PR1 in vitro. We hypothesized that certain cytokines
may contribute to heightened S1PR1 expression, potentially overcoming the effects of
IFN-α. Indeed, after 24 h of incubation with IFN-β (Figure 2) or TNF-α (Supplementary
Figure S3), S1PR1 protein was increased on mature CD27+CD3hiCD69− thymocytes. Peak
upregulation occurred at 300U IFN-β, whereas peak upregulation with TNF-α occurred
at 100 ng/mL, with the effect dampened at higher concentrations for both cytokines.
These effects were supported by RT-qRT-PCR, where we observed that 18 h of TNF-α
incubation increased S1PR1 mRNA expression. Together, these results indicate that both
IFN-β and, to a lesser extent, TNF-α, may contribute to increased S1PR1 expression in
the HIV-infected thymus, whereas IFN-α may act to control the receptor’s expression in
non-infected thymic tissue. As additional cytokines, some of which are constitutively
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expressed in the thymus [40,41], may be perturbed by HIV infection, we are unable to
definitively assign roles to these cytokines alone in effecting changes in S1PR1 on mature
thymocytes. The majority of reports on the “cytokine storm” during immune activation
secondary to HIV infection have focused on the periphery [7,32,42–44]; therefore, additional
work in humanized mouse models to characterize the changes in cytokine profiles in the
HIV-infected thymus and the effects of these changes on chemotactic receptor expression
and function is needed. Interestingly, there has been a dearth of studies examining S1PR1
expression and inflammation in other viral infections. We identified one study where
elevated expression of S1PR1 correlated with increased inflammatory cytokine levels in
Newcastle disease virus infection [45].

Our results contribute to the field of T cell reconstitution in an entirely novel manner.
S1PR1 is required for T cell egress from the thymus; however, to our knowledge, we are the
first to characterize the receptor’s expression and function in the human thymus [12] and
investigate alterations in its expression in the thymus in the context of HIV infection. We
observe that HIV-1 infection alters S1PR1 expression independent of the humanized mouse
model, HIV molecular clone/tropism, or route of infection, and that S1PR1, while elevated,
likely remains functional during HIV infection of the thymus as per proxy measurement of
pAkt signaling upon exposure to S1P. In addition, we found that the cytokines IFN-β and
TNF-α likely contribute to the heightened S1PR1 expression we observed in infected thy/liv
implants. Pro- or anti-inflammatory cytokines other than IFN-α that are dysregulated in
HIV-infected thy/liv implants [27–31] may override the requirement for downregulation
of CD69 prior to S1PR1 expression, in light of our observation that CD27+CD3hiCD69+
thymocytes in infected thy/liv implants upregulate S1PR1 while CD69 remains expressed
(Figures 1 and 2), while only a small percentage of this population in mock-infected thy/liv
implants expresses S1PR1.

As our data indicate that S1PR1 is upregulated in the context of HIV infection and
is functional on not yet fully mature CD3+CD69+ thymocytes, approaches to modulate
S1PR1 expression may present an intriguing new possibility for the treatment of patients
who lack immune system reconstitution in response to ART.

4. Materials and Methods
4.1. Tissue Collection and Primary Thymocyte Preparation

Normal human postnatal thymus specimens were obtained from children undergoing
corrective cardiac surgery at the UCLA Mattel Children’s Hospital. Thymocytes were
prepared and cultured as previously described [12,40,46]. Briefly, tissues were placed in
NH4Cl-Tris lysing buffer to remove red blood cells, while the tissue was cut into small
pieces and passed over a cell strainer to generate a single-cell suspension of thymocytes.
Cells were washed in serum-free medium consisting of IMDM (Omega Scientific, Tarzana,
CA, USA) supplemented with 1.1 mg/mL delipidated Bovine serum albumin (dBSA)
(Sigma-Aldrich, St. Louis, MO, USA), 85 µg/mL human transferrin (Sigma-Aldrich),
2 mM l-glutamine, and 25 U/25 µg/mL penicillin/streptomycin, then resuspended at
4 × 107 cells/mL in serum-free medium.

4.2. In Vitro Thymocyte Cultures

Thymocyte cultures were maintained as previously described [12,46]. Briefly, thymo-
cytes were cultured at 2 × 107 cells/mL in serum-free medium supplemented with dBSA,
transferrin, and l-glutamine as described above and maintained as pellet cultures at 37 ◦C
in 5% CO2 in round-bottom tissue culture tubes. For cytokine experiments, thymocytes
were cultured for 48 h with cytokines including IFN-α, IFN-β, and TNF-α at various con-
centrations prior to collecting cells for flow cytometric analysis or real-time quantitative RT
PCR (RT-qRT-PCR). Whenever possible, in vitro assays were initiated on the same day as
the thymocyte suspension was prepared.
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4.3. HIV Molecular Clones

HIV-1 NL4-3 (CXCR4-tropic), Bal (CCR5-tropic), and 89.6 (dual-tropic) molecular
clones were used for infection of humanized mice. All molecular clones were obtained
from our collaborators at the UCLA AIDS Institute.

4.4. Generation of Immunodeficient (HIS)-Rag2−/−γ-Chain−/− Mice and Intrathymic Infection
with HIV

Human Immune System (HIS)-Rag2−/−γ-chain−/− mice were implanted under the
kidney capsule with human fetal thymus/liver (thy/liv) tissue, which donated human
CD34+ hematopoietic stem cells and human thymocytes, a procedure comparable to the
subcutaneous implant protocol we reported previously [14]. Approximately 15 weeks post-
transplantation, the animals were injected intrathymically with approx. 300–400 infectious
units (IU) of CXCR4-tropic (NL4-3) or mock (empty vector) virus. Animals were sacrificed
at 5 or 9 weeks post-infection, and thymi and spleens were obtained for ex-vivo assays,
including flow cytometric and RT-qRT-PCR analyses.

4.5. Systemic Infection of Immunodeficient Mice with HIV

For our studies of the effect of systemic HIV-1 infection on pAkt signaling and S1PR1
expression (including ART and IFNAR2 blocking studies), we collected human thymic tis-
sues from two different humanized mouse models. Bone marrow/liver/thymus (NSG-BLT)
mice were generated as previously described [47]. Four to six weeks after transplantation,
the animals were injected retro-orbitally or intraperitoneally with 300–400 infectious units
(IU) of either dual-tropic HIV-89.6 or an empty vector (control). Human thymic tissues
were harvested 2 or 14 weeks after infection to assess the impact of systemic HIV infection
on pAkt signaling and S1PR1 expression, respectively.

In addition, we utilized C57BL/6 Rag2−/−γ-chain−/−CD47−/−triple knockout (TKO)
immunodeficient mice as recipients of human fetal liver and thymus (thy/liv) tissue
grafts (BLT-TKO mice). Human fetal tissue was purchased from the UCLA/CFAR Gene
Therapy Core. Due to the genetic immunodeficiency defect in these mice, they do not
reject xenografts, which allowed prolonged studies of immune reconstitution without
the issue of Graft vs. Host Disease (GVHD) [37]. Thy/liv tissue was implanted under
the kidney capsule and the mice received a retro-orbital injection of 0.5 × 106 additional
CD34+ cells obtained from the human fetal liver as well as 0.5 × 106 autologous spleen cells
from the TKO mice and 1 × 106 bone marrow cells as per Lavender et al. [37]. Following
reconstitution, CCR5-tropic HIV Bal was used to infect mice intraperitoneally. Mock-
infected animals were injected with an equal volume of phosphate-buffered saline (PBS).

4.6. Antiretroviral Treatment and IFNAR2 Blockade in NSG-BLT Mice

To further assess the impact of HIV infection on S1PR1 expression, HIV-infected NSG-
BLT mice (see above) were treated with antiretroviral therapy (ART) and/or an IFNAR2-
blocking antibody. Briefly, HIV-infected NSG-BLT mice were treated daily by intraperi-
toneal injection of 500 µL of tenofovir (8.75 mg/kg)/emtricitabine (13 mg/kg)/raltegravir
(17.5 mg/kg) dissolved in PBS. For IFNAR2 blockade experiments, HIV-infected NSG-BLT
mice, either untreated or treated with ART, were treated with 100 µg anti-IFNAR2 blocking
antibody (clone MMHAR-2) or an IgG isotype control once every 2 days intraperitoneally
for 1 week. NSG-BLT mice that were treated with ART received the blocking antibody
during the last week of ART treatment [15].

4.7. Phosphorylated Akt Intracellular Flow Cytometry Assay and S1P Exposure

Human thymocytes obtained from BLT-NSG mice (infected or mock, a kind gift of the
laboratory of Dr. Dimitrios Vatakis at UCLA; see information on mice above and [47]) were
stimulated in suspension with 100 nM S1P (Cayman Chemical, Ann Arbor, MI, USA) for
30 min (or suspended in media alone) at 37 ◦C in serum-free AT + dBSA medium, then
immediately placed on ice. Cells were stained on ice for surface markers (CD69 FITC, CD27
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PE, CD45RA PerCP-Cy5.5, CD4 PE-Cy7, CD8 APC-eFluor 780, CD3 eFluor 650NC, CD25
eFluor 450, and CD62L eFluor 605NC). Cells were then briefly fixed in 1.6% paraformalde-
hyde on ice (10 min), permeabilized with methanol (4C, 10 min), and subsequently stained
for intracellular phosphorylated Akt (pAkt) with α-pAkt APC antibody (eBiosciences, San
Diego, CA; isotype control also from eBiosciences).

4.8. Flow Cytometry

Surface immunophenotyping of thymocytes with unconjugated and directly conju-
gated antibodies was performed as previously described [15,48]. Monoclonal antibodies
(mAb) were procured from R&D (Minneapolis, MN, USA) (unconjugated anti-human
S1PR1 (clone 218713, product #MAB2016), unconjugated IgG2b control), eBioscience (PE-
conjugated anti-mouse IgG), eBioscience (CD45RA PerCP-Cy5.5, CD8 APC-eFluor 780,
CD25 eFluor 450, CD62L eFluor 605NC, CD3 eFluor 650NC), and Becton Dickinson (CD69
FITC, CD27 APC, and CD4 PE-Cy7). For S1PR1 detection, cells were first stained with an
unconjugated anti-human S1PR1 (or IgG2b isotype control), followed by a phycoerythrin-
conjugated anti-mouse IgG antibody. Flow cytometry data were acquired on an LSRII or
LSRII-HT analyzer (Becton Dickinson) and analyzed with FCS Express (Version 6, De Novo
software). Gates were set based on isotype controls, unstained thymocytes, or fluorescence
minus one (FMO) controls, as appropriate.

4.9. Real-Time Quantitative Reverse-Transcription PCR (RT-qRT-PCR)

RNA was isolated from cells suspended in Trizol Reagent as per the Trizol protocol
(ThermoFisher, Waltham, MA, USA). RNA was quantified by Nanodrop, and real-time
quantitative reverse transcription PCR (RT-qRT-PCR) was performed to determine the
expression of S1PR1 and KLF2 genes relative to the GAPDH internal control. Jurkat cells
were used as positive controls for the S1PR1 (S1P receptor) gene and the subsequent
generation of standard curves. Pre-designed primer-probe conjugates were obtained
from Invitrogen (Life Technologies/Fischer Scientific, Grand Island, NY, USA) for S1PR1
(Assay ID: Hs01922614_s1), KLF2 (Assay ID: Hs00360439_g1), IFN-α1 (Hs00256882_s1),
IFN-α2 (Hs00265051_s1), IFN-β (Hs01077958_m1), MxA (Hs00182073_m1), and ISG15
(Hs00192713_m1). Target gene expression was normalized to primers amplifying GAPDH.
The data were analyzed in Microsoft Excel, and statistics were performed in GraphPad
Prism (Version 9.0) or SAS Studio (see below).

4.10. Statistical Analysis

All analyses were conducted with SAS Studio or GraphPad Prism (Version 9.0, Graph-
Pad Software). The data were expressed as means with a standard error of the mean (SEM).
The statistical tests used are described in the results and figure legends. Given the small
sample size (<50) a Shapiro-Wilk test was used to assess normality. Unless specified in the
text, all data passed the normality test, and parametric tests were used. A p value inferior
to or equal to 0.05 was considered statistically significant.

4.11. Ethics Statement

Normal human postnatal thymus specimens were obtained from children undergoing
corrective cardiac surgery at the UCLA Mattel Children’s Hospital. Human fetal tissue
was purchased from the UCLA/CFAR Gene Therapy Core and was obtained without
identifying information. All experiments using human tissues were approved by the UCLA
Office of the Human Research Protection Program and the UCLA Institutional Review
Board (IRB), which determined that the de-identified human tissues used in the reported
experiments do not meet the definition of human subject research.

Animal research carried out in this manuscript was performed under the written
approval of the UCLA Animal Research Committee (ARC) in accordance with all federal,
state, and local guidelines. Specifically, the experiments were performed strictly accord-
ing to the guidelines in The Guide for the Care and Use of Laboratory Animals of the
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National Institutes of Health and the accreditation and guidelines of the Association for
the Assessment and Accreditation of Laboratory Animal Care (AALAC) International
under UCLA ARC Protocol Number 1994-232. Veterinary care was provided by the UCLA
Vivarium, the Division of Laboratory Medicine, and the Humanized Mouse Core Staff.
Animals are observed daily, and core personnel administer medications as directed by the
veterinarian. Animals were sacrificed in accordance with the American Veterinary Medical
Association Guidelines for the Euthanasia of Animals. All experiments align in accordance
with the ARRIVE guidelines. All experiments and agents used were carried out and used
in accordance with the UCLA Institutional Biosafety Committee (IBC).

4.12. Data Availability

The datasets used and/or analyzed during the current study are available from the
corresponding author upon reasonable request.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241813865/s1.
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