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Abstract: Prolonged cannabis users show a lower prevalence of obesity and associated comorbidities.
In rodent models, ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD) from the plant Cannabis
sativa L. have shown anti-obesity properties, suggesting a link between the endocannabinoid system
(ECS) and obesity. However, the oral administration route has rarely been studied in this context.
The aim of this study was to investigate the effect of prolonged oral administration of pure THC and
CBD on obesity-related parameters and peripheral endocannabinoids. C57BL/6 male mice were fed
with either a high-fat or standard diet and then received oral treatment in ramping doses, namely
10 mg/kg of THC or CBD for 5 weeks followed by 30 mg/kg for an additional 5 weeks. Mice treated
with THC had attenuated weight gain and improved glucose tolerance, followed by improvement
in steatosis markers and decreased hypertrophic cells in adipose epididymal tissue. Mice treated
with CBD had improved glucose tolerance and increased markers of lipid metabolism in adipose and
liver tissues, but in contrast to THC, CBD had no effect on weight gain and steatosis markers. CBD
exclusively decreased the level of the endocannabinoid 2-arachidonoylglycerol in the liver. These
data suggest that the prolonged oral consumption of THC, but not of CBD, ameliorates diet-induced
obesity and metabolic parameters, possibly through a mechanism of adipose tissue adaptation.
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1. Introduction

Obesity results from a long-term energy imbalance between excess calorie consump-
tion and energy expenditure [1]. This leads to lipogenesis stimulation and excess fat storage
as triglycerides in adipose tissue, resulting in the expansion of white adipose tissue and
adipocyte hypertrophy, low-grade systemic inflammation, and changes in adipokine secre-
tion, such as leptin and adiponectin [2]. This in turn leads to obesity-associated metabolic
pathologies such as glucose intolerance, insulin resistance, and fatty liver disease [2].

The endocannabinoid system (ECS) plays a vital role in regulating appetite, metabolic
processes, and energy balance both centrally and peripherally [3]. ECS is composed
of cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), endoge-
nous ligands, i.e., endocannabinoids, and the enzymes that synthesize and degrade
them [3]. The endocannabinoids are bioactive lipids, the two most studied of which are
N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) [3]. In recent years,
additional receptors, enzymes, and “endocannabinoid-like” mediators have been identified
as part of the extended ECS. Among them, the congeners of AEA [N-acylethanolamines
(NAEs)] and 2-AG [2-monoacyleglycerols (2-MAGs)] and N-acyl-amino acids (NAAAs) [4].

It is well established that obesity is associated with the dysregulation of the ECS, result-
ing in high endocannabinoid “tone”, which in turn leads to increased appetite, lipogenesis,
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adipogenesis, and a decrease in energy expenditure, which further exacerbates adipos-
ity [5]. Consequently, the blockade of CB1 has been shown to exert appetite-suppressing
anti-obesity properties and improve several pathological features associated with obesity,
thus making it a potential therapeutic target for obesity treatment [6,7].

Cannabis sativa is the source of a unique set of compounds known as phytocannabi-
noids, from which the most abundant are ∆9-tetrahydrocannabinol (THC), the main psy-
chotropic constituent of cannabis, and cannabidiol (CBD). Cannabis use has long been
associated with increased appetite and is commonly used as an appetite stimulator in
pathological conditions such as cancer and HIV [8]. Paradoxically, several epidemiological
studies have established the association between cannabis exposure and reduced risk of
obesity and metabolic diseases [9–12]. Moreover, cannabis extracts, as well as THC and
CBD, have been shown to exert anti-obesity properties in animal models [13–15].

Most studies on cannabinoids in preclinical models to date employed injection as the
mode of cannabinoid administration (i.e., intraperitoneal, subcutaneous, and intravenous).
A limited number of studies have investigated the oral (per os) administration route.
Absorption, bioavailability, metabolism, and overall effects are all influenced by the route
of administration [16]. For example, in first-pass metabolites of THC, the psycoactive11-
hydroxy-∆9-tetrahydrocannabinol (11-OH-THC) is altered via the route of administration
and could lead to biological relevant differences [17]. Moreover, the oral administration of
cannabis products was demonstrated to produce prolonged effects compared with other
administration routes [16]. Furthermore, cannabinoid receptors are distributed throughout
the gastrointestinal tract, and some cannabinoid effects may be mediated peripherally [18].
Therefore, in the present study, we compared the anti-obesity properties of THC and CBD
administrated per os and their obesity-related metabolic effects in a high-fat diet (HFD)
mouse model.

2. Results
2.1. Pharmacokinetic Profile of Orally Administered THC and CBD

To assess the availability of THC and CBD administrated per os, we first evaluated
the pharmacokinetic profile of the oral administration delivery method of a single dose
of 30 mg/kg. PK profiles of THC, CBD, and their respective metabolites are illustrated in
Figure 1, and the key PK parameters of maximum concentration (Cmax), the time it takes to
reach it (Tmax), and total exposure over time (area under the curve) are reported in Table 1.
Notably, the plasma concentration of CBD was detected at 8 h but not at 24 h, and its metabo-
lites were undetectable at 8 h, while plasma concentrations of THC and 11-COOH-THC
were still detectable at 24 h. The metabolic effect of per os administration was evaluated
over a period of 24 h using indirect calorimetry (Supplemental Figure S1A–C). Mice treated
orally with THC had a trend of reduced locomotion and food intake and significantly re-
duced total energy balance relative to mice treated with vehicle or CBD.

Table 1. PK parameters for THC, CBD, and their respective metabolites after acute oral administration
(30 mg/kg).

Cmax (ng/mL) AUC (ng·min/mL) Tmax (h)

TH
C ∆9-THC 119 ± 55.3 295.2 ± 75.4 1

11-OH-THC 7.4 ± 1.5 31.66 ± 8.4 1
11-COOH-THC 7.25 ± 1.34 80.3 ± 23.3 1

C
BD

CBD 96.9 ± 37.1 500 ± 115 1
6-OH-CBD 3.88 ± 1.76 8.7 ± 4 1
7-OH-CBD 18 ± 7.03 48.9 ± 16.44 1

PK parameters of THC and CBD in plasma after oral administration of THC or CBD (30 mg/kg). Data are shown
as mean ± SEM with n = 4 animals per time point. THC, ∆9-tetrahydrocannabinol; 11-OH-THC, 11-hydroxy-∆9-
tetrahydrocannabinol; 11-COOH-THC, 11-Nor-9-carboxy-∆9-tetrahydrocannabinol; CBD, cannabidiol; 6-OH-CBD,
6-hydroxy-cannabidiol; 7-OH-CBD, 7-hydroxy-cannabidiol.
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Figure 1. Pharmacokinetics profiles of THC, CBD, and their respective metabolites. Plasma concen-
tration of THC and CBD and their respective first-pass metabolites, after oral administration of THC 
and CBD (30 mg/kg); n = 4 per time point per drug. Time points are presented as mean ± SEM. 
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tolerance, which is known to occur rapidly with prolonged cannabis use [19]. At 10 mg/kg, 
there were no significant changes between mice treated with THC or CBD compared with 
vehicle (Figure 2A). However, at 30 mg/kg, mice treated with THC had a significant de-
crease in body weight gain compared with mice treated with CBD (Figure 2A). Overall, 
THC inhibited weight gain on HFD-induced body-weight gain (final weight 38 ± 1.94), 
while vehicle and CBD-treated mice continued to gain weight (final weight 40 ± 1.97 and 
45 ± 1.94, respectively) (Figure 2C). To determine whether this effect was exclusive to 
obese mice fed HFD, we conducted the same treatment regime in mice fed standard diet 
(STD). Treatment with THC or CBD did not significantly affect weight gain at either dose 
(Supplemental Figure S2). In each diet regime, irrespective of treatment, the average daily 
energy intake per mouse at the respective diet appeared to be similar over the study pe-
riod (Figure 2B, Supplemental Figure S2B). 

Figure 1. Pharmacokinetics profiles of THC, CBD, and their respective metabolites. Plasma concen-
tration of THC and CBD and their respective first-pass metabolites, after oral administration of THC
and CBD (30 mg/kg); n = 4 per time point per drug. Time points are presented as mean ± SEM.

2.2. The Effect of THC and CBD on Weight Gain, Caloric Intake, and Glucose Tolerance

We evaluated the effect of prolonged oral consumption of THC and CBD in a mouse
model of diet-induced obesity. In our treatment regime, we incorporated a ramping-dose
method of THC and CBD, from 10 mg/kg to 30 mg/kg to account for the induction of
tolerance, which is known to occur rapidly with prolonged cannabis use [19]. At 10 mg/kg,
there were no significant changes between mice treated with THC or CBD compared
with vehicle (Figure 2A). However, at 30 mg/kg, mice treated with THC had a significant
decrease in body weight gain compared with mice treated with CBD (Figure 2A). Overall,
THC inhibited weight gain on HFD-induced body-weight gain (final weight 38 ± 1.94),
while vehicle and CBD-treated mice continued to gain weight (final weight 40 ± 1.97 and
45 ± 1.94, respectively) (Figure 2C). To determine whether this effect was exclusive to
obese mice fed HFD, we conducted the same treatment regime in mice fed standard diet
(STD). Treatment with THC or CBD did not significantly affect weight gain at either dose
(Supplemental Figure S2). In each diet regime, irrespective of treatment, the average daily
energy intake per mouse at the respective diet appeared to be similar over the study period
(Figure 2B, Supplemental Figure S2B).

To assess the effect of THC or CBD administration on the regulation of blood sugar
levels, a glucose tolerance test was performed at the end of each treatment regime. Mice fed
HFD developed glucose intolerance irrespective of the treatment at a dose of 10 mg/kg, al-
though a significant increase in glucose levels was observed in THC- and CBD-treated mice,
compared with the vehicle-treated HFD mice (Figure 2D,E). At the dose of 30 mg/kg, THC
reversed this effect and showed significant improvement in glucose tolerance (Figure 2F,G).

2.3. The Effect of THC and CBD on the ECS in Liver and Adipose Tissues

As obesity is characterized by the dysregulation of the endocannabinoid tone [20],
we next investigated the effect of THC and CBD treatment on the prevalence of different
components of the ECS. The levels of the well-known endocannabinoids AEA and 2-AG
were determined in epididymal fat and liver tissue via LC-HRMS, as well as other members
of NAE and 2-MAG families, and members from the family of NAAAs. In the epididymal
tissue, the levels of AEA and 2-AG were comparable between all treatment groups; however,
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obese mice demonstrated decreased levels of some NAEs (DHEA, α-LEA, LEA, and PEA)
compared with lean mice, although the last two were not significantly different when
compared to CBD-treated mice (Table 2). In contrast, 2-LG levels were increased in obese
mice compared with lean mice, although this reached significance only in mice treated
with vehicle or CBD. In the liver tissue, AEA levels were similar between all treatment
groups; however, all obese mice, regardless of treatment, demonstrated decreased levels
of NAEs (LEA, PEA, and SEA) and NAAAs (NDH-Gly, NL-Gly, and NP-Gly) compared
with lean mice (Table 2). CBD treatment further decreased the levels of DHEA, NA-Gly,
and NA-Ser compared with vehicle-treated STD mice. Mice treated with THC or CBD
demonstrated decreased levels of 2-AG compared with vehicle-treated mice fed both HFD
and STD, although only CBD treatment reached significance.
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Figure 2. Effect of THC and CBD on weight gain, caloric intake, and glucose tolerance. Weight and
food consumption were measured twice a week during the course of the treatment regime: (A) body
weight change of HFD-fed mice after 5-week treatment with 10 mg/kg or 30 mg/kg of THC, CBD, or
vehicle; (B) average caloric intake in HFD-fed mice treated with 10 mg/kg or 30 mg/kg of THC, CBD,
or vehicle; (C) total weight change of the treatment regime (n = 5). A glucose tolerance test (GTT) was
performed at the end of each dose treatment. Blood glucose concentration time course curves and
area under the curve (AUC) were measured at the end of the 10 mg/kg treatment procedure (D,E)
and at the end of the 30 mg/kg treatment procedure with THC, CBD, or vehicle (F,G), respectively
(n = 3). Data and bar plots are shown as mean ± SEM. Different subscribed letters indicate significant
differences between groups, p < 0.05. * p < 0.05 CBD vs. vehicle STD, # THC vs. vehicle STD, $ p < 0.05
CBD vs. THC. Statistical significance was determined via two-way ANOVA followed by Tukey’s
post hoc test.
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Table 2. Levels of endocannabinoids in epididymal fat and liver.

Lipid Family ECs
(ng/g Tissue) Vehicle-STD Vehicle-HFD THC-HFD CBD-HFD

Fat NAEs AEA 6.7 ± 0.2 8.5 ± 0.7 6.9 ± 0.2 8.1 ± 0.4
α-LEA 0.9 ± 0.1 a 0.2 ± 0.01 b 0.2 ± 0.01 b 0.2 ± 0.02 b

DHEA 2.6 ± 0.1 a 1.8 ± 0.1 b 1.6 ± 0.1 b 1.7 ± 0.09 b

LEA 43.7 ± 1.5 a 31.1 ± 3 b 24.2 ± 1.8 b 33.6± 3 ab

OEA 43.3 ± 4 54 ± 5.4 39.6 ± 3.5 55.7± 4.1
PEA 54.4 ± 3.7 a 36.8 ± 1.7 b 30.4 ± 4.6 b 41 ± 1.9 ab

SEA 112 ± 9.4 130 ± 11.5 115 ± 5.9 127 ± 2.1
DEA 1.4 ± 0.7 1.2 ± 0.07 1.3 ± 0.04 1.5 ± 0.09

2-MAGs 2-AG 144 ± 108 147 ± 32 104 ± 14 164 ± 45
2-LG 352 ± 86 b 2534 ± 601 a 1128 ± 250 ab 2773 ± 739 a

NAAAs NL-Gly 2.8 ± 0.2 1.5 ± 0.3 1.3 ± 0.2 1.5
NP-Gly 0.6 ± 0.1 1 ± 0.2 0.8 ± 0.1 0.9 ± 0.09

Liver NAEs AEA 28.6 ± 3.6 23.8 ± 4.8 20.6 ± 4.1 12.9 ± 0.5
DHEA 8.8 ± 1 a 6 ± 1.5 ab 4.6 ± 0.6 ab 2.9 ± 0.1 b

LEA 69.4 ± 10.7 a 36.8 ± 7.8 b 30.3 ± 4.5 b 20.8 ± 1.5 b

OEA 40.5 ± 7.9 33.6 ± 2.4 24.5 ± 6.6 25.5 ± 1.8
PEA 326 ± 27 a 157 ± 16 b 107 ± 4.7 b 100 ± 8.6 b

SEA 288 ± 39 a 134 ± 27 b 111 ± 4.7 b 75.2 ± 3.6 b

2-MAGs 2-AG 1975 ± 171 a 1763 ± 572 a 767 ± 102 ab 390 ± 23 b

2-LG 12,682 ± 2214 a 5748 ± 2132 b 4112 ± 1208 b 1951 ± 341 b

NAAAs NL-Gly 359 ± 34 a 49 ± 41 b 95 ± 14 b 50.3 ± 5.9 b

NP-Gly 695 ± 49 a 366 ± 70 b 284 ± 33 b 177 ± 18 b

NA-Gly 228 ± 14 a 117 ± 44 ab 118 ± 28 ab 61.9 ± 10.8 b

NDH-Gly 244 ± 15.9 a 106 ± 33.3 b 69.1 ± 13.3 45.3 ± 6.1
NA-Ser 83.3 ± 4.5 a 46.3 ± 19.9 ab 34.5 ± 8 ab 15 ± 1.9 b

NA-GABA 6.1 ± 1.4 6 ± 2.5 4.6 ± 1 1.5 ± 0.2
NA-Ala 126 ± 12.1 a 91.8 ± 32.7 b 96.7 ± 21.3 b 41.2 ± 5.5 b

Data are shown as mean ± SEM with n = 4 animals per group. Statistical significance was determined using
one-way ANOVA followed by Tukey’s post hoc test. Different subscribed letters indicate significant differences
between groups, p < 0.05; 2-AG, 2-arachidonoyl glycerol; AEA, arachidonoyl ethanolamide; DHEA, docosahex-
anoyl ethanolamide; LEA, linoleoyl ethanolamide; OEA, oleoyl ethanolamide; PEA, palmitoyl ethanolamide; SEA,
stearoyl ethanolamide; DEA, docosatetraenoyl ethanolamide; α-LEA, linolenoyl ethanolamide; 2-LG, linoleoyl
glycerol; NL-Gly, N-linoleoyl glycine; NP-Gly, N-palmitoyl glycine; NA-Gly, N-arachidonoyl glycine; NDH-Gly,
N-docosahexaenoyl glycine; NA-Ser, N-arachidonoyl serine; NA-GABA, N-arachidonoyl gamma-aminobutyric
acid; NA-Ala, N-arachidonoyl alanine.

We then examined whether the attenuation of 2-AG was due to the altered expression
of DAGL-β and/or MAGL, the main enzymes responsible for its synthesis and degradation,
respectively. No changes were detected in protein levels of the two enzymes, indicating that
the changes in 2-AG levels observed in the liver were not the result of decreased DAGL-β
or increased MAGL expression (Figure 3A,B).

Furthermore, to confirm that the examined tissues were exposed to pharmacological
levels of THC and CBD, we analyzed the liver and adipose tissues for the presence of
these phytocannabinoids and their respective metabolites in the THC- and CBD-treated
groups (Figure 3C–F). As expected, high concentrations of THC and CBD with low levels
of metabolites were revealed in the epididymal fat in the respective treatment groups
(Figure 3C,D). CBD-treated mice also showed traces of THC in epididymal tissue, although
this might be due to technical issues. Nonetheless, we analyzed CBD extract to verify that
there were no traces of THC (Supplementary Figure S3).

2.4. The Effect of THC and CBD on Diet-Induced Steatosis

A key component of obesity-associated metabolic dysregulation is hepatic steatosis.
Therefore, we tested for the manifestation of enlarged hepatic vacuoles and increased lipid
droplets. THC, but not CBD, reduced the abundance of hepatic lipid droplets (Figure 4A,B).
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In addition, THC treatment showed a trend toward a reduction in enlarged liver, less
elevation of hepatic triglyceride content, and reduced steatosis score, indicating an overall
minimal accumulation of excess fat (Figure 4C–E).
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Figure 3. Expression of DAGL-β, MAGL, and phytocannabinoid metabolites in liver and adipose
tissue. Protein levels of key enzymes involved in the synthesis and hydrolysis of 2-AG, DAGL-β (A),
and MAGL (B), respectively (n = 2–4). Levels of THC, CBD, and their metabolites were assessed at
the end of the treatment regime, as described in the Materials and Methods section, in epididymal fat
(C,D) and liver tissue (E,F) (n = 4). Data are shown as mean ± SEM.
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tissue sections stained with H&E (magnification × 100); (B) morphological analysis of liver droplet
density (n = 5); (C) weights of liver; (D) levels of hepatic triglycerides (n = 3); (E) the severity of
steatosis was blindly scored as described by Liang et al. [21] (n = 3). Data are shown as mean ± SEM.
Statistical significance was determined via one-way ANOVA followed by Tukey’s post hoc test.
Different subscribed letters indicate significant differences between groups, p < 0.05.
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2.5. The Effect of THC and CBD on Adiposity and Inflammation

Adipose tissue dysfunction, specifically that of visceral fat, plays a major role in glucose
intolerance in diet-induced obese mice [22]. Thus, we determined if the improved glucose
tolerance in CBD- and THC-treated mice was due to lowering adiposity, inflammation,
or adipokine secretion. Treatment with THC and CBD had no effect on fat pad weights
compared to vehicle-treated HFD mice (Figure 5B). However, THC-treated HFD mice
had significant shrinkage in adipocyte size compared with vehicle-treated HFD mice and
presented smaller adipocytes also compared to the CBD-treated mice (Figure 5A,C).
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Figure 5. Effect of THC and CBD on adiposity, adipocytes, and inflammation markers. Epididymal fat
was removed from mice and analyzed after the treatment regime with THC, CBD, or vehicle treatment:
(A) representative adipose tissue sections stained with H&E (magnification × 200); (B) weight of fat
pads; (C) quantitative analysis of adipocyte size in epididymal tissue (n = 5); (D–G) mRNA levels
of inflammatory genes in epididymal adipose tissue (n = 4). Serum levels of adiponectin levels (H)
and leptin (I) (n = 3). Data are shown as mean ± SEM. Statistical significance was determined via
one-way ANOVA followed by Tukey’s post hoc test. Different subscribed letters indicate significant
differences between groups, p < 0.05.

In terms of inflammation, HFD-fed mice presented elevated expression of F4/80 and
TNF-α inflammatory markers compared to vehicle-STD, as expected (Figure 5D,E). More-
over, THC significantly increased the expression of both the chemokine MCP-1 compared to
vehicle-HFD and CBD, and of CD14 compared to vehicle-STD (Figure 5F,G), an indicator of
inflammation. Measurement of adiponectin revealed no changes between the experimental
groups (Figure 5H). However, treatment with THC significantly reduced the levels of leptin
compared to CBD treatment (Figure 5I).

2.6. The Effect of THC and CBD on Lipid Metabolism Gene Expression

To assess whether the effects of THC and CBD observed in the liver and adipose tissue
were correlated to changes in the gene expression of lipid metabolism, we examined mRNA
levels of lipogenic and lipid oxidation markers. In the liver, treatment with CBD increased
the transcription of the typical lipogenic genes FADS2 and SCD-1, compared with THC- and
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vehicle-treated HFD mice (Figure 6). Furthermore, CBD treatment increased the expression
of the lipid oxidation markers ACOX1 and PPAR-α compared with THC treatment, while
the latter was also significantly increased compared with vehicle HFD (Figure 6). In
addition, CBD increased transcription of fatty acid transporter CD36 compared to vehicle-
treated groups. A similar trend was shown in adipose tissue, in which CBD increased the
transcription of the lipogenic gene FADS2, in addition to the oxidative genes, PPAR-α and
ACOX1, and fatty acid transporter FATP1 (Figure 6).
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Figure 6. The effect of THC and CBD on liver and adipose tissue mRNA expression of genes involved
in lipid metabolism. Expression profile of genes involved in lipogenesis (FASN, FADS2, and SCD1),
fatty acid uptake (FATP2, FATP1, and CD36), and lipid oxidation (PPARα, ACOX1, and CPT1α)
(n = 4–5). TBP and PPIA were used as housekeeping genes for liver and adipose tissue, respectively.
The results were calculated as ∆∆Ct and normalized to data from vehicle STD. Data are shown as
average ± SEM. Statistical significance was determined using one-way ANOVA followed by Tukey’s
post hoc test. Different subscribed letters indicate significant differences between groups, p < 0.05.

3. Discussion

Previous studies have investigated the anti-obesity properties of treatment with single
cannabinoids or cannabis extracts [13–15]. However, to our knowledge, we are the first to
incorporate a noninvasive oral route of administration method to compare the prolonged
treatment of THC and CBD in an animal model of obesity. In this study, we demonstrated
that per os treatment with THC, but not CBD, prevented HFD-induced body weight gain
and improved metabolic alterations after diet-induced obesity in C57BL/6 male mice.
Because tolerance is known to occur rapidly during cannabis use [19], we examined the
effect of increased dose during the treatment regime. We observed a contrasting effect of
THC on weight gain and glucose tolerance in the two doses employed in this study.

We selected the oral route administration since it represents a comparable form to
human medical cannabis consumption. Moreover, it has been suggested that intraperi-
toneal injections, the route most frequently used for cannabis extracts in animal models,
may produce biological effects that stem from the accumulation of active cannabinoids
such as THC in the brain and the activation of the CB1 receptor in a manner that is distinct
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from that which occurs in typical cannabis use [17]. Our results show that the oral adminis-
tration of THC and CBD at the concentration implemented in our experiment produced
plasma concentrations comparable to the range seen in other administration routes in
mouse models [16,17].

Several studies have provided evidence that the ECS plays an important role in the
development of obesity [3,20]. Obesity is characterized by an increased endocannabinoid
tone, which in turn leads to metabolic disorders that contribute to weight gain, lipogenesis,
insulin resistance, and dyslipidemia [5,20]. By contrast, decreased CB1 activity in an obese
setting is linked to weight reduction and overall improved metabolic state [6,7]. Though
THC shares the ability of AEA and 2-AG to activate both CB1 and CB2 receptors [23],
epidemiologic studies have associated cannabis use with lower body mass index (BMI) and
lower prevalence of obesity-associated metabolic diseases such as nonalcoholic fatty liver
disease (NAFLD) and diabetes compared with non-users [9–12].

In our study, CBD treatment exerted no effect on weight gain. However, THC demon-
strated a biphasic effect, in which 10 mg/kg of THC increased weight gain, similarly to that
of HFD-fed mice, while 30 mg/kg of THC decreased weight gain. This biphasic effect was
not correlated with food intake, which was unaffected throughout the experiment. In agree-
ment with these results, a previous report demonstrated that a reduction in food intake is
not sufficient to produce prolonged anti-obesity effects via CB1-mediated pathways [6].

The contrasting effect of THC on weight gain could be associated with its ability to
produce greater tolerance when administered in a ramping-dose procedure [24]. Studies
have shown that THC tolerance, caused by prolonged cannabis use, leads to the loss and
desensitization of CB1; thus, the associated phenotype could reflect a decrease rather than
an increase in CB1 activity [25]. Supporting this notion, an opposed effect was also observed
on glucose tolerance in mice treated with THC.

In line with this, previous studies demonstrated the induction of glucose intolerance
by endocannabinoid agonists and an improvement in insulin sensitivity by CB1 antago-
nists [26,27]. Our findings indicated an elevation in inflammatory markers in adipose tissue
in mice treated with CBD and THC, suggesting that the improvement in glucose tolerance
using THC is not related to reduced inflammation [28].

One of our aims in this study was to evaluate the modulatory effect of THC and
CBD on the peripheral ECS, specifically in visceral adipose tissue and liver. We did so
by examining the levels of the main endocannabinoids AEA and 2-AG, as well as other
family members of NAEs, 2-MAGs, and NAAAs that together act as mediators within the
endocannabinoidome [4]. Although THC and CBD substantially accumulated in target
tissues, obese mice demonstrated decreased levels of AEA and 2-AG congeners, mainly
NAEs and NAAAs, compared with lean mice. This could be the result of the fatty acid
composition of the HFD used in this study, rather than the presence of the high-fat intake
itself, as previously suggested [29,30].

Based on the fatty acid compositions of the two diets used in our study (Supple-
mentary Figure S1), we speculate that the inverse proportions of polyunsaturated fatty
acids compared with saturated fatty acids and monounsaturated fatty acids, together with
similar ω6:ω3 ratios in the HFD, affected the biosynthetic precursors of these lipids in a
way that eventually led to decreased levels in the tissues examined from HFD-fed mice.
In agreement, 2-AG and AEA levels in the epididymal fat were unaffected by diet or
treatment. In contrast, the 2-LG derivate of 2-MAGs was increased in the epididymal tissue
of HFD-fed mice treated with vehicle and CBD compared with lean mice. This observation
could reflect the mechanism in which 2-MAGs are formed in the adipose tissue, during the
mobilization of stored triglycerides (TGs) [31]. Indeed, the adipocyte cell size of mice from
all treatment groups corresponded to the levels of 2-LG seen in the epididymal tissue.

In the liver, mice treated with CBD exhibited decreased levels of 2-AG, suggesting
specific modulation with CBD. The decreased levels of 2-AG cannot be explained by
corresponding level changes in the main synthesizing enzyme of 2-AG in the liver, DAGLβ,
nor by its hydrolyzing enzyme, MAGL, which were similar in all treatment groups. It is
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possible that the expression of the enzymes did not result in changes in enzyme activity,
as seen previously [32]. Alternatively, it is possible that the low levels of 2-AG seen in the
liver reflect alterations in the metabolism of the phytocannabinoid that occur via different
biosynthetic enzymes [33].

Previous studies have shown that elevated levels of 2-AG, the main CB1 endogenous
agonist, increase the transcription of lipogenic genes and increase TG production in the
liver, thus contributing to the development of diet-induced fatty liver [34–36]. However,
CBD treatment increased the transcription of lipogenic genes and of PPARα in the liver,
and although the latter induces the expression of genes involved in FA oxidation, the upreg-
ulation is more likely due to the efflux of free fatty acids (FFA) to the liver [2]. Subsequently,
CBD had no beneficial effect on liver steatosis. Conversely, however, THC treatment im-
proved liver steatosis, and these changes were not associated with transcriptional changes
of steatogenic genes. It is possible that THC reduced liver steatosis indirectly by limiting
the influx of fatty acids originating from adipose tissue, as indicated by the significant
decrease in adipocyte size compared with vehicle-treated HFD and CBD-treated groups.
Indeed, large adipocytes from visceral fat undergo higher rates of lipolysis, thus increasing
the circulation of FFA, consequently leading to the ectopic deposition of fats in the liver [2].
However, the analysis of gene expression in epididymal tissue revealed no significant effect
of THC on gene-associated lipid metabolism regulation.

THC exerts a broad systemic effect, demonstrated by the decreased energy balance
seen in acute administration using indirect calorimetry (Supplementary Figure S2), which
resulted in weight loss and reduction in plasma leptin compared with CBD, suggesting
decreased fat mass and improved leptin sensitivity in the context of obesity [37,38]. Taken
together, it is possible that the improved metabolic state induced by THC resulted from
modulated energy metabolism, possibly mediated by leptin, and adipose adaptation.

An important limitation of the study arises from the relatively small number of animals
per group; thus, further research is recommended. Furthermore, the study was performed
on male mice, so it would be beneficial to examine sex differences in oral THC treatment in
an obese setting.

4. Materials and Methods
4.1. Animals

All procedures were approved by the animal ethics committee of the Hebrew Uni-
versity of Jerusalem (approval number: AG-23-15437-3). Four-week-old C57BL/6 male
mice were purchased from Envigo (Rehovot, Israel) and housed in polycarbonate cages
under a 12 h light/dark cycle-controlled temperature and constant humidity. Mice were
fed ad libitum with either a standard diet (STD; 2018sx; Harlan Teklad) containing 70% car-
bohydrates, 20% protein, and 10% fat, or a high-fat diet (HFD; TD.06414; Harlan Teklad)
containing 60% fat, 20% protein, and 20% carbohydrates. The fatty acid profile of the STD
and HFD are shown in Supplemental Table S1.

4.2. Treatments

Pure THC (BOL pharma, Revadim, Israel) or CBD (Tikun Olam Ltd., Tel-Aviv, Is-
rael) were dissolved in olive oil. Mice were fed with HFD or STD for 14 weeks, and then
randomly divided into treatment groups (n = 5). The dosing schedule was based on consid-
eration of “frequent cannabis use” as determined elsewhere [39]. Mice were administered
via noninvasive oral delivery using a micropipette of 10 µL of THC, CBD, or vehicle control
(olive oil) at 10 mg/kg three times a week for five weeks, followed by an additional five
weeks of 30 mg/kg treatment. At the end of the treatments, mice were euthanized via
isoflurane overdose, and their blood was collected, and serum leptin and adiponectin levels
were determined using a commercial ELISA kit (Ray Biotech, Peachtree Corners, GA, USA).
Liver and adipose tissues were also collected and further analyzed.
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4.3. Pharmacokinetics (PK)

For PK assessments, mice were deprived of food for 12 h and then orally administered
30 mg/kg of THC or CBD (n = 4 per time point). Then, 4 h after administration, mice were
given food ad libitum for the remainder of the experiment. Mice were anesthetized with
isoflurane at 0.5, 1, 2, 4, 8, and 24 h after administration, and blood was collected from the
orbital sinus. Plasma was isolated via centrifugation at 3000 RPM at 4 ◦C for 15 min and
transferred into polypropylene tubes, which were immediately frozen and stored at −80 ◦C
for future analysis of THC and CBD metabolites.

4.4. Metabolic Cages

Control and treated mice (n = 4) were housed individually in metabolic cages. The
mice were acclimated in metabolic cages for two days and then fasted for 12 h before
receiving treatment with either vehicle, THC, or CBD at a concentration of 30 mg/kg.
Two hours after treatment, mice were given food ad libitum for the remaining 24 h. All
measurements were obtained using an indirect calorimetry system (Promethion, Sable
systems, Las Vegas, NV, USA). The volume of O2 and CO2 inspired or expired by each
animal was recorded, and the relative respiration rate (RER) was calculated as the ratio
of vCO2 to vO2. Data collected continuously included food consumption and locomotor
activity. Data were exported using Expedata software (Ver 1.9.14, Sable) and converted
using Macro interpreter (Sable) to CSV and XML files. Downstream analysis was carried
out using CalR (ver 1.3) [40] and GraphPad Prism 9 software.

4.5. Glucose Tolerance Test

Intraperitoneal glucose tolerance tests were performed in mice following 6 h of fasting
prior to the injection of the glucose solution (2 g/kg). Blood glucose from the tail ends was
determined using a glucometer (FreeStyle Optimum Neo glucometer, Abbott, IL, USA);
AUC between 0 and 120 min was determined using the GraphPad Prism 9 software.

4.6. Liver Triglyceride Quantification

Briefly, 80 mg of liver tissue was homogenized in 0.5 mL of ice-cold 1:1 methanol–
Tris (50 mM Tris buffer pH 8) solution. The homogenate was washed twice with 1 mL
ice-cold chloroform–methanol (1:1 v/v), and 0.5 mL of 50 mM Tris pH was added and
vortexed, and then the mixture was centrifuged at 3000× g at 4 ◦C for 10 min. The
organic phase was transferred to a glass tube and underwent two more extractions with
ice-cold chloroform. Then, 1 mL of 5% Triton X-100 in chloroform was added and mixed
using vortex. Chloroform was evaporated with N2 gas at 32 ◦C, and triglycerides were
reconstituted with 1 mL of ddH2O. The extracted triglycerides were measured using a
triglyceride colorimetric kit according to manufacturer instructions (Cayman Chemicals,
Ann Arbor, MI, USA).

4.7. Histology and Microscopy

Adipose and liver tissues were embedded in paraffin and sectioned to 5 µM thickness
on superfrost slides. Slides were stained using hematoxylin (Hebrew University pathology
core facility). The stained slides were photographed using a Canon microscope with
a mounted Olympus camera. Adipose cell size and hepatic lipid droplet counts were
calculated using Fiji software (ver 1.53) [41].

4.8. Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS) Chemical Analysis

The analysis of endocannabinoids, endocannabinoid-like lipids, and pure THC and
CBD from plasma, liver, and adipose tissue samples was performed using Thermo Scientific
ultra HPLC system coupled with a Q ExactiveTM Focus Hybrid Quadrupole-Orbitrap MS,
according to a method developed and validated by David Meiri and colleagues [42].
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4.9. Western Blot

Liver tissue samples were homogenized in a RIPA buffer (Santa Cruz Biotechnology,
Dallas, TX, USA) supplemented with a complete protease inhibitor cocktail (Sigma,
ST. Louis, MO, USA) and centrifuged at 20,000× g for 15 min. The supernatant was
collected, and protein concentration was measured with a BCA protein quantification
kit (Pierce, Thermo Fisher, Waltham, MA, USA). Then, 60 µg of protein was loaded in
each well and separated on 12% precast gels (Bio-Rad, Hercules, CA, USA) and blotted
onto nitrocellulose membrane (Bio-Rad), which were blocked in 5% BSA and incubated
with anti-DAGLβ (Cell Signaling, Danvers, MA, USA, Cat# D4P7C) dilution 1:1000 and
anti-MAGL (Abcam, Cambridge, UK, Cat# ab24701) dilution 1:200. Blots were incubated
with HRP-conjugated anti-rabbit secondary antibody (Abcam, ab6721) and detected using
ECL solution (Cytiva, Amersham, UK). Imaging and quantification were performed with
ChemiDoc (Bio-Rad).

4.10. RNA Extraction and Real-Time Quantitative PCR

RNA was extracted from the hepatic tissues using the NucleoSpin RNA extraction kit
(Mecherey-Nagel, GmbH, Düren, Germany) according to the manufacturer’s instructions.
Additionally, RNA was extracted from the adipose tissue using RNeasy Lipid Tissue Mini
Kit (Qiagen, Hildan, Germany) according to manufacturer instructions. Briefly, 1 µg of
total RNA was used to create cDNA using the qScript cDNA Synthesis Kit (Quantabio,
Beverly, MA, USA). Relative gene expression was analyzed on QuantStudio 1 Real-Time
PCR using SYBR® Green-Based qPCR (Thermo Fisher). Real-time PCR primers are listed in
Supplementary Table S2.

4.11. Statistics

Statistical analyses were performed using GraphPad Prism 9 (GraphPad software,
version 9.0.0). Unless otherwise stated, data are expressed as mean ± SEM. Statistical
differences were tested using one-way or two-way ANOVA, followed by Tukey’s post hoc
test. Regarding the PK data analysis, Cmax and area under the curve (AUC) were measured
using GraphPad Prism 9. The times maximum concentrations were reached (Tmax) were
determined via visual inspection of averaged data. A difference of p < 0.05 was considered
statistically significant.

5. Conclusions

In conclusion, the present findings provide evidence for the ability of THC to improve
obesity-related metabolic complications when administered orally in ramping doses. The
limited effect of CBD demonstrated in our study suggests that the low prevalence of obesity
and metabolic diseases seen in cannabis users is mainly attributed to the presence of THC.
Further studies are needed to explore the mechanism through which THC, via adipose
adaptation and/or leptin sensitivity, reduces obesity-induced hepatic steatosis.
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